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We consider a model of two harmonically driven damped harmonic oscillators that are coupled linearly and
with a cross-Kerr coupling. We show how to distinguish this combination of coupling types from the case where
a coupling of optomechanical type is present. This can be useful for the characterization of various nonlinear
systems, such as mechanical oscillators, qubits, and hybrid systems. We then consider a hybrid system with linear
and cross-Kerr interactions and a relatively high damping in one of the modes. We derive a quantum Hamiltonian
of a doubly clamped magnetic beam, showing that the cross-Kerr coupling is prominent there. We discuss, in
the classical limit, measurements of its linear response as well as the specific higher-harmonic responses. These
frequency-domain measurements can allow estimating the magnitude of the cross-Kerr coupling or the magnon
population.
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I. INTRODUCTION

Kerr effect in optics arises due to the dependence of the
electric displacement field on the third power of the elec-
tric field [1]. Often it is masked by the analogous Pockels
effect quadratic in the electric field. However, if the me-
dia is approximately inversion symmetric, the Pockels effect
vanishes and the Kerr effect is the dominant nonlinearity
[1,2]. In that case, the Kerr effect also provides the dominat-
ing nonlinear interaction between different radiation modes,
known as the cross-Kerr interaction [3]. Similar nonlineari-
ties appear in a plethora of other systems when dynamical
equations contain non-negligible terms cubic in the system
variables. Many of these systems are considered relevant to
quantum technologies. Transmon qubits [4,5] naturally couple
with a cross-Kerr interaction in the charge basis [6], while
in the energy-eigenstate basis (which is usually used as the
computational basis) the cross-Kerr coupling can be engi-
neered with a SQUID coupler [7] or similar nonlinear circuits
(see Sec. 4 of Ref. [8] and references therein). Dispersive
interaction of a superconducting qubit and resonator photons,
which is of a cross-Kerr form in the effective Hamiltonian
[9–11], is routinely used for fast high-fidelity quantum non-
demolition readout of a qubit [12,13] and can be used for the
quantum nondemolition measurement of the radiation state
[14].

Interfacing quantum systems of different natures can com-
bine their strengths for applications in quantum technologies
[15]. In a hybrid system, its parts of different natures interact
despite having mismatched characteristic frequencies. Often
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one part of a system has a much lower resonance linewidth
than the other one. That is usually the case for magnome-
chanics, where a high-Q mechanical mode interacts with a
relatively lossy ferromagnetic resonance mode [16–19]. In
this case, the effect of coupling to the high-Q mode can be
accessed by looking for narrow linewidth (first or second)
sidebands in the response of the other mode, arising from
nonlinear interactions between the two. As we discuss in this
paper, the position and strength of such sidebands depends on
the type of nonlinearity.

In magnomechanical systems, the third-order cross-Kerr
interaction can dominate over the second-order coupling of
optomechanical form if the latter is prohibited by the system
symmetry. This is an opposite regime than the one realized
in Refs. [16,17,19]. For example, in Ref. [18], with one of
the authors, we predicted the presence of a second-order non-
linearity in the equations of motion—the “optomechanical”
coupling—arising due to interaction of vibrations of a doubly
clamped magnetic beam and its macrospin mode. However,
to engineer this coupling, a static deformation of the beam
is required. The optomechanical coupling term in the Hamil-
tonian and the respective energy are of the first order in the
beam displacement in its bending mode (see Fig. 1). The
optomechanical energy changes its sign with respect to the
displacement if the magnetic-related factors in it stay invari-
ant. In that case, the respective Hamiltonian term is zero if the
beam possesses an inversion symmetry. Similarly, if an op-
tomechanical setup [15] possesses an inversion symmetry, the
dominant nonlinearity there is of a cross-Kerr type [20–23].
In such cases, it is interesting to experimentally determine the
form of the dominating nonlinear interaction. As we discuss
in this paper, this can be done by considering the nonlinear
response of the two systems.
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FIG. 1. Doubly clamped magnetic beam where the ferromag-
netic resonance (FMR) mode interacts with the beam mechanical
mode. The beam is long in the direction between its fixed points and
has a wide cross section, i.e., L � w � h. A symmetrical bending
mode of the beam is excited. We assume that the beam is uniformly
magnetized. A static magnetic field �H0 is applied along the beam.
FMR arises when an applied rf field makes the beam magnetization
�M to precess around �H0. Deformation of the beam changes the shape

and the intrinsic anisotropies of the magnetic medium, which results
in an interaction between the mechanical and the FMR mode.

While often one is interested in quantum effects in these
systems, they are not always easy to study. For example,
to maintain full quantum coherence of a magnomechanical
system, thermal phonons should not randomly excite the me-
chanical oscillator. Usually, that means that the system has
to be cooled down close to the ground state of mechanical
vibrations, in practice to the temperature of a few millikelvin
[24,25]. Theory wise, even linear interactions are not trivial
to study in quantum systems [11,26]. Study of a nonlinear
quantum coupling is even more challenging technically—for
example, see Ref. [27], where it required performing high-
order expansions in noncommuting operators and various ap-
proximations to calculate the system response. However, we
expect that the classical limit can be an insightful first step in
understanding and characterizing the cross-Kerr interaction.

Two classical systems with the ∝ (x − x′)4 cross-Kerr term
in the Hamiltonian, where x and x′ are each system coor-
dinates, were studied in Ref. [28]. This form is natural for
mechanical systems and is the form that is engineered for
transmon qubits in the computational basis (see the references
above). However, in magnomechanics, the interaction term
can be ∝ x2x′2. When the processes involving several exci-
tations from one system can be neglected, both forms provide
the same resonant contributions to the population. However,
they generate different higher-order harmonics. The common
rotating-wave approximation (RWA) analysis of the cross-
Kerr coupling [7,8,19,29–32] neglects the difference between
the two forms.

Still, some properties of cross-Kerr coupling of the form
∝ x2x′2 that arise in magnomechanics were considered in the
literature. The general form of a nonlinear coupling of the
third order in the equations of motion was studied in Ref. [33].
The cross-Kerr coupling of magnomechanical form was con-

sidered in Refs. [34–36]. References [33–35] studied the case
when linear resonances of the coupled systems are close to
each other and to the drive frequency. The case of 1:2 ratio of
the linear resonances of the coupled systems was considered
in Ref. [37] for the same type of coupling. In the mentioned
works, only a single tone drives the systems. However, we
expect that the use of two distinct tones can provide useful
information in the system response. Reference [35] stands out
from the rest of the cited above: there, the model parameters
were fitted to the experimental response curves of a mechani-
cal system.

In our contribution, we also seek how to characterize a sys-
tem coupling. The first of our main results is general enough
for any type of self- or cross-Kerr coupling: We consider how
to differentiate a cross-Kerr coupling from an optomechan-
ical one. Then we further focus on the cross-Kerr coupling
in a magnomechanical system that lacks an optomechanical
coupling due to its symmetries. In Refs. [34–37], a great
deal of attention was given to the multistability that arises in
the coupled system. Damping in the FMR mode is expected
to exceed the nonlinearities in the system, which allows us
to neglect multistability. That simplifies our theory and the
interpretation of the responses. This regime can be relevant
for other hybrid systems. We provide a theory that allows
for characterizing the cross-Kerr coupling from its nonlinear
frequency responses.

In Sec. II, we present the general model considered in the
paper and discuss the assumptions and approximations we
use; in particular, we discuss the validity of the classical ap-
proximation in Sec. II A. Section III presents the approach we
use to calculate the harmonic structure and their weights. In
Sec. IV, we elucidate how the presence or absence of different
harmonics generated in the system point to different types of
interaction. In Sec. V, we focus on a magnomechanical system
with dominating cross-Kerr nonlinearity: a symmetric doubly
clamped magnetic beam. We provide analytical expressions
for the second sidebands, which are the lowest-order harmon-
ics present in that system. Based on those expressions, we
discuss a spectroscopic method to assess the strength of the
cross-Kerr coupling or the magnon population in Sec. V A.
We discuss hybridization of the mechanical mode harmonics
in Sec. VI. That provides another spectroscopic method to
assess the cross-Kerr coupling strength or the magnon pop-
ulation. In Sec. VII, we sum up the results and discuss the
directions for future work. Derivation of the Hamiltonian of
the doubly clamped magnetic beam is delegated to the Ap-
pendix. While in the main part of the paper we work in the
classical limit, the Hamiltonian derived there is quantum. We
also provide estimates for the cross-Kerr coupling strength in
the Appendix.

II. MODEL AND ASSUMPTIONS

To be specific, we consider the model Hamiltonian

H = ω1a∗a + ω2b∗b + f1(aei�1t + c.c.) + f2(bei�2t + c.c.)

+ g(a∗ + a)(b∗ + b) + 1
4 K (a∗ + a)2(b∗ + b)2. (1)

It is motivated by the Hamiltonian of the magnomechanical
system in Fig. 1 that we derive in the Appendix. In the
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nomenclature of quantum theory, a and b are the annihi-
lation operators of the oscillators with h̄ = 1. However, as
we work in the classical limit, a and b are merely complex
numbers (hence the complex conjugates in the Hamiltonian).
If the oscillators are, for example, linear LC tanks, these
complex numbers are proportional to the phasors of either
the capacitor voltage or the current through the inductance.
In magnomechanics, Re(b) and Im(b) denote the amplitudes
of the precessing magnetization modes in the two directions
orthogonal to the static magnetization (see the Appendix for
details). Moreover,

a = 1√
2

(√
mω1x − i

p√
mω1

)
, (2)

where x is the deformation amplitude of the beam, m is its
mass, and p is the respective momentum. In the main part of
the paper, we operate with mean values and omit the averaging
operation 〈. . .〉 except when that can lead to a confusion.
Hamiltonian Eq. (1)—with the energy measured in the fre-
quency units—can be obtained in a purely classical manner
with the definition Eq. (2), its conjugate, and the similar equa-
tions for b. This is analogous to the treatment of Ref. [38].
The oscillators with bare frequencies ω1 and ω2 are driven
harmonically with the respective frequencies �1 and �2. In
the Hamiltonian Eq. (1), we denote the magnitude of the linear
coupling by g and that of the cross-Kerr coupling by K . The
cross-Kerr coupling here is of the form that arises due to
vibration-induced anisotropy in a magnet far from saturation.
We derive this term in the Appendix for a doubly clamped
magnetic beam (see Fig. 1), neglecting its crystal anisotropy.
Note that in Sec. IV we consider a more general form of the
Kerr nonlinearity.

The derivation of the beam Hamiltonian in the Ap-
pendix yields no coupling apart from the cross-Kerr one. In
Ref. [18], a linear and a coupling of the optomechanical form
quadratic in the magnetization were obtained for an initially
buckled beam. As discussed in the Introduction, in our case
the symmetry of an initially unbuckled beam precludes such
an optomechanical coupling. Judging from its form, the linear
coupling from the reference vanishes due to the symmetries
when the static magnetic field is oriented along the beam. The
reference provides only an optomechanical coupling that is
quadratic in the magnetic system operators. We also expect
that the absence of an optomechanical coupling quadratic in
the mechanical coordinate is a consequence of the symme-
tries in the initially unbuckled beam. With all that said, we
still include the linear coupling in Hamiltonian Eq. (1): We
expect that of the interactions discussed above, the linear one
is the most prominent to arise if the symmetries are slightly
broken in a real beam. Moreover, a linear interaction can be
prominent in other systems.

We use the RWA for the drive term and do not use it for the
coupling between the oscillators. We assume that the driving
is sufficiently weak and f1, f2 
 �1,�2; and, on the other
hand, it is not detuned too much [11], so

|�1 − ω1| 
 �1 + ω1, |�2 − ω2| 
 �2 + ω2. (3)

This assumption allows us to neglect all nonresonant con-
tributions from the corotating terms in the drive part of the
Hamiltonian (note that this approximation is not used in

Sec. IV). However, we are interested in the higher harmonics
generated by the interaction between the oscillators. They are
off-resonant and have the order of magnitude K/�1,2 or of
higher powers in g/�1,2 and K/�1,2. Hence we do not use
the RWA in the linear and cross-Kerr coupling terms in the
Hamiltonian Eq. (1).

Let us comment on how the Hamiltonian Eq. (1) can be ex-
tended with the bath terms to describe dissipation [11,39,40].
There are corotating terms in the interaction part of the Hamil-
tonian: In that case, one cannot use the RWA for the bath
coupling in quantum systems [41,42]. As a and a† and b and
b† do not commute in the quantum case, the ground state
of the interacting systems is different from their individual
ground states. An RWA coupling to the baths steers the system
towards the state where both subsystems are in their individual
ground states. As the respective combined state is not even a
system eigenstate, this generates excitations that are radiated
to the bath infinitely, which is unphysical. However, this prob-
lem does not arise in the classical limit we are interested in. In
that case, both the full and the RWA form of the system-bath
coupling steer the system to the equilibrium position with
well-defined values of momenta and coordinates.

A. Validity of the classical approach

Let us discuss when the classical limit is applicable. In this
paper, we only follow the evolution of the mean values of
the system coordinates. According to the Ehrenfest theorem,
the mean values evolve according to the classical theory only
when the forces governing the evolution are expressed in
terms of the averaged coordinates. However, that is not the
case for nonlinear systems. In our case, a cross-Kerr term
with 〈ba∗a〉 arises in the equation of motion for 〈b〉 along the
similar ones. Quantum coherence between the system parts,
as well as its superposed states, prevent the correlator from
breaking as 〈ba∗a〉 = 〈b〉〈a∗〉〈a〉. In what follows, we seek
the conditions for the quantum coherence to decay, which
guarantees the validity of the classical limit. Afterward, we
evaluate these conditions for the magnomechanical system of
the CoFeB doubly clamped beam.

First, quantum coherence decays due to random absorption
and emission of excitations to the baths. These processes [43]
occur with the rate

�ae = κ (2nth + 1), (4)

where nth is the thermal population of a system part and κ is
its decay rate. After many such processes, the wave-function
phases are no longer defined and the system can be described
classically.

Besides, due to interactions in the model we consider,
additional decoherence channels arise. Due to the cross-
Kerr coupling, fluctuations in one system gradually decohere
another system. Notably, that process rate grows with grow-
ing drive powers. With a calculation similar to those of
Refs. [43–46], we arrive at the estimate of

�cK
a = 4K2

κ2
nb

(
2nth

b + 1
)

(5)

for the associated decoherence rate of the mechanical system.
Mind the factor of 2 in the formula due to the fact that κ2
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denotes the FMR half-linewidth. Here the magnon population
nb due to the coherent drive is much larger than the thermal
population nth

b . The magnon number part of the expression
comes from the mean-squared deviation 〈(b†b − 〈b†b〉)2〉 of a
displaced thermal state with b = bth + √

nb. A random change
in the magnon number increases the phase uncertainty in the
mechanical mode during the time 1/2κ2 when the magnon
has not yet decayed. Still, we consider the magnon coherence
time to be small compared to the time of the cross-Kerr
interaction K−1.

Note that Eq. (5) overestimates the decoherence for more
than a few thermal magnons [44,46]; a more intricate expres-
sion from Ref. [47] should be used for quantitative estimates
for higher temperatures.

In addition, there is also decoherence associated with the
hybridization due to the linear interaction, similar to the
Purcell decay [9,40,48] in circuit quantum electrodynamics
(circuit QED). In the nonresonant case, its rate can be esti-
mated as

�P
a = 2g2κ2

(ω1 − ω2)2

(
2nth

b + 1
)

(6)

for the mechanical system.
Note that in the case multistability is pronounced in the

system, irreversible quantum tunneling from a metastable well
can be relevant. That process only requires wave-function
coherence to persist on the short timescales of the inverse
tunneling rate. According to Ref. [49], tunneling plays the
role in the system relaxation if the cross-Kerr coupling is not
much smaller than the decay rate, K � κ , and the oscillator
temperature is low enough. We also expect that tunneling is
dominated by the activation due to the shot noise from the
coherent driving if the drive is strong enough.

Generally, quantumness is a transient effect that usually
fades away quite fast if no multistability is present. In a given
time, the classical limit can always be reached if the temper-
ature is high or the oscillators are strongly driven. Still, the
respective populations should not be too high to invalidate our
model Hamiltonian Eq. (1). For the doubly clamped magnetic
beam, the amplitude of the magnetization precession should
be much smaller than the saturation magnetization and the
beam oscillations should be small compared to its length (see
the Appendix for details).

Finally, we provide numerical figures to assess the validity
of the classical limit for the magnetic beam. First, as we
consider the case of fast damping of the FMR mode, multi-
stability is not observable in our system. Indeed, we expect
the FMR half-linewidth of κ2 ≈ 2π 1 GHz for a beam made
out of amorphous CoFeB [50]. According to the estimates
in the Appendix, the cross-Kerr coupling rate K ∼ 2π 1 nHz
for the beam cross section of 1 µm × 5 nm. The cross-Kerr
shift Kna is responsible for the multistability, where na is the
vibrational mode occupancy. The shift is negligible compared
to the half-linewidth κ2 when there is no more than 1017

phonons in the beam vibrational mode. In that case, there is
no observable multistability, hence we can neglect tunneling
for most practical cases.

Next, we observe that the decoherence due to the cross-
Kerr interaction is completely negligible for such a small
coupling and reasonable mode occupancy. Indeed, accord-

ing to Eq. (5), the induced decoherence in the mechanical
mode is of a rate �cK

a /nb ∼ K2/κ2 ∼ 2π 10−27 Hz per one
magnon from the coherent drive. Provided that the mechanical
mode with frequency (see the Appendix) ωa ∼ 2π 1 MHz has
[51–53] Qa ∼ 104, it induces the FMR mode decoherence of
a rate �cK

b /na ∼ QaK2/ωa ∼ 2π 10−21 Hz per one coherent
phonon. Moreover, there is no decoherence due to the Purcell
decay as described by Eq. (6), as the beam symmetry pre-
cludes the linear interaction between the modes.

Therefore, if the coupling to the modes beyond our model
is also small, the dominant mechanism for losing quantum
coherence in the magnetic beam is the exchange of excita-
tions with the environment. According to Eq. (4), at room
temperature T the FMR mode quantum coherence vanishes
after 1/�ae

b ∼ 0.1 ps, where we have estimated the mode ther-
mal occupancy nth

b ≈ kBT/h̄ωb ≈ 600, with kB the Boltzmann
constant. In the vibrational mode, coherence vanishes after
1/�ae

a ∼ 1 ns. For such times, averaged mode observables do
not exhibit any quantum effects. In other words, the classical
limit where �ae

a/b > ωa/b is reached in the stationary state at
sufficiently high temperatures.

In practice, quantum effects may vanish even on a shorter
timescale as the above estimates do not include pure dephas-
ing induced by the environment.

III. HARMONIC EXPANSION
OF THE EQUATIONS OF MOTION

Here we obtain the equations for the harmonics of a and b
by plugging the harmonic expansions of the system variables
into the dynamic equations. This approach is often called the
harmonic balance method. We assume that the frequencies of
the modes of both system parts are nonequidistant, hence the
higher modes are not excited by the harmonics.

The equation of motion for b reads

ḃ = (−iω2 − κ2)b − 2i f2e−i�2t

− ig(a + a∗) − 1
2 iK (b∗ + b)(a∗ + a)2. (7)

Here κ2 denotes the half-linewidth of the second oscillator.
The equation for a has the same form, albeit with κ1 denoting
the half-linewidth of the first oscillator and similar changes.
Formally, the equations can be obtained, for example, with the
Langevin approach. That consists of adding the bath terms to
the Hamiltonian Eq. (1), writing out the respective Langevin
equations [11,39,40] in the classical limit, and neglecting the
thermal population of the modes.

In the steady state, the drives can only excite harmonics
with frequencies

�kl = k�1 + l�2, (8)

with k and l integers.
We assume that the system does not undergo a subhar-

monic bifurcation [54–57] and subharmonics are negligible.
a and b can then be expanded in the form

a =
∞∑

k,l=−∞
Akle

−i�kl t , b =
∞∑

k,l=−∞
Bkle

−i�kl t (9)

in terms of the harmonic weights Akl and Bkl . There is a
symmetry in the harmonic weights Akl ↔ Blk due to the sym-
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metry a ↔ b, �1 ↔ �2, f1 ↔ f2, κ1 ↔ κ2, ω1 ↔ ω2 in the
equations of motion: Eq. (7) for b and the respective one for
a. As a and b contain higher harmonics, they generalize the
concept of phasors known in the theory of linear electrical
circuits; however, we still call them phasors for simplicity.

We plug these expansions into the differential Eq. (7) for
a and the respective equation for b. Then we collect the
terms with the same exponents into algebraic equations. For
example, the equation on B21 reads

(2�1 + �2 − ω̃2 + iκ1) B21

= gA∗
−2 −1 + gA21 + 1

2 K B01 A2
10

+ K B10 A01 A10 + K B∗
−1 0 A01 A10

+ K B10 A∗
0 −1 A10 + K B∗

−1 0 A∗
0 −1 A10, (10)

up to the terms that are linear in K . Here ω̃2 denotes the
resonance frequency as renormalized by the coupling; we find
an approximate expression for it in Sec. V. Consider the right-
hand side of Eq. (10). The terms proportional to g describe
the linear processes that transfer the A21 harmonic into the
B21 one. The terms proportional to K describe the cross-Kerr
processes that generate the harmonic from the oscillations at
the drive frequencies. In all these terms, the respective indices
in all factors sum up to match those on the left-hand side, with
the indices of a complex conjugate inverted.

We use Eqs. (7)–(9) in Sec. V. In the next section, we
consider a more general case than that given by Hamiltonian
Eq. (1) and the respective equation of motion Eq. (7). Still, the
expansions Eqs. (9) are the same in that case.

IV. COUPLING SIGNATURES IN
THE HARMONIC STRUCTURE

Here we discuss which harmonics are generated by a Kerr
nonlinearity and compare to the harmonics generated by an
optomechanical coupling. We assume that subharmonics are
not excited.

A. No first sidebands with a cross- or self-Kerr nonlinearity only

First, we show that no combination of linear, Kerr, and
cross-Kerr couplings generates a harmonic at the sum or
difference of the driving frequencies �1 ± �2. The latter
harmonics are often referred to as the (first) sidebands.
In general, these types of couplings only generate harmonics
at frequencies k�1 + l�2, with k + l odd.

Any type of a Kerr coupling gives rise to the terms in the
equations of motion for a that are of the form

−iKc(∗),(∗),(∗)a
(∗)b(∗)b(∗), (11)

where c(∗)(∗)(∗) are constants that are different for each combi-
nation of complex-conjugated operators in a term. They arise
due to an expansion of a concrete form of the Kerr coupling.

Let us check what harmonics are excited by the drives.
We consider the drives applied as described by Hamiltonian
Eq. (1) or any other case with two tones applied to the system.
The tones first excite the harmonics with only one “1” in the
indices. These are A10 and B01 for the driving as described
by Hamiltonian Eq. (1). A Kerr process generates a harmonic
with indices that are a sum of indices of three other harmon-

l

k

1 K

g

K

g

-2 -1 0 1 2

-2

-1

0

1

2

K(1)

Kg

KgKg

Kg

K

K

FIG. 2. Leading orders in the coupling constants of the first few
harmonics Bkl (Alk) of b (a) for the magnomechanical cross-Kerr
coupling as in Hamiltonian Eq. (1). The dashed spaces indicate
absence of a harmonic; their position is universal for any type of
Kerr coupling or any coupling of an odd power in the equations of
motion. In the white spaces, the leading orders of a harmonic are
indicated, in the coupling strengths g and K . The figure assumes the
∝ g2 contributions to be small compared to the ∝ K ones and vice
versa. The main contribution to B0 −1 differs in the wide linewidth
κ2 � Kna limit close to the resonance |�2 − ω2| � κ2, where na =
a∗a is the mechanical mode population, or further away from the
resonance |�2 − ω2| � κ2, Kna. The order relevant to these cases is
indicated in the brackets. Its calculation requires taking into account
the corotating terms in the drive Hamiltonian.

ics, according to Eq. (11) and the expansions Eqs. (9)—see
Eq. (10) for example. As we start with the harmonics with an
odd sum of indices, adding up three of them again gives an odd
sum, and so on. A linear process can only transfer a harmonic
from one oscillator to another one preserving the harmonic
indices [see the second term in the right-hand side of Eq. (10)]
or inverting them (the first term there). None of that changes
the sum parity. Therefore, the drives only excite the harmonics
with indices k l such that k + l is odd. The relevant harmonics
form a checkerboard pattern in Fig. 2. Most notably, the first
sidebands A1 ±1 and B1 ±1 are not excited.

Our considerations are also valid when there is a crosstalk
between the drives. In that case, one may need to include
the corotating part of the drive terms in Hamiltonian Eq. (1),
as the conditions �1 − ω2 
 �1 + ω2 and �2 − ω1 
 �2 +
ω1, that are analogous to conditions Eqs. (3), can be broken.
While the crosstalk contributions to the populations are small
compared to the resonant ones, they can become consider-
able in the nonlinear harmonics. One possible mechanism
for that is when the crosstalk contribution in A10 becomes
comparable to the nonresonant terms transferred from another
mode B01 by the linear coupling [see Eq. (10) for a similar
process]. Harmonic terms of order g or higher—e.g., in B12

(see Fig. 2)—can be generated out of these transferred terms.
Therefore, the crosstalk also provides a sizable contribution
there.
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The results of this section can be generalized to any cou-
pling of odd power in the operators a(†) and b(†) in the
equations of motion. This is a generalization of a known fact
that only odd harmonics are generated in a driven system with
a nonlinearity of an odd power x2n+1 in the system variable
x [58]. Note that if subharmonics become excited, they also
excite the even harmonics. This bifurcation was studied in
Refs. [54,55] in a Duffing oscillator without damping. While
our system is related to it [59], we expect that, due to the
damping, subharmonics do not occur in the steady state of a
moderately driven system [56]. That assumption is even more
likely to hold when in one of the modes, damping dominates
the nonlinearity. We consider that case in Secs. V–VI.

B. Comparison with optomechanical coupling

Now we compare the results above with the case when
a nonlinearity of a previous order—the optomechanical
coupling—is present.

Such a coupling arises in general cavity optomechanical
systems where the electromagnetic field in the cavity interacts
with the mechanical vibrations of one of the cavity mirrors
[24]. It can also be encountered in the coupling between
the mechanical vibrations and other dynamical modes, such
as ferromagnetic resonance [16–19]. In a Hamiltonian, the
respective interaction term is 1

2 G(b∗ + b)2(a∗ + a) with the
optomechanical coupling strength G. Its RWA part reads
Gb∗b(a∗ + a): in other words, the cavity or ferromagnetic
resonance frequency is modulated by the amplitude of the
mechanical oscillation. The coupling gives rise to the term

−iG(b∗ + b)(a∗ + a) (12)

in the equation of motion for b. By plugging the expansion
Eqs. (9) into that term, it can be seen that it generates har-
monics which are either a sum or a difference of the input
harmonics. A plus or minus sign can occur in front of the
sum or difference. Linear sidebands �1 ± �2 are thus excited
directly by the drives, in the order G. Moreover, all possible
harmonics are excited, for example, by processes combining
first sidebands with the drive tones again. This can be seen
as these processes making steps of ±1 in the harmonic in-
dices. In accordance with our reasoning, RWA analyses of
Refs. [60–62] predict generation of all sidebands �2 + n�1

with n integer. Note that when �1 = 2�2 and one is only
interested in the sideband at �1 − �2 = �2, which is at res-
onance, the RWA form of the coupling suffices. In the case
when the higher harmonics are of interest, the non-RWA form
we consider is required.

V. FMR SIDEBANDS IN THE CROSS-KERR
MAGNOMECHANICS

As shown in the previous section, the cross-Kerr cou-
pling does not generate the �1 ± �2 sidebands. The most
prominent nonlinear harmonics are then of the order K in
the coupling constants (see Fig. 2). We call these the second
sidebands. We focus on some of these harmonics in the mag-
nomechanical system shown in Fig. 1. As we show in detail
in the Appendix, Hamiltonian Eq. (1) applies in that case.
There, the mechanical mode of the magnetic beam (with the

dimensionless phasor a in the Hamiltonian) interacts linearly
and through the cross-Kerr coupling with the beam FMR
mode (with the phasor b). There is no coupling of the op-
tomechanical form because the symmetry of the mechanical
mode precludes it. The nonlinearity generates second FMR
sidebands at �2 ± 2�1 that can be picked up by an rf antenna
in the experiment. In this section, we obtain quantitative ana-
lytical results for the magnitude of the second sideband in the
limit of the wide FMR linewidth.

The second sideband magnitude can be measured in the
picked-up signal with a spectrum analyzer. The magnitude
of the blue second sideband is proportional to |B21 + B∗

−2 −1|
according to Eqs. (9). Equation (10) and a similar one for
B−2 −1 elucidate that the sideband magnitude is of order K ,
given that the drives directly excite A10 and B01. In the limit
of a wide FMR linewidth,

κ2 � Kna, na

√
|K||�2 − ω2|,

g2/|�2 − ω1|, g
√

|�2 − ω2|/|�2 − ω1|, (13)

the resonance shift due to the interaction is not resolved in
the FMR. Then, in the leading order in g and K , the second
sideband generated at �2 + 2�1 is

B21 ≈ K A2
10 B01

2 (2 �1 + �2 − ω2 + i κ2)
, (14)

where we neglect the terms of order g3, g2K , and K2. In
Eq. (14), it is enough to take into account only the direct
influence of the drives on weights A10 and B01. The latter can
be found right away,

B01 ≈ f2

�2 − ω2 + iκ2
, (15)

in the approximation of the wide FMR linewidth Eqs. (13).
However, we assume that the linewidth of the mechanical
mode is narrow enough to resolve the coupling-induced shifts
in its resonance. It is still possible to quickly obtain the correct
result, that we later confirm with a meticulous calculation. In
the mechanical resonance shift, the resonant terms dominate;
therefore, in most cases one can drop the corotating terms in
Hamiltonian Eq. (1) in obtaining the shift. Close to the linear
resonances that are detuned from each other, this yields the
renormalized frequency of the vibrational mode

ω̃1 ≈ ω1 + K |B01|2, (16)

where we neglect the shift due to the linear coupling as
it is proportional to 1/(�1 − ω2), which follows from the
well-known expression for the normal mode of two linearly
coupled oscillators. Mechanical mode resonance shifts pro-
portionally to the number of magnons due the cross-Kerr
coupling. Amplitude of the mechanical mode primary har-
monic reads

A10 ≈ f1

�1 − ω̃1 + iκ1
. (17)

As ω̃1 shows up in the A10 denominator, small changes in it
influence the resonance shape that can be observed experi-
mentally. Thus, it is interesting to obtain higher corrections to
ω̃1. Moreover, we can also determine the limits of applicabil-
ity of the RWA we have used.
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We proceed to obtain Eqs. (16) and (17) with a more formal
approach. In the equation for A10, we plug the expressions
for Bkl in such orders in g and K that the terms free of A10

are determined in the orders g2, K2, and gK . While doing
that, we treat Bkl as functions of Amn regardless of the order
of magnitude of Amn. That way, we obtain the renormaliza-
tion in the A10 resonance, including the terms nonlinear in
A(∗)

10 . The respective coefficients of A10, A∗
10 and any resulting

combinations of them are determined up to and including the
terms proportional to g2, K2, and gK . We have performed
that procedure for the harmonic weights with |k|, |l| � 2 in
expansions Eqs. (9) with a custom asymptotic solver [63] in
the MAXIMA computer algebra system. Taking into account
higher harmonics does not make sense in the second order in
g and K we consider, as they are generated by at least three
respective processes. The resulting equation reads

(�1 − ω̃1 + i κ1) A10 + 1

2
A10 |A10|2 |B01|2 K2

(
− 1

2 �1 − �2 − ω2 + i κ2
− 1

2 �1 + �2 − ω2 + i κ2

+ 2

�2 + ω2 − i κ2
+ 1

2 �1 − �2 + ω2 + i κ2
+ 2

�2 + ω2 + i κ2
+ 1

2 �1 + �2 + ω2 + i κ2

)

= f1 + 1

2
KB2

01(A1 −2 + A∗
−1 2) + K|B01|2 A∗

−1 0 + 1
2 KB∗2

01(A12 + A∗
−1 −2), (18)

with the effective frequency given by the full expression
ω̃1 = ω1 + K |B01|2 + ( 1

�1−ω2+i κ2
− 1

�1+ω2+i κ2
) g2. The terms

proportional to g2 in that expression describe the frequency
pull due to the linear interaction. The first of these terms is
similar to the dispersive shift in cavity quantum electrodynam-
ics [9,11]. It becomes comparable to the cross-Kerr shift in
the case of a strong linear interaction, g2 � K|B01|2|�1 − ω2|.
The second ∝ g2 term describes a Bloch-Siegert shift [11,65]
in the FMR. It becomes comparable to the dispersive shift
when the mechanical drive is far detuned from the FMR,
|�1 − ω2| ∼ �1 + ω2. We neglect the ∝ g2 terms in Eq. (16),
as we assume the mechanical drive at �1 detuned from the
FMR at ω2, and g sufficiently small.

Consider the other terms in Eq. (18) that are proportional
to A10 and therefore explicitly renormalize the mechanical
resonance. These terms are given on the left-hand side of
the equation. The terms proportional to K2 with the sum of
frequencies in the denominator only matter for the ultrastrong
cross-Kerr interaction, i.e., when K|A01|2 � κ2, ω1,2, �1,2.
Under the condition Eqs. (13) of wide FMR linewidth, this
regime still can be reached if there are much more phonons
than magnons |A10|2 � |B01|2. The rest of the ∝ K2 terms
can also become substantially close to the respective nonlinear
resonances. In any case, when these terms are non-negligible,
multistability can arise, as they are nonlinear in the phonon
number.

Now let us discuss the formally free terms that are given
on the right-hand side of Eq. (18). The first term there, f1,
describes the mechanical driving. Usually, it is the dominant
term; we compare other terms to it. The other terms stem
from the cross-Kerr processes that contribute to A10. The term
containing A−1 0 becomes substantial away from the linear
mechanical resonance. The terms with the weights A±1±2 of
the mechanical second sidebands should be accounted for
when driving close to the respective nonlinear resonances.
When such a nonlinear resonance is close to the linear me-
chanical resonance, we expect them to repulse. Indeed, one
can check that the equations for A±1±2 depend on A10. That

results in a repulsion of size |K||B01|2 similar to the avoided-
crossing effect that we discuss in Sec. VI. Note that the terms
of order K3 that we neglect on the right-hand side provide a
similar pull in the resonance frequency that can be of K2 order.
However, we neglect this and similar shifts to the explicit ∼K2

renormalization terms on the left-hand side. These shifts are
small because they arise due to the next-order weights Amn,
and they are of higher order in the magnon population |B01|2.
Finally, neglecting all nonresonant terms in Eq. (18) yields
Eq. (17) that is valid far from higher resonances.

Equations (14), (15), and (17) constitute the explicit form
of the B21 expression. B−2 1, B2 −1, and B−2 −1 have an
analogous form; one can write them out by modifying the
denominator accordingly and by choosing the conjugates in
the right-hand side to match the harmonic indices on the
left-hand side. We also provide a general formal rule to obtain
the weights with negative indices, which might be useful
for more complicated expressions. Equation (7) is invari-
ant with respect to the substitution b → b∗, t → −t , �2 →
−�2, while κ2 → −κ2. Applying that to the b expansion in
Eqs. (9) and equating the result to the original expansion
yields that

Bk −l = B∗
kl

∣∣
�2→−�2, κ2→−κ2

. (19)

An analogous rule holds for the first harmonic index.
One might wonder why we do not take into account the

corotating terms in the drive Hamiltonian here. Indeed, for a
wide FMR linewidth, they should be accounted for to obtain
the correct leading order of B0 −1 and A−1 0 (see Fig. 2).
However, the drives contribute directly only to B0 −1 and A−1 0

through the corotating terms. B0 −1 and A−1 0 then participate
in processes that contribute to other harmonics—but their
contribution is always negligible compared to that of B∗

01
and A∗

10 when the conditions Eqs. (3) hold. The RWA drive
Hamiltonian in Eq. (1) works well for determining B21 and
other nonlinear harmonics.
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FIG. 3. Relative magnitude Eq. (20) of the second blue sideband
in the FMR, as a function of detunings. In resonance with the FMR,
the mechanical resonance ω̃1 seen in the sideband shifts proportion-
ally to the cross-Kerr coupling strength K and the resonant magnon
population nres

b . Interaction-induced shifts of the FMR resonance are
not resolvable under the condition Eqs. (13). The nonlinearities in
Eq. (18) can be neglected and the system is driven far from the
nonlinear resonances.

In Fig. 3, we plot the magnitude

|B21 + B∗
−2 −1| = |B21|

∣∣∣∣1 − 2�1 + �2 − ω2 + iκ2

2�1 + �2 + ω2 + iκ2

∣∣∣∣ (20)

≈ |B21| �2

�1 + �2
(21)

of the second blue sideband in the FMR, using Eqs. (14),
(15), and (17) in the vicinity of the FMR and the mechani-
cal resonance. In Eq. (21), we neglect iκ2/2 in comparison
to �1 + �2. According to the equations, the FMR line has
a Lorentzian shape and the mechanical resonance line is a
squared Lorentzian. Magnitude of the sideband is proportional
to the mechanical driving power and the square root of the
FMR driving power. As demonstrated in the figure, the me-
chanical resonance shifts proportionally to K and the number
of magnons according to Eq. (16). When Fig. 3 plot is valid,
the analogous plot for the magnitude of the second red side-
band |B2 −1 + B∗

−2 1| is visually indistinguishable from Fig. 3;
although its magnitude is approximately (�1 + �2)/|�1 −
�2| times smaller in the plot region.

There is a striking difference between our result and the
first nonlinear harmonics predicted by using RWA in all terms
of Hamiltonian Eq. (1). In the all-RWA prediction, B21 and
B−2 −1 vanish, up to and including the order of g2K2. In ad-
dition, B2 −1 and B−2 1 arise only in the Kg2 order. Moreover,
the latter harmonics exhibit antiresonance at the resonant fre-
quency of the mechanical mode, that is, a Lorentzian-shaped
dip instead of a peak in Fig. 3.

Consider the assumptions that we use to plot Fig. 3. First,
the FMR nonlinear resonances ω2 ≈ 2�1 + �2, 3�1 + �2

etc. are avoided. That is the case if �2 � κ1, |K||B01|2. That
requirement also assures that the nonlinear frequency shifts
in Eq. (18) are off-resonant and can be neglected. In the
mentioned condition, we use that the span of the resonance
features is about |K||B01|2 (see Fig. 3 and Sec. VI) or about
its linewidth. Analogously, we assume that the mechanical

nonlinear resonances do not influence the plot. Besides, we
assume that the drives do not match. We discuss the case
of the matching drives in Sec. VI. In that case, the primary
harmonic hybridizes with a second sideband, producing an
avoided crossing.

Using the expressions for the first cross-Kerr sidebands,
we next discuss a method to measure the cross-Kerr coupling
strength K or the FMR population b∗b.

A. Possible measurement of the cross-Kerr coupling strength
or magnon number via the resonance shift in the FMR sideband

The magnitudes of the second sidebands are linearly pro-
portional to the cross-Kerr coupling K , according to Eqs. (20)
and (14) for the blue sideband and the similar ones for the red
sideband. However, to use that to determine K , one needs to
know both the number of magnons and phonons, as well as
the magnetization amplitude for a given magnitude of a signal
picked up. Here we describe how to estimate the cross-Kerr
coupling K using the shift in the mechanical resonance. We
assume that the FMR linewidth is wide and the condition
Eqs. (13) holds. We also assume that the linear FMR re-
sponse is well-characterized, in particular, that the number of
magnons nb for a given drive strength is known.

One way to estimate K is to inspect an FMR second side-
band in the vicinity of the FMR and the mechanical mode
resonances. Figure 3 shows that the mechanical resonance
ω̃1 shifts linearly with the number of magnons nb = B∗

01B01

proportionally to K , according to Eq. (16). The shift ω̃1 − ω1

is largest at the FMR resonance �2 = ω2. To estimate K ,
one measures the shift with respect to the FMR drive power
calibrated in terms of the magnon number. Then K can be
obtained from the slope of the shift dependence. Vice versa,
if K is known, one can perform a similar measurement to
measure the magnon number.

Alternatively, one can measure the shift directly in the
resonant harmonic A10 Eq. (17) of the mechanical mode.
Similar measurements were performed in circuit QED in the
dispersive limit to count photons in a microwave resonator
[14,66] and to readout a qubit [9,12,13]. However, in the
magnomechanical system, such a straightforward measure-
ment might be harder to perform. The shift is visible only in
the narrow-linewidth mechanical mode. Measuring it might
add an unwanted complexity to an experimental setup. One
needs to drive both modes and pick up the mechanical mode
displacement. The latter requires conversion to an electric
signal. The acoustic drive port can be used for that, but then
a circulator is needed to separate the reflection from the drive
signal. Adding another port for readout might complicate the
setup as well.

In the next section, we discuss another possibility to mea-
sure the cross-Kerr renormalization Knb by the spectroscopic
methods.

VI. CROSS-KERR AVOIDED CROSSING BETWEEN THE
LINEAR MECHANICAL RESONANCE AND THE

SECOND-SIDEBAND RESONANCE IN HYBRID SYSTEMS

We have already commented that Eq. (18) for the primary
harmonic A10 depends on A−1 2 and A1 −2, which determine
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the second sideband of the mechanical mode. Here we study
the avoided crossing due to that coupling between harmonics.
We also argue that the interaction between A10 and A−1 2 is the
most relevant for observations. As in the previous section, we
assume that the resonance of one of the two coupled systems
is wide, according to Eqs. (13).

Consider the mechanical mode. Besides the linear res-
onance �1 = ω̃1 in its primary harmonic A10, there are
nonlinear resonances that occur when the higher harmonics
attain their local maxima. In the FMR mode, such a nonlinear
resonance at ω2 = �2 + 2�1 produces its second sideband,
Eq. (14). Analogously, one of the mechanical mode second
sidebands arises at ω̃1 = −�1 + 2�2. This nonlinear reso-
nance matches the linear one when �1 = �2. We study the
system response near that point.

We obtain the equations for A10 and A−1 2 similarly to
Eq. (18). They read

δ1A10 = f1 + κ11A∗
−1 2, (22)

δ−1 2A−1 2 = κ11A∗
10, (23)

where we have defined

δ1 = �1 − ω̃1 + iκ1,

δ−1 2 = −�1 + 2�2 − ω̃1 + iκ1, (24)

κ11 = KB2
01/2. (25)

We have neglected the nonresonant terms, as well as the
terms −g2/(�1 − ω2 + iκ2) and −K2|A10|2|B01|2/(2�1 −
�2 − ω2 + iκ2) that appear in both δ1 and δ−1 2. The latter
become significant closer to the anticrossing point at �1 =
�2 = ω1 = ω2. The solution of Eqs. (22) and (23) is

A10 = f1δ
∗
−1 2

δ1δ
∗
−1 2 − |κ11|2 , A−1 2 = − f1κ11

δ1δ
∗
−1 2 − |κ11|2 (26)

except for the anticrossing point �1 = �2. Harmonic weights
A−1 0 and A1 −2 can be obtained by using the index inversion
rule provided in Sec. V.

Plot of the mechanical mode primary harmonic magnitude
|A10 + A−1 0| in Fig. 4 exhibits an avoided crossing. It occurs
due to the cross-Kerr coupling that results in the resonances
shift, similarly to the case of an avoided crossing due to the
linear interaction. There is an antiresonance in the primary
harmonic—the minimum in its magnitude—where all of the
drive energy ends up in the sideband. A plot of the second
sideband magnitude |A−1 2 + A1 −2| looks similar, except for
the lack of an antiresonance. Positions of the plot features do
not depend on the ω̃1/|K|nb ratio of the mechanical resonance
frequency to the cross-Kerr shift. In the figure, we also show
the position of the resonances in the low-dissipation limit
when κ2

1 
 |κ11|2. In that case, they take place when

�1 ≈ �2 ±
√

(�2 − ω̃1)2 − K2n2
b/4. (27)

Two resonance branches are separated by Knb. Far from
the anticrossing point, the harmonics do not hybridize sub-
stantially, and the resonances approach �1 = ω̃1 and �1 =
2�2 − ω̃1.

In Eqs. (22) and (23), we have neglected the −g2/(�1 −
ω2 + iκ2) and −K2nanb/(2�1 − �2 − ω2 + iκ2) terms in the
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FIG. 4. Avoided crossing between the linear mechanical reso-
nance and the second-sideband nonlinear resonance. Color indicates
the magnitude of the primary harmonic |A10 + A∗

−1 0| [see Eqs. (26)]
normalized by its approximate maximal value, 1/κ1. It is plotted
as a function of detunings from the mechanical resonance. Reso-
nance positions for small dissipation (black dashed) approach linear
asymptotes (white dashed) far from the anticrossing. Our theory
breaks close to the anticrossing point (circle). Higher resonances
with the asymptotes (gray dotted) can be observable in experiments.
Their density increases (crossed area) towards infinity near �1 = �2.
Here the mechanical mode half-linewidth is κ1 = 0.05 |K|nb, where
nb is the number of magnons. Mechanical resonance frequency is
ω̃1 = 106 |K|nb. Detuning from the FMR is not very large according
to Eqs. (3). Interaction-induced shifts of the FMR resonance are not
resolvable under the condition Eqs. (13).

frequencies. Far from the internal 1:1 resonance when ω1 ≈
ω2, these terms are nonresonant. Consider also the mentioned
case of internal resonance. Let us check whether our predic-
tions of resonance repulsion in Eqs. (22)–(23) and Fig. 4 are
not influenced by these terms. The terms provide both real
and imaginary corrections to the frequencies. At the distance
of about |K|nb/2 from the anticrossing point, the real ∝ K2

correction is bounded as |Re(∝ K2)/Knb| < |K|na/2κ2. Thus
it is negligible compared to the shift Knb in the limit of wide
FMR linewidth Eqs. (13). The ∝ g2 real correction is negligi-
ble if 4g2 
 K2nb + κ2

2 . The imaginary parts of the correcting
terms renormalize the mechanical mode damping. They can

be approximated as Im(∝ K2) ≈ κ2
nb
na

/( n2
b

4n2
a
+ κ2

2
K2n2

a
) and Im(∝

g2) ≈ g2κ2/(κ2
2 + K2n2

b/4) < g2/|K|nb. The first one is negli-
gible compared to Knb when nb 
 2κ2/|K| and the second
one is negligible when g2 
 K2nb.

We have ignored the resonances in the sidebands beside
the second ones. We identify other resonance lines that cross
the �1 = �2 = ω̃1 = ω2 point if the interaction between them
is disregarded. They are �1 = [(k + 1)�2 − ω̃1]/k and �1 =
[(k − 1)�2 + ω̃1]/k for k = 2, 3, . . .. We show these lines
in Fig. 4. The nonlinear resonances occur in the harmonic
weights A−2 3, A−3 2, . . . and A2 −1, A3 −2, . . .. The weight
A2 −1 interacts with A10 and A−1 2 beyond the order in g and K
that we consider in Eqs. (18), (22), and (23). Hence, it does not
substantially influence the positions of the features in Fig. 4.
Moreover, as A2 −1 ∼ K2 while A10 ∼ 1, the respective reso-
nance line should be relatively faint. However, it is on par with
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other resonances in the plot of the second sideband magnitude
|A−1 2 + A1 −2| similar to Fig. 4. All higher harmonic weights
are of increasingly higher order in the coupling rates; the same
holds for their interactions with A10 and A−1 2. However, when
approaching �1 = �2, the density of the higher resonances
tends to infinity. Calculating the combined effect of many
nonlinear resonances in that region is beyond the scope of this
paper. Still, further away from there we expect only minor
modifications of the picture in Fig. 4.

Other interactions involving only the primary and the sec-
ond harmonics require rather exotic conditions to observe
them. We have identified the interacting harmonics with equa-
tions similar to Eq. (18). We obtain them for each harmonic
with computer algebra as before. Some of the interactions,
like A−1 −2 coupling to A−1 0, involve the harmonics that are
always off-resonant and thus hard to observe. To observe A−1 0

coupling to A10, either the ultrastrong cross-Kerr coupling is
required with ω̃1 � |K|nb, or the mode should be overdamped
with ω̃1 � κ1, or its driving should be extremely off-resonant
with �1 � max{|K|nb, κ1}. Other interactions, like A−1 2 and
A1 −2, require similar conditions for the FMR frequencies.
Moreover, under the same condition, several interacting pairs
are excited. That can complicate the analysis of the observed
data even if the required condition is met.

VII. CONCLUSION AND OUTLOOK

We have shown that for any type of self- or cross-Kerr
coupling being the dominating nonlinearity—that is, when
optomechanical coupling is negligible—first sidebands are
absent in the system of two coupled oscillators driven by two
tones. In fact, only a specific set of harmonics is generated,
as shown in Fig. 2. This is in contrast to optomechanical cou-
pling that generates all possible harmonics, including the first
sidebands. While the first sidebands do appear if the system
undergoes a subharmonic bifurcation [54,55], we expect that
it does not occur in the steady state of a moderately driven
system. Hence, the absence of the first harmonic indicates that
there is no optomechanical coupling in the system. This result
holds for nonlinear systems of any nature.

Then we have considered a magnomechanical system,
where a mechanical mode couples to an FMR mode linearly
and with a cross-Kerr coupling. Optomechanical coupling is
negligible in that system. Our theory provides quantitative
predictions of the second sideband magnitudes. That requires
taking the non-RWA coupling terms into account. Our ana-
lytical results are valid for the usual case of where the FMR
modes have a relatively large linewidth. Using our theory,
we have discussed how to deduce the cross-Kerr coupling
strength. That can be achieved by measuring the dependence
of the resonance shift in an FMR second sideband on the
magnon population. We also predict a nonlinear anticrossing
between the primary and the higher resonance. The cross-
Kerr coupling strength or the magnon population can also
be inferred from the gap between the resonance branches
there.

We show in the Appendix that a doubly clamped mag-
netic beam in a symmetrical vibration mode is described
with a cross-Kerr Hamiltonian. We provide a quantum Hamil-
tonian, albeit it has been obtained with the semiclassical

phenomenological approach. In the main part of the paper, we
work in the classical limit. For the beam, it is a good approxi-
mation for high temperatures and when the losses in the FMR
mode preclude multistability. According to our derivation,
linear coupling is absent in the symmetrical doubly clamped
magnetic beam. Still, we include it in the Hamiltonian in
the main part of the paper for generality. As the cross-Kerr
coupling strength scales inversely to the beam width and
the square of its height, smaller bridges are favorable for
achieving a higher coupling rate. We have estimated in Ap-
pendix A 7 that the cross-Kerr coupling strength is at least in
the nanohertz range for a CoFeB bridge with 1 nm × 5 μm
cross section and negligible initial tension. Surprisingly, in the
bridges with higher tensions, the coupling strength can be up
to four orders of magnitude higher. It is promising to study
whether a much higher coupling rate is achievable for a beam
made out of a 2D magnetic material, such as [67] monolayer
CrI3, or CrCl3 and the related compounds [68].

We also mention side results of this paper. We have iden-
tified the renormalization of the beam tension due to its static
magnetization. As the frequency of the beam vibrations de-
pends on the tension, one can tune it in situ by rotating
the magnetization with an external magnetic field. Also, it
is known that a large enough negative tension buckles the
beam [18]. According to Eqs. (A3) and (A22), an initially
unbuckled beam close to the buckling transition can buckle
when a magnetic field is applied. For materials with positive
magnetoelastic constant or when the magnetoelasic energy is
much smaller than the demagnetizing energy, the field that is
transverse to the beam plane matters. In the opposite case, the
field along the beam can also buckle it. The buckling can be
larger than 1 nm for a CoFeB beam [18]. Then the magnetoe-
lastic and the demagnetizing energies overcome the exchange
energy, and the beam magnetization becomes inhomogeneous
as discussed in Appendix A 6. It could be interesting to study
the buckling of a magnetic beam as an orientational phase
transition [1], similarly to Ref. [69].

It could also be intriguing to use a nonlinear theory sim-
ilar to ours for applications in the superconducting quantum
computing. Second sidebands might be used to characterize
the cross-Kerr coupling in the computational basis of trans-
mon qubits. For that, one can measure the transmon response
to continuous coherent driving. The measurement should be
able to detect second sidebands in the response. We expect
that only minor modifications to our theory are required to
describe that case. Indeed, a transmon in the computational
basis is, to a good approximation, a resonator with a self-
Kerr nonlinearity [4,5]. Besides adding this nonlinearity to
Hamiltonian Eq. (1) and the theory of Sec. V, one should care-
fully treat the non-RWA nonlinear terms that are usually [4,8]
neglected. As we have discussed, these terms are important
for determining the nonlinear response. Also, for the strong
damping approximation of Sec. V to hold, one would need
to artificially decrease the relaxation time T1 of one of the
transmons, that can be done, for example, by coupling that
transmon to a resonator so the associated Purcell decay [48]
is strong enough. A cross-Kerr–type interaction also naturally
arises due to the inductive coupling of flux qubits [4,70,71];
however, due to their high anharmonicity, this interaction is
effectively linear.
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It might be interesting to obtain our results applying
approximate canonical transformations on the Hamiltonian
[72,73]. Comparing to the approach of the present paper,
we expect that using Hamiltonian transformations is much
less computationally expensive. Moreover, this approach can
be easily extended to a quantized Hamiltonian using unitary
transformations.
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APPENDIX: DERIVATION OF THE NONLINEAR
COUPLING TERMS FOR THE DOUBLY CLAMPED

MAGNETIC BEAM

Here we derive the quantum Hamiltonian of the doubly
clamped magnetic beam. We consider its first bending mode
interacting with the homogeneous FMR mode. Our treatment
follows Ref. [18]. However, unlike that work, which concen-
trates on a buckled beam, we study the case of an initially
unbuckled beam that vibrates symmetrically. We show that a
cross-Kerr coupling arises between the FMR and the mechan-
ical modes and we estimate the coupling strength. In addition,
we identify the influence of the beam magnetization on its
tension and on the buckling transition.

1. Beam vibrations

First, we consider the beam vibrational mode around its
static configuration. Here we only take into account the in-
fluence of the static magnetization. We take into account the
interaction with the dynamical part of the magnetization when
considering the FMR mode.

We assume that the beam deflects only in the direction
perpendicular to its equilibrium plane (yz plane). Beam dis-
placements ux along the x axis (see Fig. 5) are described by
the equation [74]

ρSüx + EIy∂
4
z ux = (T0 + Tmg0)∂2

z ux + fext(z, t ). (A1)

We have assumed that the deformations of the beam are small
and ∂zux, L∂2

z ux 
 1. As already mentioned in Fig. 1, the
beam is considered to be thin. Here S is the beam cross-
section area, ρ is its mass density, EIy is its bending stiffness
with E the Young’s modulus, and Iy = wh3/12 the area mo-
ment of inertia. Note that Iy here is of elastic origin and
coincides with the moment of inertia of the thin plate only
because of the formal similarities in the theories. fext is a
time-dependent force acting on the beam per unit length. The
force can be the radiation pressure force in a laser setup.
Alternatively, one can arrange an ac current to flow along the
beam. In the static magnetic field, a Lorentz force then arises
acting on the beam normally to its plane. While its direction
changes when the beam vibrates, for small deformations it can
be described by the same driving term in the Hamiltonian [18].

ux(0), ∂zux(0) = 0
ux(L), ∂zux(L) = 0

S

ux

. . .
. . .

fext(t)

T0 + Tmg0

T0 + Tmg0

z
x

y

FIG. 5. The beam with a cross-section area S bends (solid gray)
from its static configuration (dashed gray). Each of its points at
a position z along the beam is displaced by ux (z). Elastic energy
arises due to the overlap and stretching of infinitesimal beam cross
sections (solid black) with respect to each other. Boundary conditions
indicated in the figure describe the beam clamped at its ends. An
initial tension T0 acts on the beam together with the tension Tmg0

due to the static magnetization. An external time-dependent force
fext drives the beam vibrations.

The initial tension T0 is known to arise in doubly clamped
beams [51–53]. Additionally, the tension Tmg0 of magnetic
origin should be taken into account. To see that clearly, we
write out the Hamiltonian that corresponds to Eq. (A1),

Hv =
∫ L

0
dz

[
1

2

π2
x

ρS
− 1

2
EIy(∂2

z ux )2 + 1

2
T0(∂zux )2 − fextux

]

+ Fdm0 + Fme0, (A2)

with the canonical momentum πx = ρSu̇x. Below we show
that the static parts of the magnetic free energy satisfy Fdm0 +
Fme0 = 1

2 Tmg0(∂zux )2. Comparing that to the third term in the
integral in Eq. (A2), we conclude that they provide an addi-
tional tension Tmg0 in the beam.

Let us comment on the different terms of Eqs. (A1) and
(A2). The first term in the integral in Hamiltonian Eq. (A2)
is the kinetic energy of a thin cross section of the beam. The
second term there is the elastic energy density due to the beam
curving (see Fig. 5 for interpretation). When the tension is
high or the beam stiffness EIy is small, that term is negligible
to the tension terms. Equation (A1) then becomes the usual
wave equation of a vibrating string.

We assume that the beam is initially unbuckled. For that,
the beam should not be squeezed too much if the sum of
initial tension and the tension due to the static magnetization
is negative [18]:

L2

EIy
(T0 + Tmg0) > −4π2. (A3)

One can expand the beam vibrations into the normal modes
with

ux(z) =
∑

k

xkυk (z),
∫ L

0
dzυkυl = Lδkl . (A4)

Hamiltonian Eq. (A2) with no drive ( fext = 0) then be-

comes [18] Hv0 = ∑
k ( p2

k
2m + 1

2 mk2ω2
k x2

k ), where m = ρLS is
the beam mass, ωk is the resonance frequency of the kth mode,
and pk = mẋk is the respective momentum. We assume that
only the first bending mode of the beam is excited. Then
the Hamiltonian of its free vibrations is simply Hv0 ≈ p2

2m +
1
2 mω2

vx2. The drive part of Hamiltonian Eq. (A2) becomes
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Hvd = −x
∫ L

0 dz υ fext(t ). Here and below, υ(z) denotes the
normalized shape of the first bending mode from expansion
Eqs. (A4).

One readily quantizes the vibrational mode. We promote
the canonical coordinates x and p to operators with the com-
mutation relation [x, p] = ih̄. It is convenient to introduce the
phonon creation a† and annihilation a operators with

x = xZPF(a + a†), p = −ih̄

2xZPF
(a† − a), (A5)

xZPF =
√

h̄

2mωv
. (A6)

Here xZPF denotes the magnitude of zero-point fluctuations
[43] in the beam deflection x. In terms of these operators, the
Hamiltonian of the free vibration mode reads

Hv0 = h̄ωva†a. (A7)

The drive Hamiltonian reads

Hvd = −h̄xZPF(a† + a)
∫ L

0
dz υ fext(t ). (A8)

Note that we have quantized the normal modes of Eq. (A1)
while taking into account the tension-dependent terms. If we
leave them out from the normal modes and quantize, squeez-
ing [39] terms of the form

∑
kl skl (ak + a†

k )(al + a†
l ) arise in

the Hamiltonian, where we denote each mode phonon anni-
hilation operator by ak . However, in the limit that recovers
the string equation, the tension term is the only one to be
accounted for in the potential energy in Hamiltonian Eq. (A2).
In that case, it should be included in the normal mode calcula-
tion and enters the respective quantum operators. We therefore
conclude that the same should be done in the general case
when both the tension and elastic energies matter.

2. Hamiltonian formalism for the magnetization precession

In the phenomenological approach, magnetization dynam-
ics is governed by the Landau-Lifshitz-Gilbert equation [75]

�̇M = μ0γ [ �Heff × �M] + α

Ms
[ �M × �̇M], (A9)

where μ0 is the magnetic permeability of the vacuum, γ > 0
is the gyromagnetic ratio of the medium, α > 0 is its Gilbert
constant that describes damping, and Ms = | �M| is the satu-
ration magnetization of the magnet. At each instant of time,
magnetization �M precesses around the direction of the effec-
tive magnetizing field

�Heff = − 1

μ0V

∂F

∂ �M , (A10)

which is determined from the medium free energy F . Here we
assume that the magnetization is homogeneous. We evaluate
this assumption in Appendix A 6.

We consider small-angle precession around the static mag-
netization direction. In that case, damping does not depend on
the precession angle. We set the damping term in Eq. (A10)
to zero and reintroduce the damping in the equation of motion
Eq. (7). Now Eq. (A10) has a simple corresponding Hamil-
tonian. With no loss of generality so far, we assume that the

static magnetization is aligned along the z axis. We use that

M2
z ≈ M2

s − M2
x − M2

y , (A11)

and the free energy becomes a function of Mx and My

only. Approximating Mz ≈ Ms on the right-hand side of the
Landau-Lifshitz Eq. (A10), it can be rewritten as

d

dt
(ζMx ) = {ζMx, F } = − ∂F

∂ (ζMy)
, (A12)

d

dt
(ζMy) = {ζMy, F } = ∂F

∂ (ζMx )
, (A13)

where ζ = √
V/γ Ms and { f , g} = ∂ f

∂ (ζMy )
∂g

∂ (ζMx ) − ∂ f
∂ (ζMx )

∂g
∂ (ζMy )

denotes the Poisson bracket with respect to the canonical co-
ordinate ζMy and the canonical momentum ζMx. Free energy
F plays the role of the Hamiltonian in the equations.

Now we can perform the canonical quantization. Mx and
My are promoted to operators that satisfy the commutation
relation

[My, Mx] ≈ ih̄γ Ms/V. (A14)

The latter is determined from the usual commutator for the
canonically conjugated variables. Relation Eq. (A14) is an
approximation to the exact commutator of spin operators with
the z component of magnetization on the right-hand side [75].
Note that, unlike the treatment of the mechanical mode, we do
not include the terms similar to the tension terms in Eq. (A2)
into the modes that are quantized. As we discuss later, these
terms provide quantum squeezing [39] in the FMR mode.
Here, the choice of the variables to quantize is dictated by
the exact form of the relation Eq. (A14).

To proceed, we need to determine the magnetic free energy
of the beam.

3. Magnetic free energy

We take into account the Zeeman free energy and the free
energy due to the demagnetization and magnetoelasticity. The
latter two provide the coupling to the mechanical mode of
the beam. We neglect the crystal anisotropies. That can be a
reasonable approximation for a polycrystalline ferromagnetic
material, for example, CoFeB [18]. Also, we assume that the
shape anisotropy in the plane of the beam is weak.

We provide the general expressions for the free energies of
the beam. The Zeeman energy

FZe = −μ0

∫
dV �H (t ) · �M (A15)

is responsible for aligning the magnetization �M along the
direction of the external magnetic field �H . Here and below∫

dV stands for the integration over the beam volume.
The demagnetizing energy reads

Fdm = −μ0

∫
dV �Hdm · �M. (A16)

Here �n = −�ez sin ϕ + �ex cos ϕ denotes the beam normal vec-
tor. The demagnetizing field �Hdm = −( �M · �n) �n compensates
the normal component of the magnetization due to the sur-
face currents arising. Its direction is set by the rotational
symmetry of a thin plate. One can obtain the demagnetiz-
ing field from the continuity of the magnetic field �B normal
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ϕ

�M

�Hdm

�n ux(z)ux(z)ux(z)z

x

y

FIG. 6. Demagnetizing field �Hdm in a small section of the beam.
The beam is displaced by ux (z) at each point z. Its magnetization is
�M. The section normal vector �n is tilted by angle ϕ with respect to

the x axis.

component and the magnetizing field �H tangential compo-
nent at the surface. In the simple geometry of Fig. 6, we
arrive at Hdm x = −| �Hdm| cos ϕ = Mz sin ϕ cos ϕ − Mx cos2 ϕ

and Hdm y = | �Hdm| sin ϕ = −Mz sin ϕ + Mx sin ϕ cos ϕ for the
x and y components of the demagnetizing field. Plugging them
into Eq. (A16) yields

Fdm = 1

2
μ0

[
V M2

x +
∫

dV (∂zux )2(M2
z − M2

x )

]
, (A17)

where we have expanded to the second order in sin ϕ ≈
tan ϕ = ∂zux. In the course of integration over the beam vol-
ume, we have taken into account the boundary conditions for
the displacement ux (see Fig. 5).

The magnetoelastic energy of isotropic media reads [1,76]

Fme = B

M2
s

∫
dV MiMjεi j, (A18)

where i, j = x, y, z and the repeated indices are summed over.
It describes a strain arising in the magnetization direction, and
vice versa. We expand the strain tensor [74]

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂uk

∂xi

∂uk

∂x j

)
(A19)

up to the second-order terms in displacement, as they provide
the cross-Kerr interaction. The beam only deflects along the x
axis. Hence the only non-vanishing components of the strain
are

εzz = 1
2 (∂zux )2 + ε (0)

zz , εxz = 1
2∂zux. (A20)

Here ε (0)
zz = ∂zuz is the static strain due to the initial ten-

sion T0 [see Eq. (A1)]. With tension applied, a homogeneous
beam expands by the same amount at its ends, hence uz(0) =
−uz(L). With that and the boundary conditions indicated in
Fig. 5, the integration in Eq. (A18) yields

Fme = B

2M2
s

M2
z

∫
dV (∂zux )2. (A21)

The combination of Eqs. (A17) and (A21) describes the cou-
pling between the magnetization dynamics and vibrations.

4. Beam tension of magnetic origin

Here we show that the static magnetization provides a
tension to the beam. We discuss how it influences the buckling
transition.

Consider the static parts of the demagnetizing Eq. (A17)
and the magnetoelastic Eq. (A21) free energies that are pro-
portional to

∫
V dV (∂zux )2 = S

∫ L
0 dz(∂zux )2. They are of the

same form as the tension part of the mechanical Hamiltonian
Eq. (A2). In other words, magnetoelastic strains affect the
tension that, on the other hand, can be read off from its effect
on the vibration eigenfrequency. Besides, the strains that arise
due to the changing surface anisotropy of the moving beam
provide a tensionlike force on it. We combine both parts into
the magnetic tension

Tmg0 = S

[
μ0

(
M2

z0 − M2
x0

) + B

M2
s

M2
z0

]
, (A22)

that we use in the dynamical equation of the beam Eq. (A1)
and in the no-buckling condition Eq. (A3). We denote the
static magnetization components with 0 in the subscript.

It follows that the external magnetic field can influence the
beam buckling. In the absence of strong external magnetic
field, direction of the static magnetization �M0 is defined by
the crystal anisotropies or by the shape anisotropy in the plane
of the beam (which we have neglected). Consider the case
when the beam is close to the buckling transition, but Eq. (A3)
still holds. Let us first assume that the magnetoelastic constant
B > 0 or B/Ms is negligible to μ0. The magnetization can be
fixed in a direction where its out-of-the-beam component Mx0

is too small to provide enough negative tension to buckle the
beam. Then, if one applies a field that reorients the magne-
tization closer to the x-axis direction, the beam can buckle.
Such buckling was studied in Ref. [77], where it is explained
as solely a demagnetization effect. Similarly, if B < 0 and the
magnetoelastic contribution is not small, the beam can also
buckle if the magnetic field is applied along the beam.

In addition, outside the buckling transition, the magneti-
cally applied tension affects the vibration eigenfrequencies.
This thus provides a possibility to control the vibration fre-
quencies in situ using the magnetic field.

5. Full Hamiltonian

We consider the case with the static magnetizing field �H0

oriented along the beam. Its magnetization then follows the
direction of �H0 when | �H0| exceeds the coercive field. In accor-
dance with the approximations in Appendix A 2, we expand
the free energy up to the linear terms in Mx/Ms and My/Ms.
Zeeman energy Eq. (A15) becomes

HZe ≈ μ0V

[
H0

Ms

(
M2

x + M2
y

) − Hx(t )Mx − Hy(t )My

]
(A23)

up to a constant. Here the first term describes a circular pre-
cession of the magnetic moment around the z axis. The other
terms describe the driving due to the ac magnetic field. We
denote the dynamical part of the demagnetizing free energy
by Hdm = Fdm − Fdm0, where Fdm0 = 1

2μ0SM2
s

∫ L
0 dz(∂zux )2

is the static free energy. The dynamical part of the magne-
toelastic energy Hme is defined accordingly using the static
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magnetoelasic energy Fme0 = BS
∫ L

0 dz(∂zux )2. We introduce
the creation m† and annihilation m operators of a magnon by
a substitution

My = MZPF(m† + m), Mx = −iMZPF(m† − m), (A24)

where

MZPF =
√

h̄γ Ms/2V (A25)

is the amplitude of the zero-point fluctuations in the mag-
netization. One can check that [m, m†] = 1. In terms of the
magnon operators, the magnetic part of the full Hamiltonian
reads

Hmg = HZe + Hdm + Hme, (A26)

HZe = h̄ωM
(
m†m + 1

2

) − μ0MZPF(m† + m)Hy(t ),

+ iμ0MZPF(m† − m)Hx(t ), (A27)

Hdm = − 1

2
μ0M2

ZPF[4m†m − (m† − m)2]
∫

dV (∂zux )2,

(A28)

Hme = − B

2M2
s

M2
ZPF 4m†m

∫
dV (∂zux )2, (A29)

where

ωM = μ0γ H0 (A30)

is the frequency of isotropic magnetic precession [76]. In
the calculation of Hamiltonian Eqs. (A26)–(A29) we neglect
[My, Mx] when it is compared to Ms. As follows from the
equations above, magnetization precession interacts with the

beam displacements through the demagnetizing and magne-
toelastic energies. The energy of the free circular precession in
Hamiltonian Eq. (A23) becomes the magnon number term in
the second-quantized Hamiltonian Eq. (A27). Therefore, m†

creates a magnon of a circular precession.
It is convenient to operate with the operators of magnons

with elliptical precession. We apply a squeeze transformation

S = exp

[
ξ

2
(m2 − m†2)

]
, (A31)

with real ξ to cancel the terms proportional to m2 and m†2 in
the Hamiltonian. Consider the Hamiltonian of the free FMR
mode of the beam Hmg0 = h̄ωMm†m + h̄ s

2 (m + m†)2 with

s = μ0V M2
ZPF/h̄. (A32)

It transforms to

Hmg0 → ωK m†m (A33)

if sinh 2ξ = −s/ωK . Here ωK = √
ωM (ωM + 2s) is the Kittel

frequency of the FMR in a tangentially magnetized thin plate
[76]. While obtaining Eq. (A33), we used

m → S†mS = m cosh ξ − m† sinh ξ, (A34)

which is a partial case of the Bogoliubov transformation used
in Ref. [18].

First, we provide the expressions for the rest of the mag-
netic Hamiltonian for an arbitrary saturation ratio Ms/H0 =
2s/ωM . In the squeezed frame, the interaction Hamiltonian
Hi = Hdm + Hme becomes

Hi → −M2
ZPF

2

{[
4

(
μ0 + B

M2
s

)
cosh 2ξ − μ0e2ξ

]
m†m

+
[

2

(
μ0 + B

M2
s

)
sinh 2ξ − μ0

2
e2ξ

]
(m†2 + m2)

}
x2

ZPF (a + a†)2 S
∫ L

0
dz(∂zυ )2.

The drive Hamiltonian transforms to

HFMRd → μ0MZPF[−(m† + m)Hy(t )e−ξ + i(m† − m)Hx(t )eξ ]. (A35)

The expressions simplify in the case of an unsaturated
magnet when H0 
 Ms, which is often the case in practice.
In that case, the Kittel frequency is approximately

ωK ≈
√

2sωM . (A36)

The coupling Hamiltonian in the squeezed frame simplifies to

Hi ≈ h̄
K

4
(m† + m)2(a† + a)2, (A37)

K = −2h̄−1

√
Ms

H0
M2

ZPF

(
μ0 + B

M2
s

)
x2

ZPFS
∫ L

0
dz(∂zυ )2,

(A38)

where we used −ξ � 1 and − sinh 2ξ ≈ cosh 2ξ ≈√
Ms/4H0. The drive term becomes

HFMRd ≈ −μ0MZPF
4

√
Ms

H0
(m† + m)Hy(t ), (A39)

where used − sinh ξ ≈ cosh ξ ≈ 4
√

Ms/16H0. That is, in the
unsaturated limit, the FMR is only susceptible to the field
component that lies along its width. In that limit, the shape
anisotropy is very strong, which almost prevents the mag-
netization to deflect out of the beam plane. The full system
Hamiltonian now consists of the cross-Kerr Hamiltonian
Eq. (A37), the FMR, and the mechanical drive Hamiltonians
Eqs. (A39) and (A8), and the Hamiltonians of the free FMR
and mechanical modes Eqs. (A33) and (A7). In the main
part of the paper, we assume harmonic driving. For that, one
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sets the driving force fext ∝ − sin �vt and the ac magnetic
field Hy ∝ − sin �FMRt . We also apply the RWA. Then the
Hamiltonian derived here coincides with Hamiltonian Eq. (1)
that we used throughout the main part of the paper, apart from
the fact that the latter also includes a linear interaction term.
Also note the difference in notations.

The assumption of the unsaturated magnet often can be
reasonable for CoFeB used in Ref. [18]. Its saturation magne-
tization is [18,78] Ms ≈ 1.2 × 106 A/m and its gyromagnetic
ratio is [78] γ ≈ 1.9 × 1011 rad s−1T −1 ≈ 2π 30.2 GHz/T.
With the magnetic permeability μ0 ≈ 4π × 10−7 A/m, one
obtains 2s = 2π × 45.6 GHz. With a sufficiently small static
magnetizing field H0 ∼ Ms/10, the Kittel frequency ωK ≈
2π × 14.4 GHz is still reasonably high.

An RWA cross-Kerr term is derived in the Supplemental
Material of Ref. [19] for an yttrium-iron-garnet sphere. A
modification of that derivation that does not use the RWA
produces the term of the same form as in Eq. (A37).

6. Conditions for the magnetization to be homogeneous

Deflection of the beam from the static configuration pro-
vides an inhomogeneity for its magnetization due to changing
shape anisotropy and strain [see Eqs. (A17) and (A21)]. How-
ever, change of the magnetization direction over the beam
length is penalized by the exchange interaction. The change
can be neglected if the respective energy greatly exceeds the
dynamical parts of the demagnetizing and the magnetoelastic
energies,∫

V/2
dV

α|∇ �M|2
2M2

s

� 1

2

(
2μ0 + B

M2
s

)
M2

x

∫
V/2

dV (∂zux )2,

(A40)
where α is the exchange stiffness. It is enough to consider
a half of the beam in its first symmetric mode. As before, we
consider the case when the static magnetization part is aligned
along the bridge. Let ux denote the largest displacement of
the beam at its center at L/2. Suppose that the x component
of the magnetization changes from zero at the bridge end at
z = 0 to Mx at z = L/4. Then we can estimate ∂zux ∼ ux

L/2 and

|∇M|2 ∼ ( Mx
L/4 )2. The condition above becomes

4α

M2
s

�
(

2μ0 + B

M2
s

)
u2

x . (A41)

A similar condition holds for the y component of the magne-
tization.

We can assess the values of the bridge deformation ux for
which the magnetization can be considered homogeneous. We
estimate the saturation magnetization of a CoFeB beam as
[18,78] Ms ≈ 1.2 × 106 A/m. Magnetoelastic coupling of a

thin (1–2 nm) CoFeB film varies from B = −4 × 106 J/m3

to −10 × 106 J/m3 depending on its thickness and the prepa-
ration details [79]. One can check that the magnetoelastic
energy is then of the same order as the demagnetizing energy
in Eq. (A40). As B < 0, their sum ranges from a small value
to the values comparable to the magnetoelastic energy alone.
In that case, to assure that the condition Eq. (A41) holds, we
can compare the exchange energy to the magnetoelastic one
alone. With [80] α ≈ 13 pJ/m, our reasoning yields that only
with a small beam deformation ux � 1 nm, its magnetization
can be considered homogeneous.

7. Estimate of the cross-Kerr coupling strength

Here we estimate the order of magnitude of the cross-Kerr
coupling strength using Eq. (A38).

With Eq. (A25), one has V M2
ZPF ≈ 1.2 × 10−17 A m, where

V denotes the beam volume, and we have used the same
material parameters of CoFeB as in Appendix A 5. Consider
a bridge of the same dimensions as in Ref. [18]: length
L ≈ 50 μm, width w ≈ 10 μm and height h = 50 nm. We
estimate the vibration frequency ωv ∼ 2π × 1 MHz to be the
same as in the reference. Using that CoFeB mass density is
[81] 8 × 103 g/cm3 one arrives at V x2

ZPF ≈ 1.0 × 10−45 m5

using Eqs. (A5). The shape of the first vibration mode
is [74] υ ∝ (sin kL − sinh kL)(cos kz − cosh kz) − (cos kL −
cosh kL)(sin kz − sinh kz), where we neglect the influence of
the initial and the magnetic tensions. We find the mode nor-
malization [see Eqs. (A4)] and use that k ≈ 4.73/L, which
allows one to calculate

∫ L
0 dz(∂zυ )2 ≈ 0.004/L. Finally, we

obtain the coupling rate −K ∼ 2π 10 pHz, where we have
taken

√
Ms/H0 ≈ 3.3 as in Appendix A 5 and (μ0 + B/M2

s ) ∼
μ0 as in Appendix A 6. Note that in the high-tension limit,
the mode shape is simply υ ∝ cos πz/L, and

∫ L
0 dz(∂zυ )2 =

π2/L. We conclude that higher tension in the beam can in-
crease |K| by several orders of magnitude.

One can also reach higher cross-Kerr coupling strength
with smaller width and height of the beam. We estimate

[74] ωv ∼ π2

4L2

√
EIy

ρS , where again we neglect the tensions.

That scales as ωv ∝ h/L2 as the beam cross section area is
S = wh and its area moment of inertia is Iy = wh3/12. One
readily finds that the cross-Kerr coupling strength scales as
K ∝ 1/wh2. Making the beam width and height both ten times
smaller than in Ref. [18], i.e., w = 1 μm and h = 5 nm, the
coupling strength is well in the nanohertz range. Even larger
cross-Kerr coupling can be obtained using atomically thin
magnetic two-dimensional materials such as CrI3 or CrCl3

and the related compounds [67,68].
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