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Exotic quantum liquids in Bose-Hubbard models with spatially modulated symmetries

Pablo Sala ,1,2,* Yizhi You,3 Johannes Hauschild,4,5 and Olexei Motrunich 1

1Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology,
Pasadena, California 91125, USA

2Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
3Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

4Technical University of Munich, TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, 85748 Garching, Germany
5Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany

(Received 1 August 2023; accepted 11 December 2023; published 9 January 2024)

We investigate the effect that spatially modulated continuous conserved quantities can have on quantum
ground states. We do so by introducing a family of one-dimensional local quantum rotor and bosonic models
which conserve finite Fourier momenta of the particle number, but not the particle number itself. These
correspond to generalizations of the standard Bose-Hubbard model and relate to the physics of Bose surfaces.
First, we show that, while having an infinite-dimensional local Hilbert space, such systems feature a nontrivial
Hilbert-space fragmentation for momenta incommensurate with the lattice. This is linked to the nature of the
conserved quantities having a dense spectrum and provides the first such example. We then characterize the
zero-temperature phase diagram for both commensurate and incommensurate momenta. In both cases, analytical
and numerical calculations predict a phase transition between a gapped (Mott insulating) and quasi-long-range-
order phase; the latter is characterized by a two-species Luttinger liquid in the infrared but dressed by oscillatory
contributions when computing microscopic expectation values. Following a rigorous Villain formulation of the
corresponding rotor model, we derive a dual description, from where we estimate the robustness of this phase
using renormalization-group arguments, where the driving perturbation has ultralocal correlations in space but
power-law correlations in time. We support this conclusion using an equivalent representation of the system as a
two-dimensional vortex gas with modulated Coulomb interactions within a fixed symmetry sector. We conjecture
that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal
direction.
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I. INTRODUCTION

Unconventional symmetries, including subsystem symme-
tries as well as dipole and higher-moment conservation laws,
have been extensively studied. These are the key ingredi-
ents to endow fractons with such exotic behavior at low
energies (see review [1]) and underlie the emergence of
Bose surfaces [2–6] as well as the UV-IR mixing observed
in this type of systems [7–9]. These symmetries have also
been shown to play an important role out of equilibrium.
For example, imposing dipole-moment (or higher-moment)
conservation leads, among other rich phenomena, to a frag-
mentation of the Hilbert space into exponentially many sectors
[10,11] (see also review [12]), which can be understood
by the presence of extensively many nonlocal conserved
quantities. When such fragmentation is not strong and can
be ignored, these dipole (or higher) moments conservation
laws give rise to universal subdiffusive behavior, which has
been recently observed with ultracold atoms [13] and which
can be completely characterized by the symmetries of the
system [14–18].

*psala@caltech.edu

The motivation to consider such apparently artificial sym-
metries is twofold. At the abstract level, these are analytically
amenable models that provide new insights about the role
and proper definition of symmetries for quantum many-body
systems [19–21]. Thus, this led to new insights on quantum
thermalization and the eigenstate thermalization hypothesis
and motivated a formal mathematical framework to charac-
terize symmetries in terms of commutant algebras [20]. On
the experimental front, the flourishing development of new
experimental platforms and quantum technologies, where en-
gineered synthetic quantum matter has become a reality, is
opening the door to realize and probe such less conventional
systems in the laboratory [22,23]. Just in the last few years,
dipole-conserving systems have been observed to approxi-
mately govern the dynamics of interacting cold atom systems
in the presence of a linear tilted potential [24,25]. These exper-
imental observations are consistent with both the phenomenon
of Hilbert-space fragmentation, and the expected universal
subdiffusive behavior [13]. Furthermore, one could also en-
vision engineering such constrained systems with different
platforms [26].

From this point of view, subsystem symmetries as well as
dipole- and higher-moment symmetries are just some of the
many possible symmetries local quantum many-body Hamil-
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tonians can realize. In fact, it is an open question to understand
the possible conserved quantities local quantum many-body
systems can have as well as their influence on the equilib-
rium and out-of-equilibrium behavior. A recent work [27]
extended the notion of multipole and subsystem symmetries to
more general spatially modulated symmetries, uncovering two
novel instances with conserved quantities containing expo-
nential and (quasi)-periodic spatial modulations, with dipole-
and higher-moment conservation appearing as special cases.
The latter case was shown to give rise to exotic forms of
subdiffusive behavior with a rich spatial structure influenced
by lattice-scale features, while the former leads to infinitely-
long-lived boundary correlations. Nonetheless, their effect at
low energies has remained an open question.

In this work we address this question by focusing on
one-dimensional (1D) systems with quasiperiodic modulated
symmetries, characterizing the zero-temperature (quantum
ground state) phase diagram for a generalized Bose-Hubbard
model (BHM). For example, recent works [28–30] exam-
ined (one-dimensional) bosonic dipole-conserving systems,
finding a rich phase diagram including different types of
unconventional phases that include dipole condensates and
supersolids. In fact, some of these phases and their transitions
were predicted in an earlier work using the fracton-elasticity
duality [31]; and in certain regimes, these also relate to earlier
results for dipole-conserving spin-1 chains, where an exact
mapping to an XY chain with nonzero string order parameter
was found [19]. Moreover, higher-dimensional systems with
either approximate or exact subsystem symmetries have been
studied, leading to a plethora of unexpected behavior includ-
ing not only Bose metals [2] and UV-IR mixing [7–9,32], but
also subsystem symmetry-protected topological phases [33],
fractal “criticality” [34], and fractal spin liquids [35] among
others.

The remainder of the paper is organized as follows: In
Sec. II we introduce the generalized BHM realizing differ-
ent types of spatially modulated symmetries and analyze the
spectrum of the associated conserved quantities. Section III
then introduces rotor Hamiltonians which will turn out to be
useful to understand the quasi-long-range order phase ana-
lyzed in the later sections. In this section, we also describe
a generalized lattice duality for our models. In Sec. IV we
show that both the bosonic and rotor systems are fragmented
despite an infinite-dimensional local Hilbert-space dimension
and identify extensively many nonlocal discrete conserved
unitaries that can account for this behavior. In Sec. V we
then discuss the phase diagram of systems with commensurate
modulated symmetries, validating the analytical predictions
against numerical tensor network calculations. In Sec. VI we
then discuss the case of incommensurate symmetries, which
add new subtleties when dealing with the low-energy theory.
In Sec. VII we provide a complementary description of the
system in terms of a two-dimensional (2D) Coulomb-like gas
with rather unusual (and qualitatively important) microscopic
details, that corroborates the existence of a quasi-long-range-
order phase that can become disordered by the proliferation
of topological defects. We conclude in Sec. VIII by sum-
marizing our main findings and discussing open questions.
Finally, we consign more technical aspects of our work to the
Appendixes.

II. BOSONIC MODELS

We consider one-dimensional bosonic systems with an-
nihilation (creation) operators b̂ j (b̂†

j) satisfying canonical

commutation relations [b̂i, b̂†
j] = δi j . The minimal Hamilto-

nian models we consider take the form

Hq,p = −
L−1∑
j=2

Jj
[
b̂q

j−1

(
b̂†

j

)p
b̂q

j+1 + H.c.
]+ V̂ ({n̂ j}), (1)

on a chain of length L for any choice of real couplings Jj > 0.
Here p � 0, q � 1 are two integers. We refer to the first
contribution as “squeezing,”1 taking the form of a correlated
hopping not necessarily conserving the total particle number.
The second contribution V̂ = V̂interaction + V̂potential is diagonal
in the occupation basis, where the latter collects linear terms
in n̂ j on-site terms and the former includes powers of n̂ j . Due
to bosonic statistics, each such term in a situation with a large
O(N ) number of particles on each of the three involved sites
has energy scaling as − N (2q+p)/2. Hence, to have a lower-
bounded ground-state energy one needs to include sufficiently
high power of density-density interactions in V̂ to stabilize
it. Thus, if 2q + p > 4, the usual on-site terms ∼n̂2

j are not
sufficient, but terms ∼n̂m

j with any integer m > (2q + 2)/2
will stabilize it.

All these Hamiltonians, regardless the choice of Jj and po-
tential term V̂ , are invariant under the unitary transformation
b̂ j → eiα j b̂ j (and correspondingly b̂†

j → e−iα j b̂†
j) where the

real coefficients α j satisfy the recurrence relation

qα j+1 − pα j + qα j−1 = 0, (2)

with either open boundaries (OBCs) or compatible system
sizes L with periodic boundary conditions (PBCs) for all sites
j. When this is the case, two linearly independent charges
generating these symmetry transformations exist for any Jj ,
which we denote by

Q̂A =
∑

j

αA
j n̂ j, Q̂B =

∑
j

αB
j n̂ j . (3)

Here, αB, αB
j ∈ R are linearly independent solutions of

Eq. (2). As for the familiar Fibonacci sequence, these cor-
respond to two linearly independent choices of the initial
conditions α1, α2. For example, when p = 2q there are
two U(1) charges (for OBCs), which correspond to par-
ticle number (αA

j = 1) and dipole conservation (αB
j = j),

whose zero-temperature phase diagram has been studied in
Refs. [28–30] for translation-invariant systems. Nonetheless,
dipole-moment (and higher-moment) conservation is only one
possible choice among the many spatially modulated sym-
metries a local Hamiltonian can realize. Recently, Ref. [27]
showed that, when p/2q < 1, αA

j and αB
j are quasiperiodically

modulated with wave vectors ±k∗ where cos(k∗) = p/2q,
leading to two extensive conserved quantities Q̂A and Q̂B.2

Hence, instead of the total particle number, its finite Fourier

1Notice that, for p + 2q odd, one can flip the sign of the squeezing
term via the unitary transformation eiπ

∑
j n̂ j b̂ je

−iπ
∑

j n̂ j = −b̂ j .
2Notice that this fact has nothing to do with inversion symmetry,

since the symmetry is present for any choice of Jj couplings.
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components Q̂c ≡∑ j cos(k∗ j)n̂ j , Q̂s ≡∑ j sin(k∗ j)n̂ j are
conserved. This wave vector is commensurate with the lattice
only when p/2q = 0, 1/2 as a consequence of Niven’s theo-
rem [37]. In these cases k∗ = π/2, π/3, respectively, and one
can choose α1, α2 such that the two linearly independent so-
lutions αA

j and αB
j are integer valued and periodically repeated

along the chain. The resulting Q̂A and Q̂B then correspond
to two intertwined sublattice U(1) symmetries. These are at-
tained for the canonical choices Q̂(1,0), Q̂(0,1) with α1 = 1,
α2 = 0 and α1 = 0, α2 = 1, respectively. For PBCs, these are
exactly conserved as long as one considers system sizes that
are multiples of 4 and 6, respectively.

On the other hand any other ratio p/2q �= 0, 1/2 leads
to incommensurate k∗, in which case these are only exactly
conserved for OBCs. Moreover, k∗ being incommensurate
translates into the extensive quantities Q̂A and Q̂B lacking
an integer spectrum unless one redefines them as Q̂A,B →
˜̂QA,B = qLQ̂A,B.3 This implies that Q̂A and Q̂B have an ex-

ponentially small gap ≈q−L between consecutive different
eigenvalues QA, QB. Indeed, we numerically checked that
this gap is uniform in the bulk of the spectrum leading to
a continuous spectrum in the thermodynamic limit (TDL).
Nonetheless, symmetry subspaces are still infinitely large (see
additional details in Appendix A). Altogether, this means that
it might be better to see Q̂A and Q̂B generating a unitary
representation of the addition group R rather than of the U(1)
group. Moreover, Q̂A and Q̂B have an extensive operator norm
which combined with their exponentially small gap leads to
exponentially many ∼qL symmetry sectors labeled by the pair
of eigenvalues (QA, QB). Hence, in the language of Ref. [20],
all these systems have an exponentially large commutant and
should be considered fragmented. Note that this is unlike
previous studies where, e.g., for dipole-conserving models,
fragmentation always appears when the range of the terms and
the dimension of the on-site Hilbert space are strictly bounded
[10,11,38]. The described fragmentation is present in our case
even when considering infinitely large local Hilbert-space di-
mension. For completeness, we also note that when p/2q > 1
one finds solutions αA

j and αB
j that are exponentially localized

at the boundaries of the system (for OBCs), leading to corre-
spondingly localized conserved quantities Q̂A and Q̂B. While
here we focus on quasiperiodic modulated symmetries with
p/2q < 1, we leave the analysis of their zero-temperature
physics for future work.

Before closing this section it is important to mention
that any other nontrivial local term conserving both Q̂A

and Q̂B can be obtained by combining the local terms
b̂q

j−1(b̂†
j )

pb̂q
j+1 (together with their Hermitian conjugates) up

to powers of the local densities n̂ j (while it is obvious
that all such generated terms have the same symmetry, the
opposite direction is nontrivial; see proof in Appendix B).
For example, these include the 4-local contribution T̂ 4

q,p =∑
j J (4)

j (b̂q
j b̂

q−p
j+1 b̂q−p

j+2 b̂q
j+3 + H.c.) when q > p. Finally, we

note that if Jj = J for all sites (up to boundary conditions),
these models have lattice translation symmetry and also inver-

3In general, α j includes terms scaling as (p/q) j .

sion symmetry (assuming the potential terms V̂ have the same
symmetries).

III. ROTOR MODELS AND QUASI-LONG-RANGE-ORDER
PHASE

We also introduce the family of rotor Hamiltonians

H rotor
q,p = −

∑
j

J j cos
(∇q,p

x θ̂ j
)+ U

2

∑
j

(n̂ j − n̄ j )
2, (4)

in terms of the canonical conjugate variables [θ̂i, n̂ j] = iδi j

with θ̂ j ∼ θ̂ j + 2π having compact spectrum, and where n̄ j is
the average on-site density. Here we introduced the short-hand
notation

∇q,p
x θ̂ j ≡ −qθ̂ j−1 + pθ̂ j − qθ̂ j+1 (5)

that will repeatedly appear in the following. For example, with
this notation the linear recurrence in Eq. (2) reads ∇q,p

x α j = 0.
These Hamiltonians are invariant under the two continuous
symmetry transformations

θ̂ j → θ̂ j + αA
j , θ̂ j → θ̂ j + αB

j , (6)

generated by Q̂A =∑ j α
A
j n̂ j and Q̂B =∑ j α

B
j n̂ j , with αA

j

and αB
j satisfying ∇q,p

x αA
j = 0 and ∇q,p

x αB
j = 0, respectively.

One can intuitively understand the first contribution in Eq. (4)
as appearing in the regime |Jj |/U 
 1 and large on-site par-
ticle numbers where the approximation b̂ j ∼ √

n̄ jeiθ̂ j (and,
respectively, b̂†

j ∼ √
n̄ je−iθ̂ j ) holds. However, the main jus-

tification for using the rotor models is that they retain the
same symmetries as the original boson models and are hence
expected to show the same qualitative physics (phases and
their long-distance properties) while allowing more direct
connections to low-energy descriptions [39,40]. Note that, for
the rotor models, the on-site terms ≈(n̂ j − n̄ j )2 are already
sufficient to obtain a mathematically well-defined (i.e., lower-
bounded) spectrum.

Analogous to the familiar XY model (see, e.g.,
Refs. [41,42]), the rotor formulation H rotor

q,p admits a dual
representation in terms of a new set of conjugate variables
[Ni, δφ j] = iδi j , which relate to the original θ̂ j, n̂r

j via the
duality transformation

N̂j ≡ −∇q,p
x θ̂ j, (7)

n̂ j − n̄ j = −∇q,p
x δφ j . (8)

Note, however, that the basic dual field definitions differ from
the usual XY model and the dual variables here reside on
the same lattice sites as the original lattice. By “solving” for
δφ j in terms of {ni, i < j} as will be shown in Eq. (13), i.e.,
number operators running from the left boundary, focusing
on the bulk and ignoring boundaries (more precise treatment
will be given in due time), we can indeed verify that the new
variables satisfy the canonical commutation relations.

The Hamiltonian H rotor
q,p in terms of these becomes

Hdual
q,p = U

2

∑
j

(∇q,p
x δφ j

)2 −
∑

j

J j cos(Nj ). (9)
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In the following sections, we define and characterize the dual
variables more precisely and use this description to analyze
the phase diagram of the bosonic Hamiltonian Eq. (1) in the
regime |Jj |/U 
 1. In particular, we find that this duality
makes explicit that unlike for the standard Bose-Hubbard
model,4 the dual field δφ j is not necessarily integer but
rational-valued, translating into the fact that ei2πδφ j �= 1 is in
general not trivial.

In this regime—and taking Jj > 0—one can expand the
cosine terms appearing in the rotor Hamiltonian (4)

H rotor
q,p ≈

∑
j

J j

2

(∇q,p
x θ̂ j

)2 + U

2

∑
j

(n̂ j − n̄ j )
2, (10)

or those in the dual description (9)

Hdual
q,p ≈ U

2

∑
j

(∇q,p
x δφ j

)2 +
∑

j

J j

2
(Nj )

2, (11)

In the following, we rigorously analyze the corresponding
theory which gives a description of a gapless phase with two
low-energy modes, and discuss the stability of this phase using
field theoretic methods, justifying the above approximation in
the appropriate regime.

IV. HILBERT-SPACE FRAGMENTATION FOR
INFINITE-DIMENSIONAL LOCAL HILBERT SPACE

When q �= 1—namely, whenever we consider incommen-
surate charges or commensurate ones with q > 1—and for
OBCs, one finds L (with L the system size) additional discrete
symmetries as long as Q̂A and Q̂B are preserved. These are
generated by the following unitaries with support on sites 1 to
j:

Uj = exp

⎡
⎣i

2π

q

∑
1�i� j

α
(1,p/q)
j−i+1 n̂i

⎤
⎦, (12)

for all j ∈ {1, . . . , L}, where α
(1,p/q)
k is a solution of Eq. (2)

with initial conditions α
(1,p/q)
1 = 1, α

(1,p/q)
2 = p/q. These can

be interpreted as a subgroup of the two continuous sym-
metry groups generated by Q̂A, Q̂B on the spatial region
[1, . . . , j] for every j. The order of the group is not clear
from the expression of Uj . To gain some intuition we can
consider commensurate k∗ (i.e., p/q = 0, 1). Then α

(1,p/q)
j ∈

{0,±1}, which implies (Uj )q = 1 for all j. In fact, in this
case the Zq symmetry transformations can be locally im-

plemented via Ũj = ei 2π
q n̂ j . However, for incommensurate k∗

only (U1)q = 1 holds, and one can only show that (Uj )q j = 1
for j > 1, which suggests that each Uj generates a discrete
group Zq j whose order q j varies along the chain. Nonethe-
less, the different Uj are not independent of each other. In
general, (Uj )q(U †

j−1)p(Uj−2)q = 1, where we have defined
U−1 = U0 ≡ 1, imposing strong restrictions on the indepen-
dent eigenvalues that different Uj can take. Thence, once

4For the standard Bose-Hubbard model the duality transformation
reads Nj = θ j − θ j−1, n̂ j − n̄ j = δφ j − δφ j+1, which implies that for
integer n̄ j the field δφ j is integer valued.

we fix the eigenvalues of U1 and U2, we can only choose
among q different choices for every new Uj proceeding from
j = 3 to j = L. This means that the whole set {Uj}L

j=1 gener-
ates a (Zq)L symmetry. Notice, however, that one cannot use
this relation to define local Ũj transformations. Altogether,
this result implies the existence of exponentially many qL

disconnected Krylov subspaces, i.e., a provable example of
Hilbert-space fragmentation for a (semi-)infinite-dimensional
local Hilbert space, naively appearing together or as a part
of the fragmentation associated with the dense spectrum of
Q̂A and Q̂B in the incommensurate case. In Sec. VI A 1 and
also in Appendix C, we discuss the functional dependence of
these additional symmetries on Q̂A and Q̂B. Moreover, any
system with finite-range interactions locally preserving the
Q̂A and Q̂B symmetries is equally fragmented. This follows
from the fact that any such finite local interactions can be ob-
tained from the 3-local interactions b̂q

j−1(b̂†
j )

pb̂q
j+1, as shown

in Appendix B, hence inheriting these nonlocal symmetries.
This analysis directly extends to the family of rotor models

introduced in Eq. (4). In fact, the expression for the nonlocal
unitaries Uj simplifies when writing δφ j as a function of the
density using Eq. (8). One then finds

δφ j = 1

q

∑
1�i< j

α
(1,p/q)
j−i (n̂i − n̄i ), (13)

implying that Uj = ei2πδφ j+1 up to boundary contributions.
This means that the duality transformation maps Uj to a local-
ized unitary while preserving the locality of the Hamiltonian.
Moreover, it appears that both the bosonic and rotor models in
Eqs. (1) and (4), respectively, are invariant under any phase
shift θ j → θ j + α j satisfying ∇q,p

x α j = 2πmj with mj ∈ Z
for any site. While this corresponds to a trivial transformation
in the standard Bose-Hubbard model, here it can be expressed
in terms of the Uj as

∏
j (Uj )mj and is hence not a new sym-

metry.

V. COMMENSURATE MODULATION
AND SUBLATTICE SYMMETRIES

We first analyze systems with commensurate charges. As
we found in Sec. II this happens whenever p/q = 0, 1. In
both cases, we can fix q = 1 to avoid the presence of the
extensively many additional Uj symmetries. (Otherwise, one
should restrict to a specific superselection sector of the Uj

symmetries, since by virtue of Elitzur’s theorem, such lo-
cal symmetries cannot be spontaneously broken.) On the
one hand when p = 0 and since V̂ only includes on-site
contributions, Hq,0 exactly maps onto two decoupled chains
defined on even and odd sites with local terms of the form
b̂†

j b̂
†
j+1 + H.c. The resulting systems still have a U(1) sym-

metry generated by
∑

j (−1) j n̂ j within each sublattice. And
although one cannot directly map these bosonic chains to the
standard BHM via a unitary transformation, one finds a math-
ematically well-defined mapping at the level of rotor variables
θ̂ j → −θ̂ j , n̂ j → −n̂ j at every second site, hence recovering
the same phase diagram as for the standard BHM. Therefore,
we focus on the choice p = 1 and study the zero-temperature
phase diagram of the following thermodynamically stable
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Hamiltonian

H1,1 = −J
∑

j

(b̂ j−1b̂†
j b̂ j+1 + H.c.) + U

2

∑
j

n̂2
j , (14)

where we have fixed a uniform coupling Jj = J to sim-
plify the upcoming analysis. This implies that H1,1 is also
invariant under translations by one lattice site (T1) when
considering PBCs and appropriate system sizes (L ∈ 6N),
as well as site-centered (or bond-centered) inversion sym-
metric. This corresponds to a generalized formulation of
the standard Bose-Hubbard model, resembling that consid-
ered for bosonic dipole-conserving systems [28]. The two
canonical modulated charges correspond to the subsystem
symmetries with α

(1,0)
j mod 6 = (1, 0,−1,−1, 0, 1) and α

(0,1)
j mod 6 =

(0, 1, 1, 0,−1,−1), or equivalently α
(0,1)
j = 2√

3
cos( 2 j−3

6 π ),

α
(1,0)
j = 2√

3
cos( 2 j−1

6 π ).

A. Overall phase diagram

The ground-state phase diagram of the standard Bose-
Hubbard model with onsite interactions includes gaped
Mott-insulating phases as well as gapless quasi-long-range-
ordered phase depending on the relative sizes of the chemical
potential and the tunneling rate J with respect to the inter-
action strength U [40,43–45]. Moreover, a roughly similar
phase diagram has been also found for dipole-conserving sys-
tems, which can now include a novel Bose-Einstein insulating
phase (BEI), as well as a dipole condensate [28–30]. Here, we
combine the finite-size and infinite-size [46] density-matrix
renormalization group (DMRG) algorithm with analytical
methods to characterize the zero-temperature phase diagram
of the Hamiltonian in Eq. (14).

Before discussing the results, let us list the several nu-
merical challenges when simulating this type of system.
First, as it happens for the standard BHM as well as the
model with commensurate symmetries in Eq. (14), the local
infinite-dimensional Hilbert space needs to be truncated to
a maximum finite occupation nmax [44]. This is an impor-
tant parameter when dealing with quasi-long-range order (or
spontaneous symmetry breaking in higher dimensions), where
particle fluctuations become large. Second, the Hamiltonians
in (1) include (at least) 3-local terms which can lead to even
larger local fluctuations and average particle number than a
usual single-particle hopping process, hence requiring large
values of nmax. Finally, the requirement of at least modifying
the configuration on three sites to obtain a different config-
uration with the same quantum numbers, requires either the
use of a mixer; or grouping two consecutive sites (see, e.g.,
Ref. [47]), which effectively increases the local dimension to
n2

max, slowing down the simulations. While both approaches
can be applied for commensurate symmetries, we find the
latter to be better suited for incommensurate ones.

Figure 1 shows numerical results using infinite DMRG
(iDMRG) on a unit cell of size 2π/k∗ = 6 [46]. If J/U � 1,
density fluctuations—associated with Q̂A and Q̂B—are small
and the system arranges itself in a gapped Mott insulator
phase. These correspond to the lobes appearing for small J/U
in the upper panels of Fig. 1. On the other hand, when J/U 

1 the system becomes gapless, leading to large on-site particle

chem. pot. chem. pot.

(a)

)(d)(c

(b)

FIG. 1. Phase diagram for q, p = 1. Panels (a) and (b) show the
schematic phase diagram for Hamiltonian H1,1 in Eq. (14) in the pres-
ence of a (a) modulated μA

∑
j α

(1,0)
j n̂ j and (b) uniform −μ

∑
j n̂ j

chemical potentials, as a function of J/U and μα/U , with μα =
μA, μ, respectively. In both cases, we find two different types of
behaviors: Gapped phases for J < Jc(μα ) corresponding to Mott in-
sulating lobes, and a gapless quasi-long-range-order (QLRO2) phase
for J > Jc(μα ). The former acquires a particular particle density
pattern in the case of modulated chemical potential, with the density
patterns represented in the plot. One also finds intermediate lobes
corresponding to gapless phases (QLRO1) protected by bond inver-
sion symmetry. Panels (c) and (d) show the effective central charge c
along a cut with μα/U = 1 as obtained from infinite DMRG by scal-
ing the bipartite entanglement entropy Sχ with the finite correlation
length ξχ induced by a finite bond dimension Sχ = c

6 ln(ξχ ) [36].
Both panels show a clear transition from c = 0 to c = 2, the latter
corresponding to the QLRO phase. Gapless lobes with modulated
chemical potential (QLRO1) correspond to c = 1 as seen over a
narrow intermediate range in panel (c), which we explain in detail
in Appendix D.

numbers as well as large fluctuations (while phase fluctuations
are small) and, as we show below, quasi-long-range order. Re-
sults on different columns correspond to two possible choices
of chemical potentials: (1) a modulated chemical potential of
the form μAQ̂(1,0) + μBQ̂(0,1) which explicitly breaks transla-
tion symmetry [Figs. 1(a) and 1(c)];5 and (2) a more standard
uniform one −μ

∑
j n̂ j , even though the Hamiltonian does

not conserve particle number [Figs. 1(b) and 1(d)]. To plot
Fig. 1(a) we obtained the ground state |ψ (J, μA)〉 for several
values of J/U and μA/U and analytically identified the exis-
tence of Mott insulators along the J = 0 line. We then located
the lobes—including the Mott insulating and the QLRO1
phases—by calculating 〈ψ (J, μA)|QA,B|ψ (J, μA)〉. For the
former, both QA and QB take integer values per unit cell,

5We consider μA, μB � 0 as inverting their sign simply leads to
exchanging the signs of αA

j on the two nontrivial sublattices.
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signifying incompressibility, while for the latter QA takes inte-
ger values per unit cell but QB varies continuously signifying
the corresponding compressibility. Figure 1(a) displays the
boundaries among these regions. On the other hand, in the
setting of Fig. 1(b) with μA = μB = 0 due to the choice of
unit cell size in iDMRG (L = 6 compatible with the symme-
tries) and translation invariance, all lobes have QA = QB = 0,
and hence cannot be distinguished by the conserved charges.
However, we could analytically predict the existence of two
different particle configurations when J/U = 0 which—being
gapped—are expected to survive to a finite value of J/U .
To map the phase diagram we obtain the dependence of
the correlation length (easily extracted in iDMRG from the
second-largest eigenvalue of the transfer matrix) on J/U and
μ/U , which saturates in bond dimension to a finite value
within the Mott insulators, while diverges in the QLRO phase.
Figure 1(b) just shows the boundaries between large and small
correlation length.

In the following, we start characterizing the gaped phases
by taking the strongly interacting regime J/U � 1. When
J/U = 0, the Hamiltonian of interest becomes ĤM.I. =
U
2

∑
j (n j )2 − μ

∑
j n̂ j + μAQ̂(1,0) + μBQ̂(0,1), which is diag-

onal in the occupation basis and has a finite gap except at
special values of the parameters corresponding to the tran-
sitions between different lobes. This allows us to perform a
similar analysis to the standard BHM [40].

1. Modulated chemical potential

We start by fixing μ = 0 and simplifying our analysis by
considering μB = 0. Then we are looking for the ground state
of the gapped diagonal Hamiltonian ĤM.I. = U

2

∑
j (n̂ j )2 +

μA
∑

j α
A
j n̂ j . Since α

(1,0)
j = 0,±1 is 6-periodic, the ground

state acquires a charge arrangement with period 6 in the
presence of on-site interactions, leading to a Mott-insulating
state. Different lobes in Fig. 1(a) are distinguished by the two
quantum numbers (QA, QB) and by different particle configu-
rations that depend on the strength (and range) of interactions
and the value of the chemical potential. To find the specific
particle ordering, we require the energy of a given site to attain
its minimum value. Focusing on the regime μA/U < 1, one
finds:6 The system orders in a charge configuration with an
empty 6-sites unit cell |0〉 = | ◦ ◦ ◦ ◦ ◦ ◦〉 if μA/U < 1/2. On
the other hand, for μA/U > 1/2 the unit-cell configuration
is given by |2〉 = | ◦ ◦ • • ◦ ◦〉 corresponding to the charges
(QA, QB) = (−2, 1) per unit cell. Figure 1(a) shows that these
lobes are robust to a finite value of J/U � 0.3, consistent with
having a finite gap. At the transition point μA/U = 1/2, these
two unit cell configurations are degenerate together with two
more charge orderings |L〉 = | ◦ ◦ • ◦ ◦ ◦〉 and |R〉 = | ◦ ◦ ◦
• ◦ ◦〉, sharing the same QA = −1 but having different QB = 1
or 0, respectively.

For small but finite J/U , this degeneracy is partially broken
at second order leading to the two different Mott insula-
tors, but also to a quasi-long-range-order intermediate phase
[QLRO1 in Fig. 1(a)] protected by bond-inversion symmetry
Ibond around a bond center between sites 6n + 3 and 6n + 4.

6The same analysis can be extended to larger values of μA/U .

As shown in Fig. 1(c), we find a central charge c = 1 within
this phase for μA/U = 1 and for a finite region of J/U . We
numerically obtain it as the coefficient of the bipartite en-
tanglement entropy Sχ with the finite correlation length ξχ

induced by a finite bond dimension χ in infinite DMRG. This
scales as Sχ = c

6 ln(ξχ/a) for conformally invariant critical
systems, as shown in Ref. [36]. The observed behavior can be
perturbatively understood in the subspace spanned by |L〉, |R〉
within each unit cell as we show in Appendix D. Nonethe-
less, we found this phase disappears when considering a
finite chemical potential μB, which breaks bond inversion
symmetry.

2. Uniform chemical potential

On the other hand when μA = 0 but for finite μ, one finds
the same charge ordering as for the standard Bose-Hubbard
model if J/U = 0. Being gapped, these phases are expected
to be robust to small but finite values of J/U . However,
an infinitesimal small J/U now preserves a finite Fourier
momentum of the particle number, while breaking particle
number conservation. For μ/U < 1.25 we now observe two
different charge orderings: A trivial Mott insulator with zero
average density for μ/U < 1/2, while 〈n̂ j〉 ≈ 1 for 1/2 <

μ/U < 1.25. Both orderings correspond to global quantum
numbers QA = QB = 0, and hence one cannot directly say
whether these two apparently different lobes correspond to
the same phase of matter. Nonetheless, we notice that by
considering a system size (or unit cell in the iDMRG simu-
lations) that is not a multiple of 2π/k∗ = 6, these two lobes
acquire different quantum numbers QA, QB, then allowing us
to distinguish them. Whether these correspond to different
(crystalline) symmetry protected topological phases, or rather
to symmetry protected trivial ones is left as an open question.

Overall, for either modulated or uniform chemical poten-
tial a finite gap leads to exponentially decaying correlations.
Moreover, due to the nontrivial spatial structure of Q̂A and Q̂B,
the operator b̂ib̂

†
j is only charge neutral when αi = α j for both

αA
j and αB

j , which for p = q = 1 happens when i − j ∈ 6Z,

leading to vanishing correlations 〈b̂†
i b̂ j〉 everywhere else:

〈b̂†
i b̂ j〉 =

{
e−|i− j|/ξ if |i − j| = 6 × integer
0 else,

(15)

where ξ is the correlation length induced by the finite gap.
This agrees with the numerical results we show in Figs. 2(a)
and 2(b) for modulated and uniform chemical potentials,
respectively. Density-density correlators 〈n̂in̂ j〉 also decay ex-
ponentially and, being charge neutral, do not vanish for any
particular distance. Nonetheless, these are dressed with pe-
riodic oscillations with wave vector k∗ for both modulated
[Fig. 2(c)] and uniform [Fig. 2(d)] chemical potentials lead-
ing to 〈n̂in̂ j〉 ∼ cos[k∗( j − i)]e−|i− j|/ξn . The oscillatory factor
accompanying the exponential decay appears as a result of
lowest gapped modes close ±k∗.

B. Quasi-long-range order

When the hopping amplitude becomes sufficiently large
J/U 
 1, the system becomes gapless and acquires QLRO
(different from the one we found between two Mott lobes
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FIG. 2. Two-point correlations for Mott phases. Decay of two-
point correlations within the gapped phase for J/U = 0.1 (� in
Fig. 1) in the presence of modulated μA/U = 1 [panels (a) and (c)]
and uniform μ/U = 1 [panels (b) and (d)] chemical potentials. First
and second rows respectively show the decay of 〈b̂†

0b̂ j〉 and 〈n̂0n̂ j〉
with distance.

with c = 1), with the quantum numbers (QA, QB) varying
within the phase. A clear characterization is shown in the
lower panels of Fig. 1, displaying the value of the central
charge c as a function of J/U . For large J/U we find c = 2,
corresponding to two low-lying bosonic degrees of freedom
at zero temperature and consistent with our preliminary anal-
ysis of the rotor model in Sec. III. In this regime, and for
the purposes of a rough qualitative description rather than a
precise mathematical mapping, the local particle number n̂ j

fluctuates around an average value n̄ j . To leading order we
can substitute the bosonic degrees of freedom by a rotor vari-
able b̂ j ≈ √

n̄ jeiθ̂ j (and b̂†
j ≈ √

n̄ je−iθ̂ j ) such that fluctuations
around this average value are captured by n̂ j − n̄ j , leading
to a natural description of the low-energy physics. In the
presence of the explicit translation symmetry-breaking terms
μAQ̂(1,0) + μBQ̂(0,1), the average density n̄ j is not uniform but
just periodic modulo 6, which leads to space-dependent rotor
couplings Jj in Eq. (4).

In the case of sublattice U(1) symmetries—as appearing
for commensurate k∗—the (two) relevant low-energy degrees
of freedom can be identified by decomposing the phase vari-
able as θ̂ j = α

(1,0)
j ϑ̂A(x j ) + α

(0,1)
j ϑ̂B(x j ), where the equal sign

is understood as retaining only low-energy modes. Then the
action of each of the two continuous symmetry transforma-
tions is realized at low energies by a uniform shift of either
ϑ̂A(x j ) or ϑ̂B(x j ), i.e., two conventional U(1) symmetries. In
Appendix E we construct an effective description utilizing
this decomposition. In the following, we instead use a more
general approach that will also prove to be useful for incom-
mensurate charges.

C. Villain action

The main idea of the Villain formulation is to replace the
cosine potential-term in the rotor Hamiltonian (4) without
losing the 2π -periodicity that is so relevant to characterize the
QLRO to Mott insulator transition by the unbinding of vor-
tices [48]. Proceeding in the standard way (see Appendix F)
and neglecting boundary corrections expected to be irrele-
vant in the thermodynamic limit, the path integral partition

function of the corresponding rotor Hamiltonian for any pair
q, p is given by Z (β ) =∑{Jτ ,Jx∈Z} e−S[Jτ ,Jx] where the ac-
tion reads

S[Jτ ,Jx] = 1

2

∑
j,τ

(J 2
x ( j, τ )

δτJj
+ UδτJ 2

τ ( j, τ̄ )

)
. (16)

Here, Jτ ( j, τ̄ ) = n j (τ̄ ) is the local density in the path integral
defined on vertical links τ̄ ≡ τ + δτ/2, and Jx( j, τ ) is de-
fined on sites of an L × Lτ 2D lattice, where β = Lτ δτ in the
limit β → ∞. Moreover, the configurations are constrained to
satisfy

∇τJτ + ∇q,p
x Jx = 0 (17)

around every site with coordinates ( j, τ ). Considering a sys-
tem with OBCs, this constraint can be directly incorporated
using the auxiliary height field Xj (τ̄ ) living on vertical links
via

Jx( j, τ ) = ∇τ Xj (τ̄ ), Jτ ( j, τ̄ ) = −∇q,p
x Xj (τ̄ ). (18)

Notice that in principle, one should consider the general
solution Jx( j, τ ) = ∇τ Xj (τ̄ ) + J̄x( j, τ ), Jτ ( j, τ̄ ) =
−∇q,p

x Xj (τ̄ ) + J̄τ ( j, τ ) for not simply connected spacetime
manifolds, as it happens when taking periodic boundary
conditions. These contributions fix the global symmetry
sector since QA,B =∑ j α

A,B
j n j =∑ j α

A,B
j J̄τ ( j, τ ). Hence,

the background fields J̄x, J̄τ can be taken care of by fixing
the global charges. A complementary description in terms
of the winding number of a related stat-mech problem
will be presented in Sec. V E. Assuming J̄x, J̄τ = 0, i.e.,
QA = QB = 0, one obtains

Xj (τ̄ ) = 1

q

∑
i< j

α
(1,p/q)
j−i ni(τ̄ ), (19)

which explicitly shows that the field X is integer valued when
q = p = 1. A more amenable description to pursue an ana-
lytical treatment follows by softening the field X ∈ Z → χ ∈
R once including the potential term −λ

∑
j,τ cos[2πχ j (τ̄ )].

All together, plugging into Eq. (16) one finds a lattice ac-
tion Slattice[χ ] = S0[χ j (τ̄ )] − λ

∑
j,τ cos[2πχ j (τ̄ )] with the

quadratic contribution S0 given by

S0[χ ] = 1

2

∑
j,τ

(
1

δτJj
[∇τ χ j (τ̄ )]2 + Uδτ

[∇1,1
x χ j (τ̄ )

]2)
.

(20)
The term cos[2πχ j (τ̄ )] corresponds to a vortex creation (an-
nihilation) operator ei2πχ j (τ̄ ) (e−i2πχ j (τ̄ )) expected to drive the
QLRO to the Mott-insulator transition at fixed QA, QB as for
the standard BHM. However, unlike in that case, it does not
insert a 2π phase shift in the boson phase eiθ̂ j to the left
of site j, but only at certain sites. A more detailed discus-
sion of vortex degrees of freedom and their role to drive the
transition between the two phases will be given in Sec. VII.
When Jj = J is uniform—as happens for a uniform chemical
potential—or when Jj is approximately constant only varying
over long wavelengths, the quadratic action S0 reads

S0[χ ] = 1

2βL

∑
ωn,k

{
Kτω

2
n + Kx[p − 2q cos (k)]2

}|χ(ωn,k)|2,

(21)
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in (imaginary) frequency-momentum space, where we have
introduced the parameters Kτ = 1

δτJ , Kx = Uδτ .

1. Continuum limit: Two-species Luttinger liquid

Equation (21) shows that the energy dispersion has two
zero-energy modes precisely at ±k∗, corresponding to the
wave number of the modulated symmetries. Hence, using the
low-energy expansion

χ j (τ̄ ) = 2Re{eik∗ j[ϕ1(x j, τ ) + ϕ2(x j, τ )]}, (22)

and keeping only nonoscillating contributions to derive an
effective continuum description one finds

S0[ϕa] = K

2

∑
a=1,2

∫
dxdτ [(∂τϕ

a)2 + (∂xϕ
a)2], (23)

after rescaling both space and time, with Luttinger parameter
K ∝ √

Kτ Kx = √
U/J . Namely, the QLRO phase corresponds

to two (decoupled) Luttinger liquids, leading to the observed
c = 2 central charge shown in Figs. 1(c) and 1(d).7

As for the lattice action in the previous section, this contin-
uum quadratic description is valid as long as the compactness
of the bosonic phase θ̂ j is irrelevant, which at the lattice level
is controlled by the potential term −λ

∑
j,τ cos[2πχ j (τ̄ )].

Similar terms can appear in the continuum description driv-
ing the system unstable for sufficiently large U/J . To do
so, we need to understand how the microscopic symmetries
of the system are realized by the low-energy modes ϕ1, ϕ2

defined via Eq. (22), allowing for all those compatible cosine-
contributions. Let us start analyzing the case of commensurate
k∗ with uniform chemical potential. With PBCs, which is
actually the case in the implementation of infinite DMRG, the
system is invariant under translations by one lattice site T1.
Since n j = −∇̃q,p

x χ j and n j → n j+1 under this translations,
we find that T1 is realized at the infrared via(

ϕ1

ϕ2

)
→ U1

(
ϕ1

ϕ2

)
, (24)

where

U1 ≡
(

cos (k∗) − sin (k∗)
sin (k∗) cos (k∗)

)
(25)

is an orthogonal matrix. Defining ϕ ≡ (ϕ1, ϕ2)T , only the
quadratic term (∂xϕ

1)2 + (∂xϕ
2)2 is allowed, i.e., the Luttinger

parameter K is the same for both components ϕ1, ϕ2 which is
consistent with a direct transition from a c = 2 QLRO phase
and a Mott insulator as shown in Fig. 1(b). In fact, we can
find cosine contributions whose arguments are linear in ϕ1,
ϕ2, i.e., taking the form ϕT · w, with w ∈ R2. First, we can
discard single cosine contributions of the form cos(2πϕT · w)
since under T1 this term transforms as cos(2πϕT · w) →

7We believe the data point indicating a central charge larger than 2
is a numerical artifact appearing at the transition point. When extract-
ing the central charge from fitting Sχ versus ln(ξχ ) for J/U = 0.15,
we obtain a c > 2, which decreases when considering all but the last
data point. While we expect that the c = 2 of the QLRO also holds at
the critical point, we leave the characterization of the phase transition
between the Mott insulating and QLRO phases for future work.

cos(2πϕT · U T
1 w), and U1 has eigenvalues different from ±1.

A natural next step is considering a finite linear combination
of such cosine terms of the form

∑N
n=1 λn cos(2πϕT · wn),

such that the sum remains invariant. This can only happen
if U T

1 wn = ±wn+1, and for finite N this implies (U T
1 )Nwn =

±wn for all n. Since U N
1 has eigenvalues equal to e±iNk∗

, one
finds that for commensurate k∗ one just requires N = π/k∗
terms, i.e., N = 3 terms for k∗ = π/3. A possible choice
of these terms is w1 = (1, 0)T ,w2 = (cos(k∗), sin(k∗))T and
w3 = (cos(2k∗), sin(2k∗))T . This analysis shows that a BKT-
type transition is possible.

Let us now consider the case of modulated chemical poten-
tial +μAQ̂(1,0) and a system size L being a multiple of 2π/k∗.
In this case the coupling terms in the rotor Hamiltonian (4)
are not uniform but rather Jj ∝ √

n̄ j−1n̄ j n̄ j+1 acquire a similar
modulation than that of the chemical potential. Hence, when
expanding χ j as in Eq. (22), the continuous action can pick
up additional contributions including cross terms of the form
∂x,τ ϕ

1∂x,τ ϕ
2 between ϕ1, ϕ2. As before, we need to allow all

those contributions that are compatible with the symmetries
of the system. In particular, bond inversion Ibond is the only
relevant symmetry that acts nontrivially on the field χ j .8 Once
again since nj = −∇̃q,p

x χ j and n j → nL− j under this trans-
formation, we find that Ibond is realized at the infrared via
ϕ(x) → ULϕ(L − x) with

UL ≡
(

cos (k∗L) − sin (k∗L)
sin (k∗L) cos (k∗L)

)
. (26)

However, for L a multiple of 2π/k∗, UL becomes the iden-
tity matrix, and the symmetry is realized at low energies as
ϕa → ϕa with a = 1, 2. Hence, the quadratic contribution to
the action takes the general form

S0[ϕa] =
∫

dτdx
∑
a,b

(
gτ

ab∂τϕ
a∂τϕ

b + gx
ab∂xϕ

a∂xϕ
b
)
. (27)

Here gτ and gx are 2 by 2 real matrices, corresponding to
the nonvanishing coupling between the ϕ1, ϕ2 modes and
constrained by the symmetries of the system. Simultane-
ously diagonalizing [49] gτ and gx, the uncoupled fields can
now have different Luttinger parameters. Since in the ab-
sence of translation symmetry cosine contributions of the
form

∑
a=1,2 λa cos(2πϕa) as well as − cos(2π (ϕ1 ± ϕ2)), are

compatible with the symmetry, each mode can be indepen-
dently gapped out, which could explain the different direct
transitions between the c = 2 QLRO phase to both the c = 1
phase as well as to the short-range Mott insulating phase
in Fig. 1(a). In particular, when QA = QB = 0—relevant to
address the transition between the trivial Mott insulator and
the c = 2 phase—, the action becomes translation invariant
and hence, both modes ϕ1 and ϕ2 have identical Luttinger
parameter becoming simultaneously gapped out. On the other
hand, the transition from QLRO2 to QLRO1 occurs at finite
QA, QB �= 0 where a single mode can acquire a gap. Every-
where else in the phase diagrams of Figs. 1(a) and 1(b), we
expect a commensurate-incommensurate transition as in the
standard BHM.

8Notice that translations by 2π/k∗ imposes no restrictions.
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FIG. 3. Boson-boson correlator for QLRO phase with uniform
chemical potential. Decay of two-point correlations with the distance
within the QLRO phase in the presence of uniform chemical potential
with μ/U = 1 and J/U = 0.6. Convergence for increasing bond
dimension χ tends to a power-law decay of 〈b̂†

0b̂ j〉 when evaluating at
sites j = 6 × integer. Data were obtained using iDMRG with fixed
global charges QA = QB = 0.

2. Two-point correlations and renormalization-group flow

The distinction between the Mott insulator and QLRO
phases can also be detected by looking at the decay of
symmetry invariant two-point correlations, which decay ex-
ponentially with the distance in the former case. To evaluate
their dependence in the QLRO phase, we start by computing
Cχχ ( j − j′; τ̄ − τ̄ ′) = 〈eiχ j (τ̄ )e−iχ j′ (τ̄ ′ )〉. Using that the action
in Eq. (20) is Gaussian, one obtains power-law decaying cor-
relations (see details in Appendix G)

Cχχ ( j − j′, τ̄ − τ̄ ′) ∼
{|τ̄ − τ̄ ′|−Cτ

k∗ /K if j = j′

| j − j′|−Cx
k∗ /K if τ = τ ′,

(28)

both in imaginary time and in space whenever j − j′ is
a multiple of 2π/k∗ in the later case. Here, the power-
law exponents depend on the Luttinger parameter K , and
on the nonuniversal constants Cτ

k∗ = [4πq| sin(k∗)|]−1, Cx
k∗ =

[2πq| sin(k∗)|]−1. Similarly one finds9 that 〈b̂†
0b̂ j〉 decays

as a power-law when evaluated on j = 2π/k∗, i.e., j =
6 × integer for q = p = 1. Results for a uniform chemi-
cal potential μ/U = 1 and J/U = 0.6 are shown in Fig. 3.
These numerical results have been obtained within the
global symmetry sector QA = QB = 0. From here (or alterna-
tively applying the Wilson renormalization-group approach as
presented in Appendix G 3) we conclude that the scaling di-
mension of the cosine contribution cos[2π pχ ] is �p ∝ p2/K ,
and hence the cosine term in Eq. (23) becomes relevant when
U/J is sufficiently large. Therefore, we expect a quantum
phase transition at a critical value Kc. From the duality map-
ping n j = −∇q,p

x χ j , one can then compute density-density
correlations which decay as 〈n̂ j n̂ j′ 〉 ∼ − cos(k∗| j − j′|)/| j −
j′|2, similarly to as a Luttinger liquid [50] times an oscillatory
factor with momentum k∗, imprinted by the modulated sym-
metries. Its Fourier transform 〈n̂k n̂−k〉 then takes a V-shaped
functional form 〈n̂k n̂−k〉 ∼ |k ± k∗| close to ±k∗. Details on
the computation can be found in Appendix G. These depen-
dencies are shown in Fig. 4 for both modulated μA/U = 1
[Figs. 4(a) and 4(c)] and uniform μ/U = 1 [Figs. 4(b) and

9This decays as correlators for χ j but with K → 1/K , after identi-
fying b̂ j ∼ eiθ̂ j .

FIG. 4. Density-density correlator for QLRO phase. Decay of
two-point correlations with the distance for J/U = 0.6 (• in Fig. 1 in
the QLRO phase) in the presence of modulated μA/U = 1 [panels
(a) and (c)] and uniform μ/U = 1 [panels (b) and (d)] chemical
potentials. First row shows a power-law decay of 〈n̂0n̂ j〉 ∼ −| j|−2

when evaluating at sites j = 6 × integer. Second-row panels show
the amplitude of the Fourier transform of 〈n̂0n̂ j〉 as function of k/π .
We find a V-shaped (∼|k ± k∗|) minimum at momenta ±k∗, which
is the expected momentum-space singularity corresponding to a 1/r2

power-law decay with oscillations with momentum k∗. Data were
obtained using infinite DMRG without fixing global charges.

4(d)] chemical potentials for J/U = 0.6 (signaled with a • in
the upper panels of Fig. 1). Our numerical results are consis-
tent with a power-law exponent close to −2, and oscillations
with wave-vector k∗ = π/3.

D. Experimental realization: From many-body Aubry-André
to modulated symmetries

Recent experimental works [24,25] have shown that one-
dimensional dipole-conserving systems naturally emerge as
approximate descriptions of interacting ultracold gases in the
presence of a strong linear tilt potential, which is realized via a
magnetic gradient [24,25]. In this section we show that, using
similar resources, one-dimensional models with quasiperiodic
conserved quantities can be approximately realized consider-
ing modulated chemical potentials [51], although alternative
approaches to engineer such systems can also exist, e.g., using
superconducting circuits [26].

Let us start considering systems with commensurate k∗ =
π/3 as discussed in the previous sections. Our goal is ob-
taining an effective Hamiltonian which commutes with both
Q̂(0,1), Q̂(1,0) properly normalized to have an integer spectrum.
Similarly to the emergence of dipole conservation in tilted
systems [10,24,38], the idea is coupling the system to a strong
modulated chemical potential such that in the regime of this
being large, the ensuing dynamics is governed by an effec-
tive Hamiltonian with quasiperiodic conserved quantities. In
particular, we consider the bosonic Hamiltonian

Hexp = J
∑

j

(â†
j â j+1 + H.c.) + U

2

∑
j

(n̂ j )
2

+ V
∑

j

n̂ j n̂ j+1 + �(Q̂(1,0) + βQ̂(0,1)), (29)

with β being a nonrational number |β| < 1. The reason this
is important, is to avoid any kind of resonance between Q̂(0,1)
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and Q̂(1,0). This permits a direct application of the rigorous re-
sults obtained in Refs. [52,53], which implies that, in the limit
� 
 J,U , the dynamics (as well as the zero-temperature
physics) is governed by an effective Hamiltonian Heff

preserving both Q̂(0,1) and Q̂(1,0) for quasi-exponentially long
times in �/J .

In fact, experimentally one does not need to tune two dif-
ferent (modulated) chemical potentials but just one10 by using
Q̂(0,1) + βQ̂(1,0) = A 2√

3

∑
j cos( π j

3 + ϕ)n̂ j with −A sin(ϕ) =
1 + β/2 and A cos(ϕ) =

√
3

2 β for any random choice of ϕ

such that β �∈ Q. The resulting Hamiltonian is known as
many-body Aubry-André model, extensively studied in the
context of many-body localization [51,54–56]. For example,
a spinful version with on-site interactions has been already
experimentally realized with ultracold atoms, with a high level
of control of the modulation of the chemical potential (here
given by k∗) by tuning the ratio of primary and detuning lattice
wavelengths [51]. Here, ϕ corresponds to the relative phase
difference between primary and detuning lattices.

Nonetheless, because the Hamiltonian in Eq. (29) con-
serves the particle number, so does the effective one in the
limit � 
 J,U , apart from conserving Q̂(0,1) and Q̂(1,0). In
fact, the most local off-diagonal terms include aja

†
j+6 + H.c.,

â j â
†
j+1â j+3â†

j+4 + H.c., and â j â
†
j+1â j+2â†

j+3â j+4â†
j+5 + H.c.

but not â j â
†
j+1â j+2 + H.c. The resulting QLRO phase is hence

different than the one studied in this work, which now includes
an extra zero mode at k = 0.11 An alternative to get rid of this
additional conservation is to start from an unperturbed Hamil-
tonian lacking any U(1) symmetry. For example, one could
consider a spin model with both longitudinal and transverse
fields, with the latter being spatially modulated. However,
truncating to the first nontrivial off-diagonal contribution in
perturbation theory, the resulting Hamiltonian will feature a
much stronger fragmentation than the bosonic system.

While it is tempting to directly generalize our previous
derivation to incommensurate k∗, neither the rigorous theory
of prethermalization, nor that of local and nonlocal Schrieffer-
Wolff perturbation theory [57] appear to apply. To invoke
the latter results, which is less restrictive than the former be-
cause it focuses on particular low-energy physics, one requires
having a finite gap between the (degenerate) subspace �0 of
interest (say the one with QA = QB = 0) for which we want
to find an effective description of, and the rest of the Hilbert
space �⊥

0 . However, as we found before this gap generically
scales as q−L and hence it vanishes in the limit L → ∞.
While we cannot provide a rigorous formal derivation of the
resulting—if existent—effective Hamiltonian, one can easily
identify terms that commute with �

∑
j cos(k∗ j + ϕ)n̂ j as

long as cos(k∗) = p/2q and which can be generated com-
bining single-particle hoppings and interactions. Hence, this
raises an interesting question: Can such terms be perturba-
tively generated in the regime of large �, even though the
interacting Aubry-Andreé model is expected to be in a many-
body localized phase in that same regime? Can that results

10We thank Monika Aidelsburger for this observation.
11Recall also that, by the proof in Appendix B, this effective Hamil-

tonian also conserves the Uj .

FIG. 5. 2D statistical model on zigzag stripe layers.

tell us something about the stability of the phase? We leave
addressing this question as future work.

E. Close packed tiling problem on zig-zag stripe layers

In this section, we provide an alternative view of the quan-
tum rotor model in Eq. (4) for q = p = 1 by mapping it into a
2D statistical model.

The system we are looking into is based on a close-packed
trimer-dimer system defined on a zigzag stripe layer shown in
Fig. 5. At each site, the close-packed configuration restricts
the site to be either connected to one of the three trimers (blue
triangles) living on the plaquettes along the x stripe [Fig. 6(a)],
or to be connected to the topor bottom layer via a dimer (green
ovals) lying along a y link [Fig. 6(b)].

To analyze the close-packed patterns, we account for the
local dimer-trimer constraint by encoding the trimer and
dimer coverage as a higher-rank electric field [58–61],

E� = ηT�, Ey = ηDy. (30)

E� lives on the center of each triangle while Ey lives on each
y link. T�, Dy refer to the number of trimers and dimers living
on the triangle and y links, respectively. Here η is the bipartite
lattice factor with an alternating sign structure. Since we can
uniquely associate each triangle and y link with a site of coor-
dinates r = (x, y), we can define the bipartite lattice factor as

FIG. 6. Close-packed configurations. At each site, the close-
packed configuration restricts the site to be either connected (a) to
one of the three trimers living on the plaquettes along the x stripe
(blue triangles), or (b) to be connected to the top or bottom layer via
a dimer (green oval) lying along a y link. (c) Local flipping between
distinct close-packed patterns.
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η = (−1)x+y. For example, we can associate to each triangle
the coordinates of the leftmost vertex, and the coordinates of
the lowest site to each bond along the y direction. Using this
notation, the dimer-trimer constraint can be interpreted as the
Gauss law

∇1,1
x E� + ∇yEy = η(1 − Q), (31)

where as before we define ∇1,1
x E�(r) = −E�(r) + E�(r +

êx ) + E�(r − êx ) along the x stripe, and ∇yEy(r) = Ey(r) −
Ey(r − êy). This constraint resembles the continuity equa-
tion (18) for the current fields in the Villain formulation of
Sec. V C with Jx → E�, Jτ → Ey. However, here a fixed
pattern of background charge (η) has been introduced. When
considering close-packed configurations we choose Q = 0,
with the staggering background charge η indicating each site
is either connected with a dimer or trimer. To satisfy this local
constraint, one can parametrize the electric field as

E� = −∇yX + Ē�, Ey = ∇1,1
x X + Ēy. (32)

Here X is a discrete integer-valued field—usually denoted
height field—living on the dual lattice at the center of each
triangular prism that characterizes the local fluctuations of the
dimer-trimer pattern. This provides a solution of Eq. (31) with
vanishing right-hand side. Ēy, Ē� are background configura-
tions that satisfy the inhomogeneous constraint Eq. (31), and
can be chosen such that they are only a function of y and x
coordinates, respectively. For example, we can simply take
the configuration Ēy = 0, Ē�(x, y) = [2 cos(2πx/3) + 1]/3
for the trimer columnar phase, or Ēy(x, y) = η[1 + (−1)y]/2,
Ē� = 0 for the dimer columnar phase. It is worth mentioning
that a large number of distinct trimer-dimer configurations can
be connected by changing the value of X locally, e.g., via
the local process pictured in Fig. 6(c). In the meantime, the
background patterns Ēy, Ē� are responsible for the different
global topological sectors (for a lattice with periodic boundary
conditions) that cannot be connected by local X fluctuations.
We will return to this point shortly.

For the close-packing problem (Q = 0), all allowed trimer
or dimer configurations have equal Boltzmann weights. Since
there are no energetic terms in the partition function, the free
energy consists only of entropy. If we coarse-grained the E�,
Ey field, flippable configurations with average Ē�, Ēy = 0 cor-
respond to a larger number of microscopic states, and hence
to a larger coarse-grained entropy than any other nonflip-
pable configuration with Ē�, Ēy �= 0. Indeed, a flippable prism
that can resonate between two trimers and three y dimers
[Fig. 6(c)] has zero average E� and Ey, so the coarse-grained
energy should effectively favor such flippable patterns. This
motivates the following ansatz for the height field partition
function [62]:

Z =
∫

DEy DE�e−β
∑

{r} (E2
y +E2�)

=
∫

DĒy DĒ�e−β
∑

{r} (Ē2�+Ē2
y )

×
∫

DX e−β
∑

{r}[(∇yX )2+(∇1,1
x X )2]−λ

∑
{r} cos (2πX )+···, (33)

FIG. 7. Columnar phase and winding numbers. (a) The winding
number my counts the number of trimers along each y column.
(b), (c) The winding number m�(y) =∑α(x)Ey(x, y) counts the
number of dimers with a spatial modulation factor [illustrated as
different colors, with α(x) = 1 for green, α(x) = −1 for red and zero
else wise] along each x row.

where in the last equality we introduced the potential term
λ cos(2πX ) that imposes the discreteness of X energetically.
By tuning β [which is analogous to K in Eq. (22)], one
changes the scaling dimension of cos(2πX ) and drives a phase
transition between a liquid phase with algebraic correlations
for X , and an ordered phase with fixed values of X . In fact, the
effective action of the close pack trimer-dimer model exactly
matches the dual theory of the hardcore boson model we
found in Sec. V C.

1. Topological sector and conserved quantities

Now we scrutinize the topological sector of close-packed
configurations. While local fluctuations of the height field
X can change the local trimer-dimer pattern, these patterns
inhabit distinct topological sectors [63] illustrated in Fig. 7,
which can only be connected via nonlocal string-like up-
dates, sometimes also known as large gauge transformations
[61,64,65]. We can define a topological winding number on a
closed manifold of dimension Lx × Ly with periodic boundary
conditions for Lx a multiple of six as

my(x) =
Ly∑

y=1

E�(r), mA
�(y) =

Lx∑
x=1

αA
x Ey(r),

mB
�(y) =

Lx∑
x=1

αB
x Ey(r), (34)

with αA
x , αB

x two linearly independent solutions of Eq. (2).
Based on the sign structure defined in Eq. (31), my encodes the
total number of trimers (with a sign modulation given by η)
on each column, while mα

� with α = A, B; encode the number
of dimers along each row with additional charge modulation
(illustrated as different colors in Fig. 7). These “winding
numbers” characterize the topological sectors, which cannot
be changed by locally flipping among configurations. In fact,
these quantities are independent of the height field X . For ex-
ample, my(x) =∑Ly

y=1 Ē�(r). From the Gauss-law constraint
in Eq. (31), it follows that

∇1,1
x my(x) = 0, ∇ymα

�(y) = 0, (35)
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when Q = 0. This identity implies that the winding numbers
of the electric field along each row and column are related.
In particular, if we fix the value of my(x) on two adjacent
triangles on the x stripe, all other topological sectors are fixed.
This “conserved quantity” only appears due to the choice of
boundary conditions in the x direction and does not relate to
any physical symmetry of the original model (14). Likewise,
the choices of mA,B

� (y) are independent of coordinate y. In
this case, these winding numbers correspond to the modulated
conserved quantities Q̂A and Q̂B of the quantum model, with
mA,B

� (y) counting the total charge of particle worldlines cross-
ing a given y row.

To summarize, the close packed trimer-dimer models offer
an alternative perspective on the commensurate q = p = 1
modulated Bose Hubbard model in the imaginary time direc-
tion. This model provides insights into the transition from a
liquid phase to a Mott phase, and this can be characterized by
the disorder-order phase transition in the close-packed pattern.
One might consider whether it is possible to extend the close-
packed formalism to other commensurate models or even to
the incommensurate case. However, while close-packed pat-
terns naturally hold when p = 1, q = 1, thereby allowing the
effective “Gauss law” to manifest the commensurate modu-
lated symmetry, this may not be easily extended to the general
case where p �= 1.

VI. INCOMMENSURATE CHARGES

We now discuss the case of incommensurate k∗ occur-
ring whenever p/q /∈ {0,±1,±2}. This implies that q > 1
and as we found in Sec. IV, it leads to the L additional Zq

discrete symmetries Uj . In particular, we focus on the zero-
temperature phase diagram of the bosonic Hamiltonian

Hq,p = −J
∑

j

[
b̂q

j−1

(
b̂†

j

)p
b̂q

j+1 + H.c.
]+ U

∑
j

n̂
mq,p

j , (36)

with mq,p = � p+2q
2 �, where �·� is defined to be the closest inte-

ger larger than the argument. For example, m2,1 = 3 for q = 2,
p = 1. This unusual potential makes the system stable even in
the regime of large J/U . Given the analysis in the previous
sections, one anticipates finding short- and long-correlated
phases by varying the ratio J/U . In the following, we provide
numerical results supporting this expectation, preceded by an
analytical characterization for a uniform chemical potential.
As we show in the following, the incommensurability has
consequences for the correlation functions as well as for more
formal considerations when dealing with the Villain action.

A. Quasi-long-range-order phase

Following a similar derivation as the one in Sec. V, one
finds the action

S0[X ] = 1

2

∑
j,τ

{
Kτ [∇τ Xj (τ̄ )]2 + Kx

[∇q,p
x Xj (τ̄ )

]mq,p
}

(37)
in the regime where the approximation b̂ j ∼ √

n̄ jeiθ̂ j works.
Nonetheless, one cannot use Eq. (19) to show that Xj (τ̄ ) is
integer-valued since in general α j /∈ Z. Hence, the compact-
ness of θ j does not appear to imply the discreteness of Xj (τ̄ ),

naively preventing the appearance of a relevant cosine poten-
tial. This issue becomes explicit and can be addressed when
recalling the existence of the discrete Uj conserved quantities.
Let us write Xj (τ̄ ) = I j (τ̄ ) + mj with the condition I j (τ̄ ) ∈
Z and |mj | < 1. Then we can write n j (τ̄ ) = −∇q,p

x I j (τ̄ ) −
∇q,p

x mj , and using Eq. (19) we find Uj ∝ ei2πmj+1 up to bound-
ary conditions. Hence, the mj are time-independent and fixed
once the Uj’s conserved quantities are specified. In particular,
if Uj = 1 for all j, then mj = 0. From here we conclude that
one needs to fix the eigenvalues of all the Uj in order to write
a well-defined action in the incommensurate case. Moreover,
this also implies that the field that one needs to soften from
integer to real-valued is I j (τ̄ ) ∈ Z → χ j (τ̄ ) ∈ R by introduc-
ing the potential term −λ

∑
j,τ cos[2πχ j (τ̄ )]. In the following

section we provide a rigorous and exact derivation of the
corresponding action for the height field Xj (τ̄ ) after resolving
the Uj conserved quantities, which in turn are functionally
dependent on Q̂A and Q̂B.

1. Villain action in Q̂A = Q̂B = 0

While the Uj symmetries are linearly independent of Q̂A

and Q̂B (when 1 � j � L − 1), it turns out they are not
necessarily functionally independent. Let us consider the
symmetry sector with quantum numbers (QA, QB) = (0, 0),
which is one of the largest when truncating the local Hilbert-
space dimension to a maximum number of bosons per site
nmax on a finite system (see Appendix A). As we prove in
Appendix C, if q and p are coprime then Uj = 1 for all j
within this symmetry sector. Moreover, while we currently
miss a rigorous proof, we also numerically find that, within
any fixed (QA, QB) sector, Uj take a fixed constant value.
Hence, the Uj are completely determined by Q̂A and Q̂B when
q, p are coprime.12 In this section, we consider coprime (q, p)
tuples13 within the (QA, QB) = (0, 0) symmetry sector which
exists for any system size, showing numerical results for q =
2, p = 1.

The continuity equation (17) can be solved within the QA =
QB = 0 sector by considering an integer-valued height field
with boundary conditions X0 = X1 = XL = XL+1 = 0, and pe-
riodic boundary conditions in the time direction Xj (0) =
Xj (Lτ ) (see additional details in Appendix C). This provides a
rigorous one-to-one mapping between height-field and num-
ber configurations {n j (τ̄ )} (rigorously) obtaining the partition
function

Z (0,0)
height(λ) =

∑
{Xj (τ̄ )∈Z}

e−S0[Xj (τ̄ )], (38)

with S0[Xj (τ̄ )] given in Eq. (37). Then, we can re-
place Xj (τ̄ ) ∈ Z → χ j (τ̄ ) ∈ R by adding the potential term
−λ cos[2πχ j (τ̄ )], and replacing S0[Xj (τ̄ )] by the action

12Nonetheless, two different sectors (QA, QB ), (Q′
A, Q′

B ) can share
the same set of eigenvalues for the Uj .

13An exhaustive and nonredundant list of coprime pairs (q.p) can
be generated starting with the tuples (q, p) = (2, 1), (3, 1) and gen-
erate all remaining ones iteratively following the three branches
(2q − p, q), (2q + p, q), (q + 2p, p).
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S0[χ j (τ̄ )],

Z (0,0)(λ) =
∫

Dχ j (τ̄ )e−S0[χ j (τ̄ )]−λ cos[2πχ j (τ̄ )]. (39)

Note that, since mq,p > 2 for q > 1, S0 is not a quadratic
action. However, quadratic terms like [∇q,p

x χ j (τ̄ )]2 compat-
ible with both emergent U(1) symmetries of S0 given by
χ j → χ j + αA,B

j will be generated at low energies, being the
leading relevant contributions. Hence, the fluctuations in this
phase are expected to be controlled by the Gaussian action

S0[χ ] = 1

2

∑
j,τ

{
Kτ [∇τχ j (τ̄ )]2 + Kx

[∇q,p
x χ j (τ̄ )

]2}
, (40)

coinciding with the path integral for the rotor model in Eq. (4).
Hence, following Sec. V C 1, one finds that, for any (q, p)
coprime, the ground state is described by two decoupled Lut-
tinger liquids as in the continuum action (23), as long as the
cosine contribution cos[2πχ j (τ̄ )] is not relevant.

2. Imposing periodic boundary conditions

Imposing PBCs does not change the bulk physics, even
though naively the specific conserved charges are present
only for OBC systems. In particular, all qualitative long-
wavelength physics will be the same in the PBC and OBC
systems in the thermodynamic limit. Going into more de-
tails and taking spin-wave treatment as an example, imposing
PBCs on a system of size L in the incommensurate case
leads to a small size-dependent gap in the “QLRO phase” that
vanishes in the thermodynamic limit. This can be understood
from the fact that, only in that limit, the symmetry is exactly
restored. Hence, the choice of boundaries is not expected to
affect the conclusions about the existence of the phase and
its stability. The reason is the following: the incommensurate
momentum k∗ can be decomposed as k∗ = 2πn∗/L + δk, i.e.,
a contribution 2πn∗/L lying in the Brillouin zone with n∗ =
0, . . . , L − 1. Hence on a finite system the minimum energy
is finite ∼|k∗ − 2πn∗/L| [see, e.g., the action in Eq. (21)], but
vanishes in the thermodynamic limit as the lattice spacing for
the momentum grid in the Brillouin zone decreases. On the
other hand, it is even more simple that we do not expect the
(gapped) Mott insulating phase to be affected by the boundary
conditions.

3. Continuum action and relevant contributions

Analogous to our analysis in Sec. V C 1 for commensurate
k∗, one needs to add all possible contributions that are allowed
by symmetry. In the infinite-system-size limit, translation
symmetry only allows the quadratic contribution in Eq. (23)
diagonal in ϕ1, ϕ2. However, unlike for commensurate k∗, no
finite number of cosine contributions

∑N
n=1 cos(2πωn · ϕ) are

invariant under T1 which implies that no relevant term can
be added to the infrared action Eq. (23)! However, this is in
odds with the fact that such cosine contribution cos[2πχ j (τ̄ )]
can become relevant at the lattice scale for sufficiently large
interaction strength, as we found in previous sections. It then
appears that, in order to account for the Mott insulating
phase—appearing as a result of vortex condensation—one
needs to remain at the lattice.

4. Ultralocal correlations

We can now use S0[χ ] to compute correlations on the
lattice within the QLRO phase. In the thermodynamic limit,
one can neglect the boundary conditions for the height field
and diagonalize the action (40) in momentum space (see
Appendix G). Similarly to Sec. V C 2 one finds that density-
density correlations decay as 〈n̂ j n̂ j′ 〉 ∼ cos(k∗| j − j′|)/| j −
j′|2, i.e., they are imprinted by the wave vector associated with
the conserved quantities. Given the small system sizes used
in our numerical simulations, we do not provide numerical
evidence of this scaling. However, the slowly decaying texture
in the local 〈n j〉 induced by the boundaries in the OBC system
provides indirect support to this prediction [44,66–68].

On the other hand, equal-time correlators Cχχ ( j − j′) =
〈eiχ j (0)e−iχ j′ (0)〉 ≈ 0 are ultralocal, vanishing for any j �=
j′ as shown in Appendix G. This happens as a result of
the emergent invariance of the quadratic action (40) under
χ j (τ̄ ) → χ j (τ̄ ) + αA

j [χ j (τ̄ ) → χ j (τ̄ ) + αB
j ]. This implies

that Cχχ ( j − j′) vanishes unless αA
j = αA

j′ (αB
j = αB

j′ ), which
for incommensurate k∗ never holds. A similar reasoning
in the spin-wave variables implies 〈b̂†

j b̂ j′ 〉 = 0 everywhere.
Nonetheless, equal site but different time correlations decay
as a power law in |τ̄ − τ̄ ′| with an exponent inversely propor-
tional to the Luttinger parameter K . The fact that the spatial
correlations of the vertex operator eiχ j (0) are ultralocal sug-
gests that the cosine potential cos[2πχ j (τ̄ )] cannot become
relevant. However, having power-law decaying correlations in
the temporal direction is enough for this term to have a finite
scaling dimension depending on the Luttinger parameter K as
shown at the end of Appendix G 3.

B. Numerical results

In this section we provide numerical evidence for the
presence of two different phases: a shortly correlated Mott
phase and one with quasi-long-range order for the bosonic
Hamiltonian H2,1 in Eq. (36) with q = 2, p = 1. This is ob-
tained using finite DMRG with open boundary conditions
rather than infinite DMRG. The reason behind this choice is
to be able to fix a (QA, QB) symmetry sector in the numer-
ical simulations and avoid additional convergence issues in
the size of the unit cell when dealing with infinite DMRG
with incommensurate charges. Moreover, the large occupation
and fluctuations of the local particle number make us fix
nmax = 8, 12 to avoid strong truncation errors in the data.
As shown in Appendix H, we required a sufficiently large
nmax for the numerical results to converge. Considering all
these limitations, together with the fact that we group two
consecutive sites when running DMRG, we restrict ourselves
to system sizes L � 40. Moreover, we also include the term
J (4)∑

j (b̂
2
j b̂ j+1b̂ j+2b̂2

j+3 + H.c.) commuting with Q̂A and Q̂B

with small J (4) = 0.1J to improve convergence of the numer-
ical algorithm.

Figure 8(a) provides a rough estimate of the overall phase
diagram as a function of J/U for a representative uniform
chemical potential μ/U = 0.5. The dependence of the
half-chain entanglement entropy max j (S[0: j] ) with system size
shows two qualitatively different scalings depending whether
J is smaller or larger than a critical value Jc. The scaling for
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FIG. 8. Overall phase diagram for incommensurate symme-
try q = 2, p = 1. Scaling of the maximum entanglement entropy
max(S[0: j]) with system size L = 15, 20, 25, 30, 35, 40 as a function
of J/U for μ/U = 0.5. Area-law scaling is found for J < Jc with Jc

dependent on μ/U , and a logarithmic law for J > Jc. For μ/U =
0.5, Jc/U ≈ 1.5. (a) Dependence of max(S[0: j]) on J/U for different
system sizes. (b) Scaling of max(S[0: j]) with system size for J/U =
1.75 (circles). This follows a scaling law max j (S[0: j] ) ≈ c

6 ln(L) with
c ≈ 1.75 for J/U = 1.75 and c ≈ 1.64 for J/U = 1.65 obtained
via linear fit. See complementary Fig. 9 showing profile S[0: j]. The
central charge obtained from a fit to the Cardy-Calabrese formula
overestimates the value of the central charge in that case (c ≈ 2.84
for J/U = 1.75). Data have been obtained using finite DMRG with
nmax = 8, and bond dimensions χ = 512 finding convergence in both
parameters (see main text for additional details).

J > Jc illustrated in Fig. 8(b) is consistent with the expected
gapless QLRO phase with the half-chain entanglement
entropy scaling logarithmically with system size. Assuming
the scaling max j (S[0: j] ) ≈ c

6 ln(L) + const with c the central
charge of the underlying conformal field theory, we find
c ≈ 1.74 for J/U = 1.75, and c ≈ 1.64 for J/U = 1.65
lying within the critical regime. These two different
regimes—gapped versus gapless—are further validated
in Figs. 9(a) and 9(b), which show the local density profile
〈n̂ j〉, as well as the profile of S[0: j] for different bipartitions of
the systems [Figs. 9(c) and 9(d)] for two different values of the
chemical potential μ/U = 0.5, 1. A different estimate of the
central charge can be also obtained from the latter assuming
that S[0: j] follows the Cardy-Calabrese formula [69] derived
for conformal field theories for open boundary conditions
S[0: j] = c

6 ln( 2L
π

sin(π j/L)) + const. This leads to c ≈ 2.8 and
c ≈ 2.7 for μ/U = 0.5, 1 respectively. In these cases, this fit-
ting overestimates the expected value c = 2, compensating the
underestimate obtained in Fig. 8(b). Figure 9 shows charac-
teristic slowly decaying modulations of both the local density
profile 〈n̂ j〉 (similar to behavior in Luttinger liquids [44,66–
68]) and S[0: j] with a wave-vector approximately equal to k∗.
Such oscillations—not appearing in the continuum conformal
field theory describing the system in the QLRO phase—lead
to non-negligible deviations from the Cardy-Calabrese for-
mula. In fact, similar behavior has been found in the literature
before [70].

VII. VORTEX FORMULATION

We have found numerical evidence indicating that, for
both commensurate and incommensurate k∗, there exists a

FIG. 9. Incommensurate q = 2, p = 1. Dependence of the lo-
cal density 〈n̂ j〉 and the bipartite entanglement entropy S[0: j] on
J/U ∈ [0.25, 1.75] in steps of 0.25 for μ/U = 0.5 [panels (a) and
(c)] and μ/U = 1 [panels (b) and (d)]. Both the density profile and
S[0: j] show spatial oscillations whose wave vector is approximately
given by k∗ = arccos(p/2q). Due to these superimposed oscillations,
S[0: j] does not follow as nicely the Cardy-Calabrese formula [69]
as predicted for conformally invariant ground states, expected for
J > Jc. Data have been obtained using finite DMRG with nmax = 8,
and bond dimensions χ = 256 (empty squares) and 512 (crosses).
We find convergence in both parameters (see main text for additional
details), except manifest lack of convergence in bond dimension for
J/U = 1.25, μ/U = 1 which lies close to the transition point.

short-range correlated (Mott insulating) phase and a quasi-
long-range-ordered (gapless) phase even within a fixed
(QA, QB) symmetry sector. We characterized the former by ex-
ponentially decaying correlations; and the latter by power-law
density-density correlations imprinted with spatial oscilla-
tions at the lattice scale, and a finite central charge c =
2. Then, assuming the existence of the latter, we found
that a relevant lattice-scale cosine term can drive a transi-
tion between the two. Nonetheless, we did not discuss the
nature of this transition. Similar phenomenology, although
between a QLRO phase with c = 1 and a Mott insulator,
is found for the standard Bose-Hubbard model when tun-
ing the chemical potential and the hopping amplitude [40].
It is known that for fixed commensurate particle density,
this cosine potential drives a Berezinskii-Kosterlitz-Thouless
(BKT) transition where the unbinding of vortices disor-
ders the system [41]. On the other hand, when the particle
number can vary, this transition is in the commensurate-
to-incommensurate (or Pokrovsky-Talapov) universality class
(see, e.g., Refs. [50,71]). To shed some light on the mech-
anism driving the transition for systems with modulated
symmetries, we reformulate the theory in terms of topological
defects loosely similar to vortices, focusing on the sector with
QA = QB = 0, which is similar to commensurate density case
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FIG. 10. Energetics of vortex configurations illustrated in the incommensurate q = 1, p = 2 case. Space-time vortex configurations with
mj (τ̄ ) > 0 and mj (τ̄ ) < 0 represented as blue and green circles, respectively. All configurations are centered around the vertical link ( j, τ̄ ) =
(L/2, Lτ /2): (a) Single vortex mL/2(Lτ /2) = +1. (b) Two vortices on consecutive spatial coordinates mL/2(Lτ /2) = +1, mL/2+1(Lτ /2) = −1.
(c) Two vortices on consecutive time coordinates with charges mL/2(τ̄ ′) = +1, mL/2(τ̄ ) = −1. (d) Three vortices on consecutive spatial
coordinates with charges mL/2−1(Lτ /2) = −q, mL/2(Lτ /2) = +p, mL/2+1(Lτ /2) = −q. Panels (e), (f), and (h) show the scaling with system
size of the potential energy of the corresponding configuration for a square lattice of dimension L × L. This diverges with system size as
≈ ln(L) for configurations in panels (a) and (b), while it converges to a finite number for configurations (d). Panel (g) shows that the potential
energy between two vortices of opposite charge and sitting at the same spatial coordinate as in panel (c) grows logarithmically with the
distance. The inset shows that the energy of this configuration does not scale with system size for any finite |τ̄ ′ − τ̄ |. While data are shown
for q = 2, p = 1, all qualitative results (a), (c), (d) hold for any commensurate and incommensurate k∗, while the result (f) is modified for
j − j ′ = (2π/k∗) × integer, see text for details. Numerical results were obtained by numerically inverting the quadratic form in Eq. (42),
setting Kτ = Kx = 1 for concreteness, on a square spacetime lattice of dimension L × L, with spatial open boundary conditions as specified in
the main text, and periodic temporal boundaries.

in the usual BHM in that one does not have nontrivial Berry
phases.

We consider the partition function in Eq. (38) for the
integer-valued height field Xj (τ̄ ) with open boundary condi-
tions X0 = X1 = XL = XL+1 = 0 in the spatial direction, and
periodic in time Xj (0) = Xj (Lτ ). Taking care of these we can
rewrite

S0[X ] = 1

2

L∑
j, j′=1

Lτ∑
τ,τ ′=1

Xj (τ̄ )V −1( j, j′; τ̄ ′ − τ̄ )Xj′ (τ̄
′), (41)

with

V −1( j, j′; τ̄ ′ − τ̄ ) ≡ Kτ (∇τ )2 + Kx
(∇q,p

x

)2
. (42)

The precise meaning is that the right-hand side (R.H.S.) is a
quadratic form with the specific boundary conditions on X ,
which one can argue is invertible for finite L and Lτ (indeed,
the above height model with the specific boundary conditions
is an exact rewriting of the OBC Villainized rotor model,
which is a well-defined stat-mech model with a finite partition
sum for any finite system size). We can now introduce “topo-
logical defect” (which we loosely refer to as “vortex”) degrees
of freedom by using the exact rewriting

∑
Xj∈Z f (Xj ) =∫ +∞

−∞ dχ j
∑

mj∈Z ei2πmjχ j f (χ j ) at each site and time slice

to obtain Zvortex =∑{mj (τ̄ )∈Z} e−Svortex[mj (τ̄ )] with the action

given by

Svor[m] = (2π )2

2

L−1∑
j, j′=2

Lτ∑
τ̄ ,τ̄ ′=1

mj (τ̄ )V ( j, j′; τ̄ ′ − τ̄ )mj′ (τ̄
′),

(43)
where the vortex degrees of freedom mj (τ̄ ) sit on verti-
cal links, and we have explicitly used periodic boundary
conditions in the time direction. Since finding a set of ele-
mentary basis satisfying X0 = X1 = XL = XL+1 = 0 appears
not to be feasible (unlike for boundary conditions with X1/2 =
XL+1/2 = 0 in the case of the usual HBM in the sector with
zero total charge, with OBC basis spanned by sinusoidal func-
tions), we numerically obtain V( j,τ̄ ),( j′,τ̄ ′ ) on a 2D lattice of size
L × Lτ by inverting the quadratic form on X .

The resulting two-dimensional statistical model with
Boltzmann weights e−Svortex[mj (τ̄ )]/Zvortex describes a gas of
“charged” particles interacting via the potential V ( j, j′; τ̄ ′ −
τ̄ ). In the standard XY model one can argue about the exis-
tence of a finite-temperature BKT transition by comparing the
energy of a single-vortex configuration [Fig. 10(a)] EC with
its Boltzmann entropy, which is given by kB ln(L × Lτ ). Such
a transition from a confining-phase of topological defects to
a high-temperature disordered configuration where vortices
proliferate will occur if EC follows the same scaling law.
Figure 10(e) shows that indeed EC ∝ ln(L) when exactly com-
puted on a square spacetime lattice of size L × L. While this
energy is infinite in the thermodynamic limit, these defects are
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created in groups and are bound together in a configuration
that only requires finite energy. For example, the unbinding
of vortex-antivortex pairs [see Figs. 10(b) and 10(c)] drives
the transition in the usual XY model, being confined by a
two-dimensional Coulomb potential, which scales as the loga-
rithm of their separation. However, we already noticed that the
systems we are considering have important differences from
the usual XY model, in particular they are not isotropic, and
vortices might showcase different behavior along spatial and
temporal directions.

Let us start by considering a vortex-antivortex pair con-
figuration occupying two spatial consecutive sites as shown
in Fig. 10(b). As Fig. 10(f) exhibits, its energy scales as
E (+,−)

L/2−1,L/2 ∝ ln(L) and hence, these “bound” configurations
will not appear as a result of thermal fluctuations, unlike
the usual XY model where such configurations have finite
energy in the thermodynamic limit (and this energy grows
logarithmically with the separation). We have verified that
the above property of divergent energy with L holds for any
nonzero spatial separation between the vortex and antivortex.
On the other hand, if such a pair is oriented along the temporal
direction [shown in Fig. 10(c)], it only requires a finite energy
in the thermodynamic limit for finite separation, as the inset
of Fig. 10(g) shows. Moreover, the binding energy of this
pair grows logarithmically with the distance along the tempo-
ral direction E (+,−)

τ̄ ,τ̄ ′ ∝ ln(|τ̄ ′ − τ̄ |), until it reaches |τ̄ ′ − τ̄ | ∼
Lτ /2 on a finite system [main panel in Fig. 10(g)]. Thus,
we conclude that the vortex-antivortex pair is energetically
confined in the spatial direction, but can become unbound in
the temporal direction leading to the destruction of the QLRO
phase. Since the binding potential in the temporal direction
is logarithmic, the BKT energy-entropy balance arguments
may still apply. While one might conclude that no possible
bound configuration along the spatial direction can be created
with finite energy, this conclusion turns out to be too quick
as demonstrated in Figs. 10(d) and 10(h). Indeed, consider
a configuration of the form (mj−1(τ̄ ), mj (τ̄ ), mj+1(τ̄ )) =
(−q, p,−q) on any three consecutive sites ( j − 1, j, j + 1)
with mi(τ̄ ) = 0 everywhere else. As Fig. 10(h) suggests, this
only requires finite energy in the thermodynamic limit, and
following the same discussion we just had, it can expand
along the temporal direction analogous to the standard XY
model. However, can we explain these observations given the
knowledge we have about the system?

In the thermodynamic limit and neglecting boundary ef-
fects, one finds that the field χ j (τ̄ ) mediates a long-range
two-dimensional Coulomb interaction among vortex variables
given by

V ( j − j′, τ̄ − τ̄ ′) = 〈χ j (τ̄ )χ j′ (τ̄
′)〉Gauss

=
∫ π

−π

dk

2π

×
∫ ∞

−∞

dω

2π

cos[k( j − j′) − ω(τ̄ − τ̄ ′)]
Kτω2 + Kx[p − 2q cos(k)]2

.

(44)

However, this expression is size-dependent diverging as ln(L)
due to infrared contributions. The same is true for the standard
XY model; what is finite is the energy of certain vortex con-

FIG. 11. Regularized vortex potential in the q = 2, p = 1 case.
(a) Vortex potential V R( j − j ′, τ̄ − τ̄ ′) evaluated at τ̄ = τ̄ ′ = Lτ /2
regularized as in Eq. (45) as a function of the distance | j − j′|.
(b) The amplitude of the Fourier components of V R

j, j′ shows a max-
imum at ±k∗. As explained in the text, the oscillatory V R

j, j′ does not
mean any instability, since it is the total energy (46) that is always
physically sensible. Numerical results were obtained with the same
setting as in Fig. 10.

figurations satisfying appropriate charge neutrality conditions.
Hence, we need a regularized expression that is well defined
in the thermodynamic limit. To do so, we subtract (and add)
the logarithmically divergent term 〈χ2

L/2(Lτ /2)〉Gauss ∝ ln(L)
such that the resulting potential does not depend on system
size:

V R( j − j′, τ̄ − τ̄ ′)

= 〈χ j (τ̄ )χ j′ (τ̄
′)〉Gauss − 〈χ2

L/2(Lτ /2)
〉
Gauss cos[k∗( j − j′)]

� cos[k∗( j − j′)]V2D Coul( j − j′, τ − τ ′). (45)

Here V2D Coul( j − j′, τ − τ ′) is now defined in the thermo-
dynamic limit and is the familiar 2D Coulomb potential.
Importantly, V R also includes an oscillatory factor at wave
vector k∗ that takes positive and negative values. This naively
suggests that even two equal-sign and highly charged vortices
could indefinitely lower the energy of the system. However,
as we have just discussed and will show in the following, the
energy to create such a configuration grows logarithmically
with system size. Plugging Eq. (45) into the vortex action (43),
one finds

Svor[m] = (2π )2

2

∑
j, j′

∑
τ̄ ,τ̄ ′

mj (τ̄ )V R( j − j′; τ̄ − τ̄ ′)mj′ (τ̄
′)

+ (2π )2

2

〈
χ2

L/2(Lτ /2)
〉
Gauss

(
Q2

A,vor + Q2
B,vor

)
, (46)

where QA,vor =∑ j,τ cos(k∗ j)mj (τ̄ ), QB,vor =∑ j,τ sin(k∗ j)
mj (τ̄ ) after using the trigonometric identity cos[k∗( j − j′)] =
cos(k∗ j) cos(k∗ j′) + sin(k∗ j) sin(k∗ j′). The energetics thus
requires that these QA,vor and QB,vor are zero, which are the
analog of the zero total vorticity condition

∑
j,τ mj (τ̄ ) = 0 in

the standard XY model.
The functional form of V R

j, j′ at τ̄ = τ̄ ′ = Lτ /2 is shown in
Fig. 11(a). While OBC breaks spatial translation symmetry,
we find that the potential only depends on the distance j − j′
when sufficiently far from the boundaries. The envelope func-
tion approximately grows as V R

j, j′ ∼ ln(| j − j′|). Moreover,
this features spatial oscillations with wave vector ±k∗, as
shown in Fig. 11(b). The absolute value of the Fourier am-
plitudes |F.T.[Vj, j′ ](k)| is peaked at ±k∗, matching with the
modulation imprinted by the symmetry.
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Recalling that 〈χ2
L/2(Lτ /2)〉Gauss ∝ ln(L), the action (46)

leads to the results in the previous paragraphs regarding the
energy of a single and multiple vortex configurations. First,
a vortex-antivortex pair along the spatial direction (mj (τ̄ ) =
+1, mj+1(τ̄ ) = −1) as in Fig. 10(b), has nonzero QA,vor,
QB,vor producing an infinite energy in the thermodynamic
limit. On the other hand, such a pair along the temporal
direction as in Fig. 10(c) gives QA,vor = QB,vor = 0 and then
costs a finite energy. Finally, we note that the expression
for QA,vor, QB,vor is mathematically equivalent to that for the
conserved charges Q̂c,s below Eq. (3). Therefore, a configu-
ration (mj−1(τ̄ ), mj (τ̄ ), mj+1(τ̄ )) = (−q, p,−q) on any three
consecutive sites ( j − 1, j, j + 1) with mi(τ̄ ) = 0 everywhere
else, shown in Fig. 10(d), satisfies the neutrality condition
QA,vor = QB,vor = 0, and hence this configuration has a finite
energy. This appears then to be an analog of separating a
vortex and an antivortex in the spatial direction in the usual
XY model, which is clearly much more nontrivial in the mod-
ulated symmetry case (more below)! The nontrivial contents
of this (−q, p,−q) object can then independently move along
the temporal direction, e.g., (mj−1(τ̄1), mj (τ̄2), mj+1(τ̄3)) =
(−q, p,−q) for any τ̄1, τ̄2, τ̄3, while satisfying the neu-
trality conditions, where the energy is finite and grows
logarithmically with their spreading in the temporal direction.
Nonetheless, as we will see, in the incommensurate case,
spreading along the spatial direction appears not possible
without changing the vortex “charges” and requires additional
energy. This is related to the fact that the energetically im-
posed charge-neutrality conditions share the same structure as
the original conservation laws.

To illustrate this, imagine we want to split the config-
uration (mx(τ̄ ), myini=x+1(τ̄ ), myini+1(τ̄ )) = (−q, p,−q) into
two local lumps centered around sites x and y > x while
satisfying the neutrality conditions. For commensurate k∗,
e.g., q = p = 1, and fixing the location of the defect orig-
inally at x, this can spread along the spatial direction
with only logarithmic confinement as long as y = x + 3 ×
integer or y = x + 1 + 3 × integer without increasing the
charges as mx, my, my+1. [More specifically, in each case
we need to consider two subcases: for y = x + 6n, n ∈
Z, the possible spreading is (mx, my, my+1) = (−1, 1, 0)
showing only nonzero charges, while for y = x + 3 + 6n
it is (mx, my, my+1) = (−1,−1, 0); for y = x + 1 + 6n the
spreading is (mx, my, my+1) = (−1, 1,−1), while for y =
x + 4 + 6n it is (mx, my, my+1) = (−1,−1, 1).] This is con-
sistent with the fact for commensurate k∗ the correlations
〈ei(χ j (τ̄ )−χ j′ (τ̄ ))〉 decay as a power-law both along the temporal
and spatial directions when j − j′ = 6 × integer, as found
in Sec. V C 2 (and 〈ei(χ j (τ̄ )+χ j′ (τ̄ ))〉 is nonzero when j − j′ =
6 × integer + 3). On the other hand, for incommensurate k∗,
the confinement along the spatial direction is stronger than
logarithmic. While temporal correlations always decay as a
power law, the ultralocal spatial correlations 〈ei(χ j (τ̄ )−χ j′ (τ̄ ))〉
found in Sec. VI A 4 are consistent with spatial confinement.

To understand the difference between commensurate and
incommensurate cases let us consider again the configuration
(mx(τ̄ ), myini=x+1(τ̄ ), myini+1(τ̄ )) = (−q, p,−q), fixing the lo-
cation at x, while shifting y to the right. It turns out that in
the incommensurate case, this requires to increase the charges
mx(τ̄ ), my(τ̄ ), my+1(τ̄ ) as mx(τ̄ ) = qy−x, as well as my(τ̄ ),

my+1(τ̄ ) ∝ qy−x.14 This implies that the potential energy of
this configuration from Eq. (46) is given by ∼V R

x,yq2|y−x| and
grows exponentially with y − x, hence topological defects
along the spatial direction are exponentially confined. There-
fore, the unbinding of this bound vortex configurations is
exponentially suppressed, leaving only the temporal direction
as a way to drive the transition to the disordered phase.

We remark that this behavior is different from that of
dipole-conserving systems. Our exact height model deriva-
tion and the corresponding “vortex gas” model work in
this case as well with q = 1, p = 2, but the result-
ing energetics of vortices is qualitatively different. In
the dipole case, while breaking up the bound configura-
tion (mj (τ̄ ), mj+1(τ̄ )) = (+1,−1) into two separated lumps
requires a polynomially large energy in the distance be-
tween the lumps, one finds a second type of configura-
tion (mj−1(τ̄ ), mj (τ̄ ), mj+1(τ̄ )) = (−1, 2,−1) which can be
split as (mx(τ̄ ), mx+1(τ̄ )) = (−1,+1), (my(τ̄ ), my+1(τ̄ )) =
(+1,−1) with the required energy remaining finite for any
y − x. Such (mx(τ̄ ), mx+1(τ̄ )) = (−1,+1)“particles,” thus
only experience a global constraint while having a finite
energy, and hence we expect them to form a gas with a
finite density, scrambling the naive “order” that would be
present by assuming the absence of the topological defects.
Allowing such (mx, mx+1) = (−1,+1) or (+1,−1) objects is
physically related to the presence of the relevant perturbation
∼ cos(∂xχ ) in the continuum dual theory. This physics can be
interpreted as the reason why the quantum-Lifshitz theory is
not stable in the one-dimensional dipole-conserving systems
[29,30].

In conclusion, the order-to-disorder transition is driven,
even for incommensurate k∗, by the proliferation and unbind-
ing of vortices, but the unbinding happens by separating the
vortices along the temporal direction only. Schematic BKT-
like energy-entropy argument still works since the energy still
grows logarithmically with the separation |τ − τ ′|. However,
unlike the usual BHM where a single low-energy mode at
k = 0 gets gapped out, in the modulated symmetry case the
two low-energy modes around ±k∗ characterizing the QLRO
as appearing in Eq. (23) are gapped out. This suggests that at
long wavelengths two rather than one type of effective vor-
tex excitations mj (τ̄ ) → mA,B

j (τ̄ ) exist associated with each
of those modes and interacting via a standard 2D Coulomb
potential. This is also the expectation from the presence of two
phase and dual variables emerging at low energies. However,
at this point we are not able to obtain such low-energy effec-
tive degrees of freedom in a rigorous manner starting from our
lattice-scale topological defects mj (τ̂ ).

VIII. CONCLUSIONS AND OUTLOOK

In this work, we considered different families of bosonic
and rotor models which conserve finite Fourier momenta
of the particle number Q̂± =∑ j e±ik∗ j n̂ j but not the parti-
cle number itself. We do so by considering generalizations

14We find that mx = qy−x , and my satisfies the linear recurrence
my = my−1 − q2my−2 when y � 2 with m0 = m1 = 1. Moreover,
my+1 = −qmy−1.
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of the standard Bose-Hubbard model where the standard
single-particle hopping is replaced by a multiboson correlated
process commuting with Q̂±, which is at least possible for
k∗ satisfying cos(k∗) = p/(2q) with p, q ∈ Z. These models
can be understood as simple extensions of the previously
introduced spin systems in Ref. [27] that avoid Hilbert-space
fragmentation and other types of symmetries resulting from
a finite-dimensional onsite Hilbert space and strictly finite
range of interactions. Nonetheless, we proved that, as long
as k∗ is incommensurate, the models we consider showcase
Hilbert-space fragmentation that persists even when adding
any longer-range term compatible with the symmetry. This
relates to the exponentially large number of distinct eigenval-
ues in the spectrum of the conserved quantities when k∗ is
incommensurate, providing a (nontrivial15) example of frag-
mentation with infinite-dimensional local Hilbert spaces. It
is still an open question how to extend commutant algebra
framework [20] to study this scenario, even in the absence
of particle number conservation. Along the way, we intro-
duced a novel lattice-scale duality transformation which in
the rotor-language localizes some of the underlying sym-
metries responsible for the fragmentation while keeping the
Hamiltonian local. While here we focused on bosonic statis-
tics, analogous fermionic systems with the same symmetries
can be constructed. However, these might be strongly frag-
mented unless sufficiently long-range symmetry-preserving
“hopping” terms are included [10,11].

In the rest of this work, we characterized the zero-
temperature phase diagram of the previously introduced
bosonic models focusing on the quasi-long-range order
(QLRO) phases. For commensurate k∗, these systems can be
treated analogously to the standard Bose-Hubbard model [40],
as the modulated symmetries correspond to two intertwined
sublattice U(1) symmetries. Here, we found a rich phase di-
agram which includes Mott insulating lobes (now labeled by
eigenvalues of Q̂±), as well as two different types of QLRO.
Even though the microscopic models we considered lack a
quadratic kinetic-energy term and are strongly interacting, the
more generic QLRO phase can be captured by a quadratic
effective action corresponding to two-species Luttinger liquid.
These correspond to the gapless modes around ±k∗ and can
be understood as an exact (instead of emerging) Bose surface
[2–4,6,9]. In fact, when evaluating microscopic observables,
one recovers the standard features associated with Luttinger
liquids that are being modulated by oscillations with mo-
mentum k∗ as imprinted by the symmetry. In the presence
of a uniform chemical potential, we found two apparently
disconnected Mott lobes which are nonetheless labeled by the
same global quantum numbers associated with the modulated
symmetries. We leave as an open question whether these
can correspond to different (crystalline) SPT phases [72–74]
that could be distinguished by boundary degrees of freedom.
Finally, while the model we studied can appear artificial at
first glance, we showed that it actually emerges as an ef-
fective description when considering a standard interacting

15We consider trivial the fragmentation appearing as a result of
extensively many local symmetries as is for example the case for
a Hamiltonian with only pair hopping (b̂†

j )
2(b̂ j+1)2 + H.c.

bosonic model in the presence of a strong quasiperiodic chem-
ical potential, the so-called generalized Aubry-André model
[51,54–56]. Moreover, we also provided a statistical model
combining dimer and trimer degrees of freedom which cap-
tures the physics of the QLRO.

We then studied the phase diagram of systems with in-
commensurate charges Q̂±. While the incommensurability
complicates the characterization of the QLRO phase, we pro-
vide a rigorous derivation of the zero-temperature physics
starting from the rotor model approximation and generalizing
the standard duality to the corresponding Villain action [48].
Unlike for commensurate k∗, we found that vortex-vortex
correlators are ultralocal in space suggesting that the QLRO
cannot be driven into a Mott insulating phase. Nonetheless, we
showed that vortices can still become relevant and disorder the
system into a Mott insulating phase. However, unlike in the
standard XY model, vortices interact via a two-dimensional
Coulomb potential in Euclidean spacetime, which is dressed
by an oscillatory factor with wave vector k∗. We find bound
vortex configurations which require only a finite energy in
the thermodynamic limit and hence can be produced by local
thermal fluctuations. We argued that the unbinding of these
objects along the temporal direction will eventually disorder
the system into a Mott insulator for a fixed (QA, QB) symmetry
sector. Nonetheless, a complete characterization of the tran-
sition, as well as the possibility of a Pokrovsky-Talapov-like
transition in the systems we studied is left as an open question.

While vortex degrees of freedom play an important role
in the characterization of the QLRO phase and its stability,
there is not a clear connection between these and particular
configurations of the bosonic phase. For example, a vortex in
the standard XY model can be associated with a singularity
of the phase field at a point, the texture being smooth ev-
erywhere else. We notice that certain vortex configurations in
dipole-conserving systems in (2 + 1) dimensions have been
discussed in Ref. [75]. An analogous formulation for systems
with different types of unconventional symmetries [also in
(1 + 1)-dimensional Euclidean spacetime] is left for future
work. Moreover, while the continuum effective description is
given by two independent modes around momenta ±k∗, we
have not found a formal way to decompose the lattice-scale
vortex field into two types of vortices, even for commensurate
k∗. Our vortex formulation is completely exact for spatial
OBC systems and applies also to the 1D dipole-conserving
systems (and possibly to higher moments once appropriate
boundary conditions are fixed). This might provide an alter-
native explanation of the absence of so-called Bose-Einstein
insulating phase (a.k.a. Lifshitz theory) in this case, and its
apparent stability in numerical simulations. Moreover, while
we naively expect these systems to be unstable to the presence
of single-hopping terms, a more careful analysis is left as an
open question [3,76].

Reference [27] also introduced exponentially localized
symmetries, as well as combinations between these with
quasiperiodic symmetries, as well as dipole and higher-
moment conservation. A naive analysis of the former class
for the corresponding rotor models with exponential-localized
symmetries, suggests that such systems are always gapped.
Hence, it would be interesting to extend our analysis not only
to those but also general situations, as well as to different
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types of constrained models which can naturally appear in
current experimental setups [24,25]. Is there an overarching
structure associated with the presence of such unconventional
symmetries? Moreover, it would be interesting to extend the
investigation on higher-dimensional systems [2,3,7–9,77,78]
beyond subsystem symmetries and a finite number of mo-
menta modes being conserved, as well as many other types
of symmetries potentially leading to novel phenomena, where
the former can be understood as systems with Bose surfaces
[2,3,7,8,78]. Understanding the relation (if any) to order-by-
disorder transitions, as well as to systems with topological
order is an intriguing open question (see recent Ref. [79]
which studied some related questions for discrete exponen-
tially localized symmetries).

Finally, we note that, while we were able to obtain effec-
tive models with commensurate symmetries by starting with
the interacting Aubry-Andreé model in the large (commen-
surate) periodic potential, similar controlled derivations do
not appear to apply for a large incommensurate quasiperi-
odic potential. Still, one intuitively expects such commuting
terms to arise in perturbation theory, providing many-body
processes which connect exponentially many different con-
figurations. This regime naively lies within the extensively
discussed many-body localized phase [51,56] induced by a
quasiperiodic “disorder”; however, our preceding discussion
suggests that if such terms are indeed present, the localized
phase will not exist at least for incommensurate modulations
with wave vectors satisfying cos(k∗) = p/2q.
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APPENDIX A: SPECTRUM OF
INCOMMENSURATE CHARGES

Let us consider the conventional particle number N̂ =∑L
j=1 n̂ j for a system of size L. It has non-negative inte-

ger spectrum N � 0 and contains exponentially large (in the
system size L) invariant subspaces (sectors characterized by
a fixed eigenvalue). Moreover, since we are dealing with
bosonic systems, N is unbounded from above. However, it is
always the case that the minimum gap �, i.e., the difference

between two different consecutive eigenvalues, is one: � =
minN1 �=N2∈σ (N̂ )(|N2 − N1|) = 1. While Q̂A and Q̂B are diago-
nal in the local occupation basis, these do not in general have
integer spectrum due to the nontrivial α j . In this section we
take a closer look at their spectrum.

Quasiperiodic charges take the general form Q̂ =∑
j cos(k∗ j + φ)n̂ j with modulation k∗. For commensurate

k∗ with cos(k∗) = p/2q = 0, 1/2, one can always choose two
linearly independent solutions αA

j and αB
j that periodically

repeat along the chain taking values αA
j , α

B
j = 0,±1. These

modulated charges generate intertwined sublattice symmetry
transformations such that Q̂A and Q̂B have integer spectrum
with �q,p = 1 and hence can be regard as microscopic U(1)
symmetries. However, any other choice of p/(2q) leads to
a noninteger spectrum. To analyze it we study the spectrum
as a function of system size, and as a function of Nmax cor-
responding to the maximum allowed number of bosons per
site.

First of all, it is easy to convince oneself that the spectrum
is extensive, i.e., the largest and smallest eigenvalues grow
linearly with system size. Recall that in this case αA

j and
αB

j oscillate along the chain. Hence, one can distinguish be-
tween crests (where α j > 0) and valleys (α j < 0). The largest
(smallest) eigenvalues of a given Qα j are attained by locating
all bosons at the highest (lowest) points of the crests (valleys).
As the number of periods grows linearly in system size we
find that the spectrum is indeed extensive.16

For the remainder of this analysis and without loss of
generality, we consider the case p = 1, q = 2 associated with
incommensurate momentum k∗ = arccos(1/4). In the follow-
ing we summarize the main (numerical) findings shown in
Fig. 12. First, we find that the spectrum (eigenvalues are de-
noted as qn with Qn < Qn+1) becomes denser with increasing
system size as shown in Fig. 12(a). Indeed, we find that the
minimum gap among nonequal eigenvalues �q,p decreases
exponentially with system size L in the bulk �q,p ∼ q−L and
becomes uniform for sufficiently large Nmax. The scaling with
q−L can be easily predicted from the functional dependence
of α j that we prove in Appendix C. Next, the boundary gaps
lead to the largest gap among consecutive unequal eigenvalues
and appear to saturate with increasing system size as shown
in Fig. 12(c) (orange triangles). Altogether, we find that the
spectrum becomes dense (in the reals) in the thermodynamic
limit. Namely, QA and QB have a continuous spectrum! Fi-
nally, we show that the global symmetry sector QA = QB = 0
is exponentially large in system size in Fig. 13 and plot the
dependence of this degeneracy on Nmax. Finally, we have
numerically confirmed that, even for finite Nmax, the sector
QA = QB = 0 is almost fully connected by the action of the
three-site terms introduced in the main text, with the ex-
ception of the empty state, when taking |ψ0〉 = |2, 1, 1, 2〉 ⊗
|0〉⊗(L−4) as the initial root configuration. Nonetheless,
the sector becomes fully connected when including four-
sites terms b2

jb j+1b j+2b2
j+3 + H.c. that also preserve Q̂A

and Q̂B.

16The growth is not strictly monotonic since chains nearby in size
can fit the same number of full periods.
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FIG. 12. Dependence on system size L of the spectrum of incommensurate symmetries for q = 2, p = 1. Data are shown for a finite
maximum number of bosons per site Nmax = 4. (a) Eigenvalues qn in the spectrum of Q̂A for different system sizes. (b) Gap between two
consecutive different eigenvalues QA. The gap is uniform within the bulk and scales as q−L . (c) Scaling of the maximum and minimum gaps
with system size.

APPENDIX B: SYSTEMS WITH
Q̂A AND Q̂B CONSERVATION

In the following we show that any local Hermitian term hj

acting on k + 1 consecutive sites (i.e., geometrically k-local),
commuting with Q̂A and Q̂B and which is not completely
diagonal in the number basis, i.e., it cannot be completely
written as a product of local densities n̂ j , can be expressed as
products of (b̂i )q(b̂†

i+1)p(b̂i+2)q and its Hermitian conjugate,
up to factors involving local densities n̂ j .

Given the bosonic canonical commutation relations on
k + 1 sites, any local term hj can be written as

h j =
k∑

n=1

∑
{qi∈Z,ni∈N}n

i=1

J (n)
{qi,ni}

n⊗
i=0

(
b̂

sign(q j+i )
j+i

)|q j+i|(n̂ j+i )
n j+i

+ H.c., (B1)

FIG. 13. Exponentially large symmetry sector QA = QB = 0 for
q = 2, p = 1. (a) Scaling of the size of the symmetry sector QA =
QB = 0 with system size for different maximum number of bosons
per site, Nmax. (b) Dimension of the Krylov space connected to the
root state |2, 1, 1, 2〉 ⊗ |0〉⊗(L−4) relative to the full (0,0) sector size.

with b̂sign(q j+i ) = b̂, b̂† corresponding to # = −,+ respec-
tively, and mj ∈ Z and for any choice of n j ∈ N. Then

[h j, Q̂A,B] = −
k∑

n=1

Jn

(
n∑

i=0

q j+iα
A,B
j+i

)
︸ ︷︷ ︸

≡R j
n

⊗n
i=0

(
b̂

sign(q j+i )
j+i

)|q j+i|(n̂ j+i )
n j+i − H.c., (B2)

vanishes if and only if R j
n = 0 for all n independently of the

value of j. Since a general α j solution of the linear recurrence
(2) can be written as α j = aeik∗ j + be−ik∗ j with a, b ∈ C, this
is equivalent to the condition that the associated character-
istic polynomial P j

n (x) =∑n
i=0 q j+ix j+i = x j

∑n
i=0 q j+ixi or

simply Pn(x) =∑n
i=0 q j+ixi, vanishes when evaluated at x =

e±ik∗
, and hence Pn(x) can be factorized as Pn(x) = (qx2 −

px + q)Q j
n(x), with Q j

n(x) =∑n−2
i=0 mi( j)xi where mi ∈ Z. In

particular, this implies that Pn(x) has a degree larger or equal
than two, which translates into k � 2. Moreover, this also im-
plies that R j

n =∑n−2
i=0 mi( j)(qαA,B

j+i − pαA,B
j+i+1 + qαA,B

j+i+2), i.e.,

R j
n is a linear combination of the linear recurrence qαA,B

j −
pαA,B

j+1 + qαA,B
j+2 = 0 (centered at different lattice sites) defin-

ing the symmetries Q̂A and Q̂B. Altogether, the local term h j

takes the form

h j =
k∑

n=1

∑
{mi ( j)∈Z}n−2

i=0

∑
{ni∈N}n

i=0

J{mi ( j),ni}

n−2⊗
i=0

[(b̂ j+i )
q(b̂†

j+i+1)p(b̂ j+i+2)q]mi ( j) ⊗n
i=0 (n̂ j+i )

n j+i

+ H.c. (B3)

Hence, we conclude that every local term commuting with Q̂A

and Q̂B can be written as a linear combination of products of
T 3

j ≡ (b̂ j+i )q(b̂†
j+i+1)p(b̂ j+i+2)q acting around different sites

j, where (T 3
j )mi ( j) is defined as (T 3,†

j )|mi ( j)| for mi( j) < 0.
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APPENDIX C: QA = QB = 0 IMPLIES Uj = 1 FOR ALL j
WITH COPRIME q, p

In this Appendix we prove that, if q, p are coprime, then
Uj = 1 within the (QA, QB) = (0, 0) symmetry sector. More-
over, we numerically show that, for finite Nmax and our specific
choices of coprime q and p, Uj take constant values within any
general symmetry sector (QA, QB).

For the first proof, the goal is connecting any configuration
|{n j}〉 within the (0,0) symmetry sector with the completely
empty state |{0}〉 via symmetric moves. Let us denote by
α j the solution of the linear recurrence Eq. (2) with initial
conditions α0 = 1, α1 = p/q where for simplicity we are la-
beling sites with j ∈ {0, . . . , L − 1}. Then, by induction one
finds q j−1α j = z j + pj/q with z j ∈ Z. Indeed, assuming that
is the case for j � 2 leads to q jα j+1 = z j+1 + pj+1/q with
z j+1 = pz j − q2z j−1 − qpj−1 ∈ Z.

Let us define the symmetry-preserving operator Gj ≡
b̂q

j−1(b̂†
j )

pb̂q
j+1, and consider the charge Q̂ =∑L−1

j=0 α j n̂ j ,
where without loss of generality we assume n̂ j to corre-
spond to the unbounded rotor density and b†

j (b j) are the
corresponding rotor raising (lowering) operators (in partic-
ular, commuting with each other). We require this to be
zero and consider the expression for qL−2Q̂. Because of
the above-proved property of α j , the contributions from j ∈
{0, 1, 2, . . . , L − 2} are all integer-valued, while the last one
is (zL−1 + pL−1/q)nL−1. Since q, p are coprime (and hence
also p and q j) Q̂ = 0 implies that nL−1 is a multiple of q,
i.e., nL−1 = qXL−2 with XL−2 ∈ Z. Then, acting XL−2 times
with GL−2 on the configuration |{n j}〉, we obtain a new con-
figuration |{n′

j}〉 within the same symmetry sector but with
n′

L−1 = 0. Iteratively continuing this procedure one finds that
the filling of the rightmost occupied site after each iteration
n′

j = n j + pXj − qXj+1 is a multiple of q given by qXj−1.
After L − 2 such iterations iterations one then finds the con-
figuration |{n′

j}〉 ∝∏L−2
j=1 (Gj )Xj |{n j}〉 with n′

j = 0 for all j �
2, i.e., |{n′

j}〉 = |n′
0, n′

1, 0, . . .〉. Finally, imposing that a sec-

ond (linearly independent) charge Q̂(0,1) also vanishes leads
to n′

0 = n′
1 = 0. Therefore, any configuration |{n j}〉 is con-

nected to the empty state |{0}〉 via symmetric moves, which
implies Uj = 1 for all j within the (0,0) sector. Thus, we
have proved that any two configurations within the sector
QA = QB = 0 are connected by a finite number of moves
when considering rotor degrees of freedom, and hence all
such configurations have Uj = 1. However, the previous ar-
gument also applies to bosons because it is a claim about
the property of a given configuration |{nj}〉 regardless of
its connectivity by the boson Hamiltonian moves. Regard-
ing the connectivity by the latter which is also of interest,
using numerical experiments, we checked that with longer-
range terms the bosonic models also satisfy the property
that any two configurations within the sector QA = QB =
0 are connected by a finite number of boson Hamiltonian
moves.

Moreover, we note that the previous argument provides a
one-to-one mapping between particle configurations {nj} on
L sites within the (0,0) sector, and the L − 2 integer variables
Xj given by

n j = qXj−1 − pXj + qXj+1 (C1)

after fixing X0 = X1 = XL−1 = XL = 0. As we find in the
main text, this is equivalent to the duality mapping in Eq. (8)
and agrees with the solution to the continuity equation (17)
once also taking Jx = �τ Xj . Moreover, we notice that this
solution (while in a simplified version) also holds for the
dipole-conserving case with q = 1, p = 2.

APPENDIX D: INTERMEDIATE QUASI-LONG-RANGE
ORDER WITH MODULATED CHEMICAL POTENTIAL

In this section we fix μ = μB = 0 and consider finite μA.
Since α

(1,0)
j = 0,±1 is 6-periodic, the ground state within a

Mott lobe will have a charge arrangement with period 6 in the
presence of on-site interactions. To find the specific particle
ordering, we require the energy of a given site to attain its
minimum value. Focusing on the regime μA/U < 1, one finds
that the system orders in a charge configuration with an empty
6-site unit cell |0〉n ≡ | ◦ ◦ ◦ ◦ ◦ ◦〉6n+1,...,6n+6 (n ∈ Z labels
unit cells) if μA/U < 1/2. On the other hand, for μA/U >

1/2, this unit-cell configuration is given by |2〉n ≡ | ◦ ◦ • • ◦
◦〉6n+1,...,6n+6 corresponding to the charges QA = −2, QB = 1
per unit cell. At the transition point μA/U = 1/2, these two
unit-cell configurations are degenerate together with two more
charge orderings |L〉n ≡ | ◦ ◦ • ◦ ◦ ◦〉6n+1,...,6n+6 and |R〉n ≡
| ◦ ◦ ◦ • ◦ ◦〉6n+1,...,6n+6, which have the same QA = −1 but
different QB. For small but finite J/U , this degeneracy is
partially broken at second order in perturbation theory, with
each of these configurations (except for |0〉) shifted to lower
energies:

|2〉 : ε
(0)
2 → ε2 = ε

(0)
2 − 8

3

J2

U
and |L〉, |R〉 : ε

(0)
L,R → εL,R

= ε
(0)
L,R − 2

J2

U
. (D1)

Thus, while varying μA/U across 1/2 at J = 0 selects unique∏
n |0〉n or

∏
n |2〉n Mott insulators, adding nonzero J at

μA/U = 1/2 selects |L〉n and |R〉n and keeps the degener-
acy among |L〉, |R〉 within each unit-cell configuration. While
higher-order contributions can reduce this exponentially large
degeneracy to twofold, such as between ⊗n|L〉n and ⊗n|R〉n,
it is not sufficient to fully break it. In fact, this is protected
by the inversion symmetry Ibond around the bond center be-
tween sites 6n + 3 and 6n + 4 within each unit cell for any
finite μA and vanishing μ, μB. This commutes with Q̂A and
satisfies {Ibond, Q̂B} = −Q̂AIbond, implying that for any given
energy eigenstate |ψ〉, Ibond|ψ〉 is a different eigenstate with
the same energy as long as 2QB + QA �= 0. This suggests that
the corresponding phase cannot be a “featureless” Mott insu-
lator but the ground state is degenerate. Numerically we find
that the corresponding phase [denoted QLRO1 in Fig. 1(a)]
is gapless with central charge c = 1, as shown in Fig. 1(c)
or in Fig. 14(d). This behavior can be understood applying
degenerate perturbation theory in the subspace spanned by
|L〉, |R〉 within each unit cell. Higher-order contributions in
J/U generate “hopping” processes among unit cells of the
form |LR〉〈RL|n,n+1 + H.c. plus additional diagonal contribu-
tions allowed by symmetry. Altogether one finds an effective
spin-1/2 Hamiltonian resembling an XXZ chain in its crit-
ical regime [50]. Hence, one expects power-law decaying
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FIG. 14. Two-point correlations 〈σ zσ z〉 for q, p = 1 within the QLRO1 phase. (a) Two-point spin correlations. (b) Scaling of half-chain
entanglement entropy with correlation length ξχ induced by a finite bond dimension χ . Data obtained using infinite DMRG with unit cell
L = 6.

two-point correlations for the spin-spin correlation function
〈σ z

0σ z
n 〉 ∼ |n|−2 with σ z

n ≡ |L〉〈L|n − |R〉〈R|n, consistent with
the numerical results shown in Fig. 14(c) for increasing
bond dimension, as well as with the observed central charge
(c = 1). Figure 14(b) also shows the decay of density-density
within this phase. However, we note that this phase disappears
when considering a finite chemical potential μB.

APPENDIX E: QUASI-LONG-RANGE ORDER
FOR COMMENSURATE q = p = 1 MODEL

Let us consider the rotor Hamiltonian

H rotor
1,1 = −

∑
j

J j cos(θ̂ j−1 − θ̂ j + θ̂ j+1) + U

2

∑
j

(
n̂r

j

)2
,

(E1)

where the hopping Jj = J
√

n̄ j−1n̄ j n̄ j+1 is spatially modulated
for a modulated chemical potential and hence satisfies Jj+6 =
Jj . Assuming that Jj smoothly varies around a nonvanishing
averaged value J with Jj = J + δ j such that |δ j | � J (this
way Jj does not change sign along the chain) or simply that
Jj = J as for uniform chemical potential, we can ignore the
compactness of θ̂ j and expand the cosine around its minimum
leading to

Hrotor ≈
∑

j

J j

2
(θ̂ j−1 − θ̂ j + θ̂ j+1)2 + U

2

∑
j

(
n̂rotor

j

)2
. (E2)

The goal now is to derive a low-energy effective theory for
the liquid phase. For example, in the standard Bose-Hubbard
model the argument of the cosine contribution can be inter-
preted as a gradient of the field θ̂ in the continuum limit, which
is allowed by the conservation of the total particle number.
Similarly, we want to identify the two low-energy degrees
of freedom related to the two U(1) (sublattice) symmetries
generated by Q̂A and Q̂B. For the model with commensurate
symmetries we are studying, we can accomplish this task
decomposing the operator θ j as

θ̂ j = α
(1,0)
j ϑA

j + α
(0,1)
j ϑB

j , (E3)

where the equal sign is understood as retaining only low-
energy modes, and where we assume [ϑA

i , ϑB
j ] = 0. Then the

action of the two linearly independent symmetry transforma-
tions θ j → θ j + γA/BαA,B

j can be mapped to a uniform shift of
only one of the fields

θ j → θ j + γAαA
j = αA

j ϑ
A
j + αB

j ϑ
B
j + αA

j γA

= αA
j

(
ϑA

j + γA
)+ αB

j ϑ
B
j , (E4)

θ j → θ j + γBαB
j = αA

j ϑ
A
j + αB

j ϑ
B
j + αB

j γB

= αA
j ϑ

A
j + αB

j

(
ϑB

j + γB
)
. (E5)

In particular, for the symmetries of interest,

θ j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑA
j if j = 1 mod(6)

ϑB
j if j = 2 mod(6)

ϑB
j − ϑA

j if j = 3 mod(6)

−ϑA
j if j = 4 mod(6)

−ϑB
j if j = 5 mod(6)

ϑA
j − ϑB

j if j = 6 mod(6),

(E6)

such that the action of the unitary transformations UA =
eiγAQ̂A , UB = eiγBQ̂B on θ̂ j generated by Q̂A and Q̂B respec-
tively leads to{

ϑA
j → ϑA

j + γA

ϑB
j → ϑB

j ,

{
ϑA

j → ϑA
j

ϑB
j → ϑB

j + γB.
(E7)

That is, the structure in these variables is like two uniform
U(1) symmetries acting on two different fields. Now we can
write θ j−1 − θ j + θ j+1 in terms of ϑA, ϑB as

θ j−1 − θ j + θ j+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xϑ
B − 2∇xϑ

A if j = 1 mod(6)

−∇xϑ
B − ∇xϑ

A if j = 2 mod(6)

−2∇xϑ
B + ∇xϑ

A if j = 3 mod(6)

−∇xϑ
B + 2∇xϑ

A if j = 4 mod(6)

∇xϑ
B + ∇xϑ

A if j = 5 mod(6)

2∇xϑ
B − ∇xϑ

A if j = 6 mod(6).

(E8)

To simplify the Hamiltonian, we can now assume that ϑA/B

are smoothly varying fields which do not change at short
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distances and thus, we can average over a unit cell of six sites
(we are interested in the long-wavelength physics or rather,
the physics for which ϑA and ϑB are the relevant degrees of
freedom). For finite μA �= 0 but μB = 0, by inspection we
have J6n+1 = J6n+4, J6n+2 = J6n+3, J6n+5 = J6n+6. Collecting
terms over the six-site unit cell, one finds for the gradient
terms:

C[(∇xϑ
A)2 − ∇xϑ

A∇xϑ
B] + C′(∇xϑ

B)2

= CAA(∇xϑ
A)2 + 2CAB∇xϑ

A∇xϑ
B + CBB(∇xϑ

B)2, (E9)

i.e., a specific relation between the coefficients CAA and CAB ≡
CBA: CAB = −CAA/2, while the coefficient CBB is indepen-
dent. This can be traced to the inversion symmetry Ibond in
the bond center between 6n + 3 and 6n + 4, i.e., interchang-
ing 6n + 1 ↔ 6n + 6, 6n + 2 ↔ 6n + 5, 6n + 3 ↔ 6n + 4.
In the continuum, the inversion in bond center acts as [using
Eq. (E6)]

Ibond : ϑA(x) → (ϑA − ϑB)(−x), ϑB(x) → −ϑB(−x).
(E10)

Requiring this symmetry is enough to fix CAB = −CAA/2.
If μA = μB = 0, i.e., we have translation symmetry, Jj =

J = const, then we also find CBB = CAA. This can be traced to
the action of the translation by one site:

T1 : ϑA → ϑB, ϑB → −ϑA + ϑB. (E11)

In fact, just requiring T1 is enough to fix CBB = CAA, CAB =
−CAA/2.

Analogously, we can also decompose n̂r
j in terms of the

integer-valued fields nA and nB that are canonically conjugate
to ϑA and ϑB as follows:

n̂rotor
i = 1(

αA
i

)2 + (αB
i

)2 (αA
i nA

i + αB
i nB

i

)
, (E12)

which for the symmetries of interest reads

n̂r
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nA
j if j = 1 mod(6)

nB
j if j = 2 mod(6)

1
2

(−nA
j + bB

j

)
if j = 3 mod(6)

−nA
j if j = 4 mod(6)

−nB
j if j = 5 mod(6)

1
2

(
nA

j − nB
j

)
if j = 6 mod(6).

(E13)

This choice is consistent with nA, nB being the correspond-
ing conjugate variables [ϑA, nA] = [ϑB, nB] = i such that

[ϑA, nB] = [ϑB, nA] = 0. Analogous to the previous discus-
sion, in the liquid phase we can then average the contribution
over the 6-site unit cells:

6∑
j=1

(
n̂rotor

j

)2 = �AA(nA)2 + 2�ABnAnB + �BB(nB)2, (E14)

and find �AA = �BB, �AB = −�AA/5. Altogether we obtain
the quadratic theory

Hrotor ≈
∑

j

1

2
∇xϑ

T
j · K · ∇xϑ j + 1

2

∑
j

N j · � · N j, (E15)

with ϑ = (ϑA, ϑB)T , N = (nA, nB)T , and

K =
(

CAA −CAA
2

−CAA
2 CBB

)
, � =

(
�AA −�AA

5

−�AA
5 �BB

)
. (E16)

The alternative decomposition θ̂ j = 2Re[eik∗ j (ϑ (1)
j +

iϑ (2)
j )] relates to Eq. (E3) via the nonorthogonal

transformation

ϑA = ϑ (1) −
√

3ϑ (2), ϑB = −ϑ (1) −
√

3ϑ (2). (E17)

This diagonalizes the quadratic form K for uniform Jj in the
absence of the second term. In fact, for uniform Jj one finds

(∇xϑ
A)2 − ∇xϑ

A∇xϑ
B + (∇xϑ

B)2

= 3[(∇xϑ
(1) )2 + (∇xϑ

(2) )2]. (E18)

In general one needs to simultaneously diagonalize K and �,
e.g., following Ref. [49]. From here one finds two decoupled
harmonic oscillators consistent with the expected two-species
Luttinger liquid that emerges in the large-J/U regime.

APPENDIX F: NAIVE DERIVATION OF THE VILLAIN
ACTION FOR GENERAL q, p

The main idea of the Villain formulation is to replace the
cosine potential term in the rotor Hamiltonian (4) without
losing the 2π periodicity that is so relevant to understand
the role of vortices to disorder the system. The advantage is
proceeding in a more systematic and controlled fashion when
deriving the low-energy theory, which applies to all choices
of q and p, and not only to commensurate ones. Proceeding in
the standard way, the path integral of this system is given by

Z (β ) ≡ tr[e−βHq,p] =
∫ ∏

j,τ

dθ j (τ )

2π

∑
n j (τ̄ )

exp

⎧⎨
⎩δτ

∑
2� j�L−1,τ

Jj−1 cos[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ )]

−
� 2q+p

2 �∑
m=0

Umδτ

2

∑
j,τ

(n j (τ̄ ) − n̄ j )
m + i

∑
j,τ

n j (τ̄ )[θ j (τ + 1) − θ j (τ )]

⎫⎪⎬
⎪⎭, (F1)

where n̄ j is the average density per site. Here, the variables θ j (τ ) live on the nodes ( j, τ ) of the Euclidean (1 + 1)D lattice,
while nj (τ̄ ) live on the vertical links. Moreover, we are considering spatial open boundary conditions such that Q̂A and Q̂B are
conserved quantities regardless the choice of q, p and in the end assuming an infinitely long chain. While a detailed analysis can
be carried for finite systems, boundary effects do not change the outcome.
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We then Villainize the action by replacing the cosine potential as

exp

⎧⎨
⎩δτ

∑
j,τ

Jj−1 cos[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ )]

⎫⎬
⎭

≈
∑

{�( j,τ )∈Z}
exp

⎧⎨
⎩−

∑
j,τ

δτJj−1

2
[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ ) − 2π�( j, τ )]2

⎫⎬
⎭,

where Jj on the right-hand side is proportional to that on the left at low temperatures. Notice that the resulting theory is still 2π

periodic in θ j . Using Poisson resummation formula

∑
�∈Z

g(�) =
∑
m∈Z

∫ +∞

−∞
dx g(x)e−i2πmx, (F2)

we finally obtain

∑
{�( j,τ )∈Z}

exp

⎧⎨
⎩−

∑
j,τ

δτJj−1

2
[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ ) − 2π�( j, τ )]2

⎫⎬
⎭

=
∏
j,τ

1

2π
√

δτJj

∑
{Rj (τ )∈Z}

exp

⎧⎨
⎩−

∑
j,τ

R2
j (τ )

2δτJj−1
+ iR j (τ )[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ )]

⎫⎬
⎭. (F3)

We can now integrate out θ j and write a theory in terms of n and R variables, the latter living on sites ( j, τ ). To do so we
collect all terms linear in θ j :∑

j,τ

in j (τ̄ )[θ j (τ + 1) − θ j (τ )] +
∑

2� j�L−1,τ

iR j (τ )[qθ j−1(τ ) − pθ j (τ ) + qθ j+1(τ )] (F4)

=
∑

j,τ

−iθ j (τ )[n j (τ̄ ) − n j (τ̄ − 1) + pRj (τ ) − qRj+1(τ ) − qRj−1(τ )], (F5)

such that integrating over θ j (τ ) gives

Z (β ) =
∏
j,τ

∫ 2π

0

dθ j (τ )

2π
exp{−iθ j (τ )[n j (τ̄ ) − n j (τ̄ − 1) + pRj (τ ) − qRj+1(τ ) − qRj−1(τ )]} (F6)

×
∑
n j (τ̄ )

∞∑
Rj=−∞

exp

⎡
⎣−

∑
j,τ

R2
j (τ )

2δτJj−1
−
∑
m=2

Umδτ

2

∑
j,τ

(n j (τ̄ ) − n̄ j )
m

⎤
⎦, (F7)

leads to the constrained action

Z (β ) =
∑

{n j (τ̄ )}

∑
{Rj (τ )}

exp

⎡
⎣−

∑
j,τ

R2
j (τ )

2δτJj−1
−
∑
m=2

Umδτ

2

∑
j,τ

(n j (τ̄ ) − n̄ j )
m

⎤
⎦ (F8)

×
∏
j,τ

δ[n j (τ̄ ) − n j (τ̄ − 1) + pRj (τ ) − qRj+1(τ ) − qRj−1(τ )], (F9)

where δ[x] denotes Kronecker delta δx,0.
Interpreting Jτ = n, Jx = R as temporal and spatial components of an appropriate “current,” the constraint

n j (τ̄ ) − n j (τ̄ − 1) + pRj (τ ) − qRj+1(τ ) − qRj−1(τ ) = 0, (F10)

at every site ( j, τ ) corresponds to the conservation of total charge around site ( j, τ )

∇τ Jτ + ∇̃q,p
x Jx = 0, (F11)
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with the modified spatial derivative ∇̃q,p
x defined as ∇̃q,p

x R j (τ ) ≡ pRj (τ ) − qRj+1(τ ) − qRj−1(τ ). This constraint can be directly
incorporated writing n and R in terms of a “height field” X living on vertical links (τ, τ + 1)17 via

Rj (τ ) = ∇τ Xj = Xj (τ̄ ) − Xj (τ̄ − 1), (F13)

n j (τ̄ ) = −∇̃q,p
x X = qXj−1(τ̄ ) − pXj (τ̄ ) + qXj+1(τ̄ ). (F14)

As previously stated, while here we are not taking explicit care of boundary contributions for finite systems—where the previous
equations are slightly modified—these do not modify the results.

In the standard Bose-Hubbard model one finds similar relations but with ∇̃q,p
x replaced by the first-order finite difference ∇x.

This leads to the conclusion that integer-valuedness of nj , Rj implies the same for Xj (τ̄ ). Hence, to proceed one usually softens
this constraint and consider a real-valued field χ j (τ̄ ) via a potential contribution of the form −λ cos(2πχ j (τ̄ )) at every spacetime
site ( j, τ ). However, this is not the case here for generic q, p. Equation (F13) only implies that the difference Xj (τ̄ ) − Xj (τ̄ − 1)
between two consecutive times at spatial site j is an integer. Let us fix a reference time slice τref and find the value of Xj on that
slice. Equation (F14) [and (F13)] implies that

Xj (τ̄ ) = 1

q

∑
i< j

α
1,p/q
j−i ni(τ̄ ), (F15)

with α
1,p/q
0 = 1, α

1,p/q
1 = p/q, and XL−1 = 1

p (nL−1 + qXL−2). However, for general q, p (unlike for commensurate choices)

α
1,p/q
j−i is not integer-valued but only rational! Hence, Xj (τref + 1/2) is only constrained to be Q-valued such that at any other

time Xj (τ̄ ) − Xj (τ̄ref ) ∈ Z.
To proceed further we decompose Xj (τ̄ ) = I j (τ̄ ) + mj (τ̄ ) with the condition that I j ∈ Z and |mj | < 1. Then we find

Rj (τ ) = ∇τ X = I j (τ̄ ) − I j (τ̄ − 1) + mj (τ̄ ) − mj (τ̄ − 1), (F16)

n j (τ̄ ) = −∇̃q,p
x Xj = −∇̃q,p

x I j − ∇̃q,p
x mj . (F17)

We now recall the existence of the discrete symmetries Uj satisfying the constraints (Uj )q = (Uj−1)p(U †
j−2)q for all j with

U0 = U−1 = 1. Moreover, from the duality mapping in Sec. IV we know that we can write Uj = ei2πXj+1 = ei2πmj+1 . Hence,
the mj (τ̄ ) are fixed after fixing the (Zq)L symmetry. For example, fixing U1 fixes the value of m1, since (U1)q = ei2πqm1 = 1,
which implies m1 = n1/q with n1 ∈ {0, 1, . . . , q − 1}. However, recall that the Zq are not locally realized, meaning each Uj

does not generate a Zq factor but one rather needs all of them to find ZL
q after imposing the condition relating the Uj at different

sites. In fact, this condition is equivalent to imposing Zj ≡ ∇̃q,p
x mj ∈ Z, which is precisely the second term in the second line

of Eq. (F16): (Uj )q(Uj−1)−p(Uj−2)q = ei2π∇̃q,p
x mj = ei2πZ j = 1. Hence, n j (τ̄ ) = −∇q,p

x I j (τ̄ ) − Zj , with Zj ∈ Z fixed by the Zq

symmetries. Therefore, the field that we should relax from integer- to real-valued is I j : I j → χ j ∈ R via introducing the softening
potential cos(2πχ j ). To get rid of n̄ j in the Hamiltonian, we split χ = δχ + χ̄ such that

n j − n̄ j = −∇q,p
x δχ j and n̄ j + Zj = −∇q,p

x χ̄ j, (F18)

since Zj are fixed by the symmetries.
Overall, this leads to the partition sum Z (β ) ∝∑{δχ j (τ̄ )} e−S[δχ] with action

S[δχ ] = 1

2

∑
j,τ

⎡
⎢⎣ 1

J̃ j
(∇τ δχ j )

2 +
� p+2q

2 �∑
m=2

Ũm
(∇̃q,p

x δχ j
)m
⎤
⎥⎦− λ

∑
j,τ

cos[2π (δχ j + χ̄ j )], (F19)

and J̃ j ≡ δτJj , Ũm ≡ δτUm. For example, for a uniform potential we need to solve −∇̃q,p
x χ̄ j = n̄ + Zj which can be achieved via

χ̄ j = n̄
2q−p + 1

q

∑
i� j α

1,p/q
j−i Zi + α j with α j any solution of the recurrence equation qα j − pα j+1 + qα j+2 = 0 (which appears

in the finite-difference operator ∇̃q,p
x ) and p �= 2q. Compare this with the solution for the standard Bose-Hubbard model χ̄ j =

n̄ j + a which is fixed up to a constant value a.18 Similarly to the Bose-Hubbard model, we fix the trivial solution with α j = 0.
We can also consider a modulated chemical potential in which case χ̄ j is given by

χ̄ j+1 = 1

q

∑
i� j

α
(1,p/q)
j−i (n̄i + Zi ). (F20)

17Notice that the second expression can be rewritten as

nj (τ̄ ) = ∇̃q,p
x φ = −q(∇x )2φ + (p − 2q)φ, (F12)

where the second term vanishes for dipole-conserving systems (p = 2q). In this case the theory developed in Ref. [29] applies.
18This corresponds to a uniform shift 2π pa in the argument of the cosine.
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Moreover, since Um terms with m > 2 becomes less and less relevant with increasing m, we can just keep the m = 2
contribution, leading to the quadratic theory

S0[δχ ] = 1

2

∑
j,τ

[
1

J̃ j
(∇τ δχ j )

2 + Ũ
(∇̃q,p

x δχ j
)2]

, (F21)

or in frequency-momentum space (taking the time-continuum limit)

S0[δχ ] = K

2βL

∑
k,ωn

[
ω2

n

c
+ c(p − 2q cos (k))2

]
|χk,ωn |2, (F22)

where we have defined Fourier components by

δχ j (τ ) = 1

βL

∑
k,iωn

ei(k j−ωnτ )χk,ωn , (F23)

and k = 2π
L n ∈ [−π, π ], ωn = 2π

β
n ∈ (−∞,+∞).

As we have shown in the main text, this derivation simplifies when fixing the global symmetry sector QA = QB = 0, where
the field Xj is directly integer-valued, and the mapping to the integer-valued height model with appropriate boundary conditions
on X is exact on a finite system with OBCs.

APPENDIX G: CORRELATION FUNCTIONS AND WILSON RENORMALIZATION GROUP

1. Vertex-vertex correlations

Here we compute two-point correlations of the form

Cχχ ( j − j′, τ̄ − τ̄ ′) ≡ 〈eiχ j (τ̄ )e−iχ j′ (τ̄ ′ )〉0 = exp

{
−1

2
〈[χ j (τ̄ ) − χ j′ (τ̄

′)]2〉0

}
, (G1)

for a system with incommensurate k∗, where in the second equality we have used that the corresponding action (F22) defining
〈. . . 〉0 is quadratic. Assuming a uniform coupling Jj = J one finds

〈χk,ωnχk′,ω′
n
〉 = βLδk,−k′δωn,−ω′

n

1
J ω2

n + U [2q cos (k) − p]2 . (G2)

From here we obtain the general expression

−2 ln Cχχ ( j − j′, τ̄ − τ̄ ′) =
∫ +∞

−∞

dω

2π

∫ +π

−π

dk

2π

2{1 − cos [k( j − j′) − ω(τ − τ ′)]}
1
J ω2 + U [2q cos (k) − p]2 . (G3)

(1) When j = j′ one finds

−2 ln Cχχ (0, τ̄ − τ̄ ′) =
∫ +∞

−∞

dω

2π

∫ +π

−π

dk

2π

2{1 − cos [ω(τ̄ − τ̄ ′)]}
1
J ω2 + U [2q cos (k) − p]2 (G4)

= 1

2K

∫ +π

−π

dk

2π

1 − e−√
JU |τ̄−τ̄ ′||2q cos (k)−p|

|2q cos (k) − p| ≈ 4

2K

∫ +ε

0

dδk

2π

1 − e−√
JU |2q sin (k∗ )(τ̄−τ̄ ′ )δk|

2q| sin (k∗)|δk
(G5)

after expanding 2q cos(k) − p around k∗. Then, considering sufficiently distanced times |(τ̄ − τ̄ ′)δk| > 1, one finally gets

−2 ln Cχχ (0, τ̄ − τ̄ ′) ≈ 4

4qK| sin (k∗)|
∫ +ε

1/|τ̄−τ̄ ′|

dδk

2π

1

δk
∼ 1

2πqK| sin (k∗)| ln(|τ̄ − τ̄ ′|), (G6)

i.e., Cχχ (0, τ̄ − τ̄ ′) ∼ |τ̄ − τ̄ ′|−1/[4πqK| sin(k∗ )|].
(2) However, spatial correlations are ultralocal for incommensurate k∗: Indeed, take τ = τ ′:

−2 ln Cχχ ( j − j′, 0) =
∫ +∞

−∞

dω

2π

∫ +π

−π

dk

2π

2{1 − cos [k( j − j′)]}
1
J ω2 + U [2q cos (k) − p]2 (G7)

= 1

K

∫ +π

−π

dk

2π

1 − cos k( j − j′)
|2q cos (k) − p| , (G8)
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the resulting integral can diverge k = ±k∗. Expanding around these points gives

−2 ln Cχχ ( j − j′, 0) = 1

K

∫ +ε

−ε

dδk

2π

2 − cos (k∗ + δk)( j − j′) − cos (−k∗ + δk)( j − j′)
2q| sin (k∗)||δk| (G9)

= 4

K

∫ +ε

0

dδk

2π

1 − cos k∗( j − j′) cos δk( j − j′)
2q| sin (k∗)||δk| → − ln(0+) = ∞, (G10)

and then, −2 ln Cχχ ( j − j′, 0) ∼ 0. Altogether for incommensurate symmetries

Cχχ ( j − j′, τ − τ ′) =
{

1/|τ − τ ′| 1
4πqK| sin (k∗ )| if j = j′

0 if j �= j′.
(G11)

For commensurate k∗ and for j − j′ = 2π
k∗ N with N ∈ Z, spatial correlations instead decay as a power law:

Cχχ ( j − j′, 0) ∼ | j − j′|−#/K . (G12)

2. Density-density correlations

Another signature of the quasi-long-range order in the liquid phase is the polynomial decay of density-density correlators
〈n̂ j n̂ j′ 〉c = 〈(n̂ j − n̄)(n̂ j′ − n̄)〉 with the distance x = j − j′ ∈ Z. In the following we present the result of this computation. To
start we recall that nj (τ̄ ) = −∇q,p

x χ j (τ̄ ), hence,

〈n̂ j n̂ j′ 〉c = 1

βL

∑
k,ωn

ei[kx−ω(τ−τ ′ )] [2q cos (k) − p]2

1
J ω2 + U [2q cos (k) − p]2 , (G13)

and evaluating at τ̄ = τ̄ ′ we find

〈n̂ j n̂ j′ 〉c = 1

2K

∫ π

−π

dk

2π
eikx|2q cos (k) − p| = 2q

2K

∫ π

0

dk

2π
cos (kx)| cos (k) − cos (k∗)| (G14)

= 2q

2K
[2 f (k∗) − f (π ) − f (0)], (G15)

with

f (k) = 1

x2 − 1
[x cos (k) sin (kx) − sin (k) cos (kx)] − 1

x
cos (k∗) sin (k∗x). (G16)

Therefore, in the limit |x| → ∞ and using that x ∈ Z for the lattice calculation we find that

〈n̂ j n̂ j′ 〉c ≈ −2q sin (k∗)

K
cos[k∗( j − j′)]

1

| j − j′|2 + O

(
1

| j − j′|3
)

. (G17)

Recall that, for the standard Luttinger liquid theory, one obtains a polynomial decay with the same power-law exponent but
without the spatial modulation. Moreover, one can then also conclude that the static structure factor 〈n̂k n̂−k〉c becomes 〈n̂k n̂−k〉c ∼
|k ± k∗| close to k ≈ ±k∗, as shown in Fig. 4.

3. Wilson renormalization group for incommensurate symmetries

In this Appendix we calculate the renormalization group (RG) eigenvalue of the cosine term δS ≡ −λ
∫

dτ
∫

dx cos(2πχ j )
for incommensurate k∗ with respect to the quadratic action

S =
∫ Lτ

0
dτ

⎧⎨
⎩

L∑
j=1

1

2J
(∂τχ j )

2 + U

2
(qχ j−1 − pχ j + qχ j+1)2

⎫⎬
⎭. (G18)

First, we write

χ (x, τ ) =
∫ +∞

−∞

dω

2π

∫
dk

2π
χ (k, ω)ei(kx−ωτ ), (G19)

where we have only kept low-energy momenta close to ±k∗, i.e., |k ± k∗| � �. We now integrate out fast spatial-modes |k ±
k∗| ∈ ( �

b ,�) denoted as χ> with b > 1, while keeping ω ∈ (−∞,+∞). We obtain

〈δS〉>,conn = −λ

∫
dτ

∫
dx

〈
1

2
ei2π (χ>+χ< ) + c.c.

〉
>,conn

(G20)

= −λ

∫
dτ

∫
dx cos (2πχ<) exp

[
−1

2
(2π )2〈χ2

>(x, τ )〉>
]
, (G21)
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FIG. 15. Convergence in bond dimension χ and maximum number of bosons per site nmax, for incommensurate model with q = 2, p = 1
and finite system size with open boundary conditions. Panels in the left and right columns show data for uniform chemical potential with
μ/U = 0.5, 1, respectively. The ratio J/U ∈ [0.25, 2] goes from lighter to stronger color intensity for increasing J/U in steps of 0.25. Panels
(a) and (b) in the first row show the profile density 〈n̂ j〉, while panels (c) and (d) in the second show the bipartite entanglement entropy S[0: j].
The area between two nearby curves show the variation when increasing nmax from 8 to 12.

where

〈χ2
>(x, τ )〉> =

∫ +∞

−∞

dω

2π

∫
|k±k∗|∈( �

b ,�)

dk

2π

2
ω2

J + U [2q cos (k) − p]2

= 4

√
J

U

∫ �

�/b

dδk

2π

1

2q sin (k∗)δk
=
√

J

U

4

4πq sin (k∗)
ln (b). (G22)

Altogether we find

〈δS〉>,conn − λ

∫
dτ

∫
dx cos (2πχ<)b−√

2πq sin (k∗ )K , (G23)

which implies that δS has a scaling dimension �[δS] ∝ 1/K , and hence it can be become relevant for a finite values of the
Luttinger parameter Kc.

APPENDIX H: NUMERICAL ANALYSIS AND CONVERGENCE

In this Appendix we provide numerical results for the convergence of finite DMRG simulations of the QLRO phase
for incommensurate k∗ with q = 2, p = 1 and uniform chemical potential μ/U = 0.5, 1. These are shown in Fig. 15.
First and second rows show the convergence in the density profile 〈n̂ j〉 and entanglement profiles S[0: j] for bond dimen-
sions χ = 256, 512 and a maximum number of bosons per site, nmax = 8, 12. Results are shown for different values of
J/U ∈ {0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2} from lighter to darker green color. The colored area between two nearby datasets
correspond to the variation of the numerical results when increasing nmax for the same value of J/U and bond dimension.
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