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Origami-driven Dzyaloshinskii-Moriya interaction in centrosymmetric two-dimensional magnets
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Origami-inspired approaches have presented exciting possibilities for engineering and manipulating two-
dimensional (2D) materials in three-dimensional space. By introducing curvature through folding and bending,
curved 2D materials offer unique opportunities to explore exotic magnetic phenomena that are absent in their
planar counterparts. Here we demonstrate the existence of origami-driven Dzyaloshinskii-Moriya interaction
(DMI) in centrosymmetric 2D magnets by means of symmetry analysis and noncollinear spin-polarized density
functional theory. By taking CrI3 as an example, we show the decisive effect of spin-orbit interaction on the DMI
of folded structures, which corresponds to the three-site Fert-Lévy model. Furthermore, the geometry-governed
anisotropy and the DMI contribute to the magnetic energy, resulting in chiral domain walls as the ground state.
Our results present a general method for creating topological spin textures in centrosymmetric 2D magnets,
providing insights into the formation of magnetochirality in origami 2D magnets, which will be beneficial to
both the fundamental study of curvilinear magnetism and the application of chiral spin textures in spintronic
devices.
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I. INTRODUCTION

Origami-inspired synthesis methods and curvature-induced
unconventional magnetic effects have triggered a general
trend to extend planar two-dimensional (2D) magnetic struc-
tures into three-dimensional space in recent years [1–7].
Diverging from planar systems, the presence of curvature in
a system can introduce additional effective energy contribu-
tions, i.e., scalar and vector geometrical potentials [1,8]. As
a consequence, this approach provides the means to launch
novel functionalities by modulating the local curvature of
the geometry, resulting in several magnetochiral effects and
topological magnetization patterns, such as increased domain
wall velocities [9] and chirality symmetry breaking [10–14].

In systems with symmetry breaking, the antisymmetric
Dzyaloshinskii-Moriya interaction (DMI) can modify the
conventional long-range magnetic order and hence induce
the formation of topological magnetism [15–24]. This phe-
nomenon has been achieved in diverse systems, spanning
chiral magnets [25–30], interfaces [31–42], and 2D mate-
rials [43–49]. Remarkably, micromagnetic simulations have
demonstrated the emergence of topological magnetization
patterns in magnets with curved geometry, highlighting in-
stances where the presence of DMI is not necessary [1,50–52].
Nevertheless, existing micromagnetic models have certain
limitations as they only treat the anisotropy and DMI as non-
relativistic effects by a coordinate transformation, ignoring the
influence of spin-orbit coupling (SOC) on the above terms in
curvature-dependent geometry. In this context, density func-
tional theory (DFT) helps one to understand the emerging
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properties of magnets under specific geometries and provides
precise material parameters [8,42,48], albeit with the con-
straint of periodic boundary conditions requiring a supercell
with numerous atoms. For the term of material selection, 2D
magnets with intrinsic long-range magnetic order are par-
ticularly well suited for investigating magnetochiral effects,
aided by their flexibility in origami 2D structures and natural
occurrence of ripples and folds [53–57].

Here, we perform a symmetry analysis, noncollinear spin-
polarized DFT calculation, and atomic spin simulation to
investigate the magnetic properties and topological magneti-
zation patterns in folded centrosymmetric 2D magnets with
local curvature. Using CrI3 as an example, we discover that
fully SOC-mediated DMI can be induced in folded systems,
with the magnitude of DMI depending on the curvature. The
curvature-dependent anisotropy and DMI result in the emer-
gence of magnetochiral effects, such as the chiral domain
walls in folded CrI3. Moreover, the conclusions drawn from
folded CrI3 can be generalized to a variety of 2D magnets with
centrosymmetry. In contrast to existing models and studies,
our results underscore the pivotal role of SOC in generat-
ing DMI in curved geometries. We also propose a general
approach for introducing origami-driven topological spin tex-
tures in centrosymmetric 2D magnets. These findings not
only advance the fundamental understanding of curvilinear
magnetism but also establish a robust physical foundation for
future applications involving topological spin textures in 2D
origami magnets.

II. GEOMETRIC MODEL

Here we consider a 2D origami structure consisting of
two rigid parts and a curved hinge part with a box-function
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FIG. 1. (a) Folding of 2D magnets characterized by the folding
angle θ . (b) Box-function spatial profile of curvature for the folded
systems with folding angle θ . (c) Folding of 2D magnets charac-
terized by the hinge length l. (d) Box-function spatial profile of
curvature for the folded systems with hinge length l .

curvature profile: κ (l ) = κ0H (l + l0) − κ0H (l − l0), where
H(x) is the Heaviside step function and κ0 is the curvature
of the hinge part with the arc length l0. Specifically, we
consider a nonchiral folded structure where the projection
of the structure onto the yz plane forms a one-dimensional
nanowire with an individual circular segment. Furthermore,
the curvature of the hinge part can be expressed as κ = θ/l
to construct an (N,θ ) folded system with folding angle θ ,
lattice constant a, and hinge length l composed of N units of
the cell in the folding direction. Adjusting the folding angle
influences the shape and curvature distribution of the folded
structures, while varying the length of the hinge part can result

FIG. 2. (a) Armchair folding configuration of CrI3. The primitive
and rectangle units are shown in the black and red frames. (b) Total
energy per unit area of folded CrI3 as a function of curvature к. (c)
DMI energy of (N,π /2) folded CrI3 as a function of spin spiral vector
q when SOC is included. (d) DMI parameter d of (N,θ ) folded CrI3.

FIG. 3. Calculated magnetic parameters of folded CrI3. (a) J as a
function of θ . (b) K as a function of θ . (c) J as a function of к. (d) K
as a function of к. (e) d as a function of к.

in different bending patterns and curvatures, as illustrated in
Fig. 1. This control over the geometric parameters enables
the manipulation of the folded structure’s overall curvature,
thereby exerting control over its magnetic properties.

FIG. 4. (a) Total energy of spin spiral and (b) DMI energy of
(2,π /2) folded CrI3 as a function of spin spiral vector q when SOC
is excluded. (c) Total energy of spin spiral and (d) DMI energy of
(2,π /2) folded CrI3 as a function of spin spiral vector q when SOC is
included.
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FIG. 5. (a) Structure of CrI3 nanotube with N = 4. (b) Constant
curvature for the nanotube systems. (c) Total energy of spin spiral
and (d) DMI energy of CrI3 nanotube with N = 4 as a function of
spin spiral vector q when SOC is included.

III. SYMMETRY ANALYSIS

To provide clarification, the second-order DMI tensor for
crystallographic point groups can be derived by applying the
Neumann principle of crystallography and generating matri-
ces [58,59], which is expressed as

Di j = |σ |σii′σ j j′Di′ j′ , (1)

with σ being all the symmetry operations contained in the
specific point group. The nonzero entries in the matrix de-
termine the type of DMI, i.e., Néel, Bloch, or mixed. We
then analyze the symmetry of the folded centrosymmetric
2D magnets by taking monolayer CrI3 as an example, which
attracted tremendous attention as one of the first-reported 2D
magnets with intrinsic ferromagnetism [54,60,61]. Flat CrI3

has a D3d point-group symmetry, which includes an inversion
operation that disallows the existence of the DMI term. In the
case of folded CrI3, the presence of folding results in the loss
of inversion and rotational symmetry, leading to a reduced
point-group symmetry of Cs containing two symmetry oper-
ations of an identity operation and a mirror reflection. With

FIG. 6. (a) Calculated SOC energy difference �ESOC associated
with DMI and (b) DMI parameter D/VSOC using Fert-Lévy model of
(2,θ ) folded CrI3.

Eq. (1), we can identify the DMI tensor of the Cs point group:

D(Cs) =
⎛
⎝ 0 0 D13

0 0 D23

D31 D32 0

⎞
⎠ (2)

with four independent nonzero off-diagonal entries D13, D23,
D31, and D32. This essentially ensures the existence of a Néel-
type DMI in folded CrI3, while a Bloch-type DMI is absent
under this condition.

IV. MAGNETISM IN FOLDED CrI3

Here we show the geometry-governed magnetism in folded
CrI3 by DFT. As shown in Fig. 2(a), we consider the arm-
chair folding configuration to construct (N,θ ) folded CrI3

for N = 2,3,4 and θ = π/6, π/3, π/2, 2π/3, 5π/6, π . Both
rigid parts contain one rectangle unit of flat CrI3, which has
been tested to ensure the accuracy of the magnetic energy (see
Appendix A). The total energies per unit area of the relaxed
(N,θ ) folded CrI3 with a collinear ferromagnetic state in a
spin-polarized calculation are plotted in Fig. 2(b). The bend-
ing moduli of CrI3, determined by 2(E − E0)/A0 = ακ2 with
E0 and A0 being the total energy and surface area of the flat
unit, is fitted to be α = 1.81 eV, which is close to monolayer
graphene and transition metal dichalcogenides [62].

For the folded structures, we adopt the curvilinear
spin Hamiltonian, which contains Heisenberg exchange J,
Dzyaloshinskii-Moriya term D, and magnetic anisotropy K,
which is expressed as

H = −
∑
〈i, j〉

Ji jSi · S j −
∑
〈i, j〉

Di j · (Si × S j ) −
∑
〈i〉

Ki
(
SeN

i

)2
,

(3)
which models the interaction of an atomic unit spin moment
S at position r . The discrete spin moment |S| = 1 can
be utilized by introducing the spherical angular parameter
S = sin ϑ sinφeB + sin ϑ cosφeT + cos ϑeN with curvilinear
basis [eB, eT, eN], where eN and eT are the unit vectors in
normal and tangential directions, and eB = eT × eN is the
binormal unit vector. The Heisenberg exchange interaction is
determined by the energy differences of collinear magnetic
states, and the magnetic anisotropy is obtained by the cal-
culation of magnetization along three curvilinear coordinate
directions. For the (N,θ ) folded CrI3, the Heisenberg exchange
and magnetic anisotropy terms both decrease with the increas-
ing θ (see Fig. 3). Moreover, both of these terms are almost
positively correlated with N. We also graph the calculated J
and K values as functions of κ (see Fig. 3). J is enhanced with
increasing N for the fixed curvature, while K is almost weak-
ened with increasing N. The increase in curvature weakens the
ferromagnetic coupling, thereby leading to a reduction in the
long-range magnetic order according to the spin wave theory
[63] and facilitating the emergence of spin textures.

To precisely determine the Dzyaloshinskii-Moriya param-
eter of the folded structure, we calculate the spin spiral energy
dispersion E (q) as a function of spin spiral wave vector q,
including SOC, and obtain the evolution of DMI energy with q
(see Appendix A). For the Néel-type DMI, which is allowed in
the folded structures as discussed, the Dzyaloshinskii-Moriya
vector can be written as Di j = di j (eN × ui j ) with ui j being
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FIG. 7. (a) Sketch of the geometry with the Cartesian [x, y, z] and curvilinear [eB, eT, eN] frames of folded systems. (b) Spin textures of
(2,π ) folded CrI3. (c) Spin textures of (3,π ) folded CrI3. (d) Spin textures of (4,π ) folded CrI3.

the unit vector pointing from ri to r j . In Fig. 2(c), we show
the DMI energy EDM(q) of (N,π /2) folded CrI3 of various q
within |q| � 0.1(2π/a) with Néel-type planar spiral configu-
ration. Here the positive and negative values of q correspond
to the spin spirals of clockwise and anticlockwise chirality.
For each system, the calculated data decreases linearly with
the increase of q, indicating the existence of Néel-type DMI
in the folded structures. Interestingly, the DMI energy shows
a negative relationship with N, which is exactly the oppo-
site of the trend for the Heisenberg exchange and magnetic
anisotropy terms. Similarly, the DMI parameter d exhibits a
smooth monotonic behavior with θ , showing that the DMI
term is enhanced with increasing curvature, as plotted in
Fig. 2(d). For a fixed curvature, the DMI energy is increased
with increasing hinge length N (see Fig. 3). Further calcula-
tions show that the energy of Bloch-type DMI is inessential
(see Fig. 4), which is consistent with the symmetry analy-
sis. It is noteworthy that in the absence of SOC, the energy
dispersion of the spin spiral exhibits degeneracy for +q and
−q, with both Bloch- and Néel-type spirals having the same
energy. This result highlights the crucial role of spin-orbit
interaction in the energy contribution of DMI in (N,θ ) folded

CrI3. Moreover, SOC-meditated Néel-type DMI vanishes in
(N,2π ) folded CrI3, i.e., CrI3 nanotube (see Fig. 5).

To further elucidate the variation mechanism of SOC-
meditated DMI with curvature in folded structures, we
calculate the SOC energy difference �ESOC between opposite
spin spirals of (2,θ ) folded CrI3, as shown in Fig. 6(a). We
adopt the I atoms pointing towards the side of eN as inner
I atoms, and the I atoms on the other side as outer I atoms,
with the Cr atoms at the center in folded CrI3. It is clear
that almost all �ESOC stems from the adjacent I atoms, while
contributions from Cr atoms can be ignored. With increasing
θ , the opposite �ESOC of inner and outer I atoms cannot offset
each other, leading to an overall increase in the total DMI.
The DMI effect of folded CrI3 can also be modeled as the
sum of each Cr-I-Cr trimer, which is corresponding to the
three-site Fert-Lévy model [64], where the hopping of two
spins of magnetic atoms can induce DMI through an adjacent
nonmagnetic atom with a large SOC. The three-site Fert-Lévy
model for antisymmetric DMI is expressed as

Di jl (rli, rl j, ri j ) = −VSOC
(rli · rl j )(rli × rl j )

|rli|3|rl j |3|rl j |
. (4)

FIG. 8. Spin textures of (a) (2,π ), (b) (3,π ), and (c) (4,π ) folded CrI3 when the spin Hamiltonian includes magnetostatic interactions.
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FIG. 9. Spin textures of (a) (2,π ), (b) (3,π ), and (c) (4,π ) folded CrI3 when DMI is excluded.

Here VSOC is a SOC-governed parameter written as VSOC =
135π

32
λd �2

k3
F E2

F
sin Zd π

10 with λd , �, kF, EF, and Zd being the SOC
constant, exchange interaction parameter between the local-
ized spins and the spins of conduction electrons, Fermi vector,
Fermi energy, and the number of d electrons [64]. In the frame
of folded systems, we can further derive Eq. (4) as

D = −VSOC

∑
〈i, j〉

2 sin 2ϕ sin2 ϕ

2 eN

ri j
, (5)

in which ϕ presents the bond angle of the Cr-I-Cr trimer.
As the curvature increases, the difference between the
Cr−Iinner−Cr and Cr−Iouter−Cr bond angles also increases.
According to Eq. (5), this change in curvature is expected to
result in a corresponding variation of the DMI’s magnitude.
In Fig. 6(b), we evaluate the DMI parameter of the (2,θ )
folded CrI3 as a function of the folding angle θ using the
Fert-Lévy model, where we adopt VSOC as a constant for a
given folded system to qualitatively describe the dependence
of DMI on curvature. For (2,θ ) folded CrI3, one can see that
the DMI parameter monotonically increases with increasing
curvature, which is in good agreement with the results from
DFT calculations.

V. CHIRAL DOMAIN WALLS IN FOLDED CrI3

To investigate the effect of SOC-meditated DMI on the
static spin profiles in folded CrI3, we perform spin dynamic
simulation by solving an atomistic Landau-Lifshitz-Gilbert

FIG. 10. Spin textures of (a) (2,π ), (b) (3,π ), and (c) (4,π ) folded
CrI3 near the magnetic phase transition temperature.

equation (see Appendix A). The effective magnetic field
is modeled using a curvilinear spin Hamiltonian for each
folded structure. The hinge part is modeled by the revolution
of curvature κ (r) = κ0rey + κ0z(r)ez with the conversion of
the geometry with the Cartesian [x, y, z] to the curvilinear
[eB, eT, eN] frames, as shown in Fig. 7(a). We consider the
constant curvature in form z(r) = √

1 − r2 to correspond to
the geometry as mentioned. Figures 7(b)–7(d) display the
relaxed spin textures of (N,π ) folded CrI3 with N = 2, 3,
and 4 at 0 K, where all considered systems can hold chiral
domain walls as a ground state. Interestingly, we find that the
domain wall in the top and bottom rigid layers shifts due to
the presence of the hinge part, and the displacement decreases
with the increase of N. The chiral domain wall states are robust
in the folded systems when the magnetostatic interactions
are considered (see Fig. 8). We also adopt the curvilinear
spin Hamiltonian excluding the Dzyaloshinskii-Moriya term
(see Fig. 9). Both systems with N = 2 and 3 exhibit a com-
plete ferromagnetic state, while a deformed ferromagnetic
state with all spins pointing to eN is formed in the N = 4
system, which originates from the competition between the
Heisenberg exchange and the geometry-governed anisotropy.
The present results highlight the contribution of DMI to the
magnetic energy, leading to the nontrivial magnetochiral ef-
fects in folded structures. The phase transition temperatures at
which chiral domain walls vanish are, respectively, 11.1, 15.5,
and 9.5 K for the N = 2, 3, and 4 systems (see Fig. 10).

VI. CONCLUSION

We have performed symmetry analysis, noncollinear spin-
polarized DFT, and atomistic spin simulation to investigate the
curvature-induced DMI and corresponding magnetochiral ef-
fects in folded centrosymmetric CrI3. The results demonstrate
the influence of curvature effects on the DMI in folded CrI3

when relativistic effect is considered. More importantly, our
results show that the geometry-governed DMI in folded CrI3

is completely mediated by spin-orbit interaction, which can be
explained in the frame of the Fert-Lévy model, more profound
than the previously understanding derived from the ab initio
results [8,65]. The geometry-dependent anisotropy and DMI
contribute to the formation of chiral domain walls as the
ground state. Based on our developed curvilinear spin Hamil-
tonian and computational methods, these conclusions for CrI3

can be generalized to a wider range of 2D magnets with in-
version symmetry (see Fig. 11). Our work proposes a method
by which the origami technique can introduce antisymmetric
DMI and thereby topological spin textures in centrosym-
metric 2D magnets, which holds promise for advancing the
fundamental understanding of curvilinear magnetism and

014402-5



JIANG, GA, LI, CUI, WANG, YU, LIANG, AND YANG PHYSICAL REVIEW B 109, 014402 (2024)

FIG. 11. (a) Armchair folding configuration of CrGeTe3. (b) Total energy of spin spiral and (c) DMI energy of (3,π ) folded CrGeTe3 as a
function of spin spiral vector q when SOC is included. (d) Armchair folding configuration of Fe3GeTe2. (e) Total energy of spin spiral and (f)
DMI energy of (5,π ) folded Fe3GeTe2 as a function of spin spiral vector q when SOC is included.

offers opportunities to design and explore exotic magnetic
properties in 2D origami structures.
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APPENDIX A: CALCULATION METHODS

DFT calculations are performed with the projector aug-
mented wave method as implemented in the Vienna ab initio
simulation package [66–69]. The exchange correlation effects
are treated by the generalized gradient approximation in the
Perdew-Burke-Ernzerhof form [70]. The energy cutoff for
plane wave expansion is 350 eV, and a 4×1×1 �-centered
k-point mesh for the Brillouin zone integration is used for
the folded structures. Except for the magnetic atoms in the
rigid part, the remaining atoms in the folded structures are
fully relaxed with collinear ferromagnetic states until the
Hellmann-Feynman force acting on each atom is less than
3 meV/Å. The energy convergence criterion is set to 10−7 eV
to ensure the accuracy of magnetic interaction calculations.
Both rigid parts contain one rectangle unit of flat CrI3. Using
two rectangle units of flat CrI3 in rigid parts changes the DMI

parameter d less than 7%. The I atom is set to be the termina-
tion in both rigid parts, which results in 4N + 8 Cr atoms and
12N + 26 I atoms in the (N,θ ) folded CrI3. A vacuum region
of about 15 Å is added in both y and z directions to prevent
the artificial coupling between the adjacent periodic images.
Partly occupied 3d orbitals of Cr atoms are treated using an
additional Coulomb repulsion [71] of U = 2.65 eV [72].

To determine the Heisenberg term of the folded systems,
we first focus on the flat CrI3 monolayer. Four magnetic states,
i.e., ferromagnetic (FM), Néel-type antiferromagnetic (AFM),
stripe-type AFM, and zigzag-type AFM states are considered,
as shown in Fig. 12. A 2×1×1 supercell and an 8×16×1 k-
point mesh are used in the calculations. The DFT energy of

FIG. 12. Four magnetic states to calculate J1–J3 of flat CrI3.
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FIG. 13. Schematic of (a) Bloch- and (b) Néel-type spin spiral
used to calculate the DMI. The spin spiral wave vector q is along the
x axis.

each magnetic state can be written as

EFM = E0 − 12J1 − 24J2 − 12J3,

ENéel AFM = E0 + 12J1 − 24J2 + 12J3,

Estripe AFM = E0 − 4J1 + 8J2 + 12J3,

Ezigzag AFM = E0 + 4J1 + 8J2 − 12J3. (A1)

Here E0 is the energy independent of spin. The calculated
Ji j is J1 = 4.40 meV, J2 = 0.72 meV, and J3 = −0.30μeV,
indicating that the nearest neighbor shell contributes most
to the Heisenberg exchange interaction. Thus, for the folded
systems, we compare the energy difference between the FM
and Néel AFM states to obtain the equivalent nearest neighbor
J. For the term of Dzyaloshinskii-Moriya, we perform the
qSO method to calculate the spin spiral energy dispersion in
the reciprocal space via generalized Bloch theorem and treat
SOC in a self-consistent way within the frame of first-order
perturbation theory [73,74]. We consider a Néel-type planar
spiral configuration for the (N,θ ) folded structures with the
rotation axis R = (0, cos θ

2 , sin θ
2 ), where the spin moment Si

at position ri reads

Si =
[

cos(q · ri ),−sin(q · ri )sin
θ

2
, sin(q · ri )cos

θ

2

]
(A2)

characterized by a spiral wave vector q = (q, 0, 0) perpen-
dicular to R, as shown in Fig. 13. Since the curvature of
the hinge part is constant in our model, we adopt the DMI
parameter d of the same size for each magnetic atom in the
hinge part due to the box-function curvature profile. Thus,
the normal vector eN in the Dzyaloshinskii-Moriya vector
Di j = di j (eN × ui j ) for the considered spin spiral can be sim-
plified as eN = (0,−sin θ

2 , cos θ
2 ). Then the DMI energy can

be written as

EDM(q) =
∑
〈i, j〉

dy
i j sin(q · ri j ). (A3)

To extract the DMI contribution from total magnetic en-
ergy, the DMI energy can be further expressed by

�EDM(q)= EDM(q) − EDM(−q)

2
=

∑
〈i, j〉

dy
i j sin(q · ri j ). (A4)

For the honeycomb magnetic lattice, such as CrI3, the DMI
energy is derived as

�EDM(q) =
√

3d sin

(
qa

2

)
, (A5)

where a is the lattice constant. For spin spiral with small q
limit, Eq. (A5) can be written as

lim
q→0

�EDM(q) =
√

3

2
dqa. (A6)

We calculate the spin spiral energy dispersion within
|q| � 0.1(2π/a) and obtain d by linear fitting. For the term
of magnetic anisotropy, we focus on three main magnetic
states, i.e., magnetized along the normal direction eN (EN),
the tangential direction eT (ET), and the binormal direction
eB (EB). The magnetic anisotropy K is calculated by K =
EN − 1

2 (EB + ET).
The static spin profiles are calculated using the VAMPIRE

package [75] by solving the atomistic Landau-Lifshitz-Gilbert
equation given by

∂Si

∂t
= − γ

(1 + λ2)
[Si × Beff + λSi × (Si × Beff )], (A7)

which models the interaction of an atomic unit spin moment
Si with an effective magnetic field Beff = −1/μs∂H/∂Si. The
effective magnetic field is modeled using curvilinear spin
Hamiltonian H given by Eq. (3). The gyromagnetic ratio γ

and damping constant λ are set to be 1.76×1011 rad s−1 T−1

and 0.2. In the simulations, we reduce the magnetostatics to an
effective easy-surface anisotropy, i.e., the effective magnetic
anisotropy Keff = K− 1

2μ0M2
s directed towards the surface

normal with μ0 and Ms being the vacuum permeability and
saturation magnetization. We also include the magnetostatic
interactions and calculated magnetic anisotropy K in the atom-
istic Landau-Lifshitz-Gilbert simulations to find the ground
states of folded systems. The relaxed spin textures of (N,π )
folded CrI3 are shown. It can be seen that the chiral domain
states are robust in the folded systems with different spin
Hamiltonian, indicating that the effective magnetic anisotropy
Keff is suitable for the considered folded CrI3 systems.

APPENDIX B: FERT-LÉVY MODEL APPLIED TO THE
DMI IN FOLDED CrGeTe3 AND Fe3GeTe2

Similar to CrI3, the three-site model can also be extended
to the case of insulating CrGeTe3 and metallic Fe3GeTe2

with local curvature. The three-site Fert-Lévy model has been
widely used to explain the DMI mechanism in Cu:Mn dilute
alloys with heavy metal impurities, at an interface between
a magnetic metal and a nonmagnetic metal of large SOC,
and in the 2D case [24,42]. In these cases, the DMI aris-
ing from electron exchange scattering on the two magnetic
atoms and SOC scattering on a nonmagnetic atom with strong
SOC. According to the previous theoretical studies [76,77],
the spin model of Fe3GeTe2 can be adapted to a collec-
tive 2D model by treating three Fe layers of the Fe3GeTe2

as a whole. The calculated results have demonstrated that
within this spin model, even in the case of metallic Fe3GeTe2,
the exchange interaction remains relatively localized. Specif-
ically, the nearest neighbors make the most significant
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contributions to the exchange interaction. Thus, the three-site
model can also be extended to the case of metallic Fe3GeTe2

with local curvature, with the Te atoms as the source of SOC.

A similar situation can be found in Fe3−δGeTe2, where the
out-of-plane displacement of the middle Fe causes Fert-Lévy
DMI [78].

[1] R. Streubel, P. Fischer, F. Kronast, V. P. Kravchuk, D. D. Sheka,
Y. Gaididei, O. G. Schmidt, and D. Makarov, Magnetism in
curved geometries, J. Phys. D: Appl. Phys. 49, 363001 (2016).

[2] C. K. Safeer, E. Jué, A. Lopez, L. Buda-Prejbeanu, S. Auffret,
S. Pizzini, O. Boulle, I. M. Miron, and G. Gaudin, Spin–
orbit torque magnetization switching controlled by geometry,
Nat. Nanotechnol. 11, 143 (2016).

[3] A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel,
P. Fischer, and R. P. Cowburn, Three-dimensional nanomag-
netism, Nat. Commun. 8, 15756 (2017).

[4] M. Z. Miskin, K. J. Dorsey, B. Bircan, Y. Han, D. A. Muller,
P. L. McEuen, and I. Cohen, Graphene-based bimorphs for
micron-sized, autonomous origami machines, Proc. Natl. Acad.
Sci. USA 115, 466 (2018).

[5] H. Chen, X.-L. Zhang, Y.-Y. Zhang, D. Wang, D.-L. Bao,
Y. Que, W. Xiao, S. Du, M. Ouyang, S. T. Pantelides, and
H.-J. Gao, Atomically precise, custom-design origami graphene
nanostructures, Science 365, 1036 (2019).

[6] C. Donnelly, S. Finizio, S. Gliga, M. Holler, A. Hrabec,
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