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Density functional perturbation theory (DFPT) is a well-established method to study responses of molecules
and solids, especially responses to atomic displacements or to different perturbing fields (electric, magnetic).
Like for density functional theory (DFT), the treatment of metals is delicate, due to the Fermi-Dirac (FD)
statistics and electronic bands crossing the Fermi energy. At zero temperature, there is an abrupt transition
from occupied states to unoccupied ones, usually addressed with smearing schemes. Also, at finite temperature,
fractional occupations are present, and the occupation numbers may vary in response to the perturbation.
In this paper, we establish the characteristics of DFPT stemming from the underlying variational principle,
in the case of metals. After briefly reviewing variational DFT for metals, the convexity of the entropy function of
the occupation number is analyzed, and at finite temperature, the benefit of resmearing the FD broadening with
the Methfessel-Paxton one is highlighted. Then the variational expressions for the second-order derivative of the
free energy are detailed, exposing the different possible gauge choices. The influence of the inaccuracies in the
unperturbed wave functions from the prior DFT calculation is studied. The whole formalism is implemented in
the ABINIT software package.
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I. INTRODUCTION

Density functional perturbation theory (DFPT) has been
implemented and used for decades for the study of responses
of molecules, solids, and nanostructures to different types of
perturbations, including atomic displacements, applied elec-
tric field or magnetic field, or cell parameter changes [1–10]. It
proves a method of choice for the computation of phonon band
structures [11], linear dielectric response [12], Born effective
charges [13], thermal expansion [14,15], piezoelectricity [9],
Raman tensors [16], electro-optic effect [17], electron-phonon
[18,19] and phonon-phonon couplings [20,21], flexoelectric-
ity [22], thermodynamical [15,23], and many other properties.
The list of applications of DFPT continues to increase regu-
larly.

Many basic concepts and theorems of DFPT have been
established for a long time [1,2,4–7,24]. DFPT stems from
the Taylor expansion of quantities present in density func-
tional theory (DFT) when an external parameter is changed
by a small amount. The abovementioned properties are di-
rectly connected to the (possibly high-order) derivatives of
the energy with respect to such small parameters character-
izing the strength of the perturbations. Since the first-order
derivatives of the energy with respect to atomic displacement,
electric field, magnetic fields, and cell parameter changes,
respectively, are forces, electric dipole or electric polariza-
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tion, magnetic dipole or magnetic polarization, and stress,
their linear response to additional applied fields are linked to
second-order derivatives of the energy.

It is well known that DFT is based on a variational princi-
ple: The energy is minimized with respect to trial Kohn-Sham
wave functions. DFPT inherits also from this property of DFT
a variational principle for the second-order derivative of the
energy with respect to trial first-order wave functions [2].
While the linear-response formalism can be derived without
making explicit usage of this variational property, the quanti-
ties computed numerically, determined using iterative solvers
with some stopping criterion, are more accurate with the vari-
ational formulation than with alternative, possibly simpler,
nonvariational formulations. Also, algorithms to determine
the optimal first-order wave functions can benefit from the
variational character of second-order energy. In addition, the
variational principle is crucial for establishing higher-order
DFPT, thanks to the so-called 2n + 1 theorem [4,20,24].

The specificities of the treatment of metals within DFPT
have been established by de Gironcoli [3] based on the treat-
ment of metals in DFT. At variance with the DFT theory for
finite systems and insulators, in the DFT theory of metals, the
occupation numbers, usually fractional, must be determined.
The electronic entropy appears, and the internal energy is
replaced by the free energy. Such varying occupation num-
bers are present when dealing with finite temperature but
also appear in practice even at zero temperature to deal with
the abrupt transition between occupied states and unoccupied
states at the Fermi energy. Such a case is tackled using smear-
ing schemes that allow one to reduce the numerical burden
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of the integration of a discontinuous occupation function in
the Brillouin zone. The most efficient high-order smearing
schemes [25] have their own problems, as described by dos
Santos and Marzari [26] since the occupation function of the
energy becomes nonmonotonic.

For DFPT, de Gironcoli [3] described the specificities of
linear responses due to varying occupation numbers and en-
tropy and provided phonon band structures for Al, Pb, and Nb.
However, he did not present a variational formulation of the
second-order derivative of the free energy. This result is still
lacking in the literature. However, it had been derived, imple-
mented (at least in the ABINIT package) [27–29], and used for
many studies of metals, e.g., for computing the phonon band
structures of lead [30], bismuth [31,32], and polonium [33],
all three with spin-orbit coupling, or the electronic transport
properties of lithium [34], osmium, and osmium silicide [35],
among others.

Motivated by the interest to fill this gap but also by some
recent publications related to the response properties of metals
by Cancès et al. [36] as well as improved treatment in high-
order smearing schemes in DFT by dos Santos and Marzari
[26], in this paper, we aim to lay down the variational treat-
ment of DFPT for metals. The second-order derivative of the
free energy is formulated as a variational functional of trial
first-order wave functions and the trial first-order density ma-
trix. The second-order entropy is present in the second-order
free energy and depends on the first- and selected second-
order changes of the occupation numbers, both derived from
the first-order density matrix. Nonvariational expressions are
also presented.

The invariance of DFT for metals with respect to unitary
transformations inside the wave function space is more in-
tricate than in the case of DFT for gapped systems at 0 K
[4]. In the latter, a unitary transformation of wave functions
inside the occupied space leaves the density, total energy, and
Kohn-Sham potential invariant. In the case of metals, a unitary
transformation of the wave functions must be accompanied
by a simultaneous transformation of the (one-body) density
matrix. The wave functions might not be eigenstates of the
Hamiltonian, and the density matrix might not be diagonal.
Still, such transformed trial wave functions and the trial den-
sity matrix correspond to the same free energy and hence
minimize the free energy functional. This was developed by
Marzari, Vanderbilt, and Payne (MVP) [37] in their variational
formulation of DFT for metals, on which we will rely to derive
the variational formulation of DFPT for metals.

As outlined for DFT above, in DFPT also, several sets
of first-order wave functions (and first-order density matrix
elements for the metal case) minimize the energy, related by
some well-defined transformation rule. A choice among such
possibilities is referred to fixing the gauge, and the invariance
of the second-order free energy with respect to the gauge
choice is called the gauge freedom. The gauge freedom in the
DFPT of metals is more complicated than the one in the DFPT
of gapped systems at 0 K, and this is described as well in this
paper. The parallel and diagonal gauges are defined, extending
to the metal case the well-known results obtained for gapped
systems. However, more freedom is allowed, due to the added
variability of the density matrix. This will be described as
well, as different formulations might be of interest in different

contexts. A connection with the article by Cancès et al. [36]
will be made.

Concerning smearing schemes, we first remark that the
nonmonotonic behavior of the occupation number as a func-
tion of the energy not only induces problems at the level of
the determination of the Fermi energy, as outlined recently
by dos Santos and Marzari [26], but also makes the one-level
entropy function of the occupation number multivalued and
nonconvex. DFPT is also impacted, as the second-order free
energy might not be an extremum because of the nonpositive
definiteness of the contribution of the second-order entropy.
When a finite temperature is considered, it is shown that the
resmearing procedure [38] is a procedure in which possibly
higher-order smearing might be used without sacrificing the
monotonic behavior of the occupation function, provided the
resmearing parameter is not too large. For the resmearing
using the Methfessel-Paxton (MP) scheme [25], it is shown
that a smearing parameter smaller or equal to twice the phys-
ical electronic temperature can be used. For such a range of
parameters, the occupation function is monotonic, and the
one-level entropy is univalued and convex.

Coming to applications, in addition to the results already
available in the literature, the convergence of phonon frequen-
cies of copper with respect to the wave vector grid and to
smearing schemes is provided. For this case, one can distin-
guish two regimes: a first one, medium precision, in which
the target numerical precision is requested at the level of the
absolute value of phonon frequencies, and a second one, high
precision, in which the target is the study of the temperature
dependence of the phonon frequencies.

Finally, the impact of the precision requirement (or lack of
precision) for the unperturbed wave functions on the precision
of the second-order free energy is examined. Indeed, when
dealing with metals, in practice, the preliminary DFT calcula-
tion of the density also includes wave functions with vanishing
occupations. Depending on the stopping criterion, possibly
the highest-energy ones might not be well converged, as they
do not influence the density anyhow. Thus, the impact of lack
of precision of such wave functions in DFT is negligible. By
contrast, it is found that such a lack of numerical convergence
might have an impact in the subsequent DFPT calculations,
in agreement with the recent observation by Cancès et al.
[36]. This impact is analyzed thanks to a simple three-level
model. The error in the second-order free energy is found
to be proportional to the norm of the residual of such wave
functions. Cancès et al. [36] proposed a Schur complement
technique to deal with such a problem. At variance, increas-
ing the number of states in the underlying DFT calculation,
then filtering less-converged states to start subsequent DFPT
calculations solves the problem, if their occupation is really
negligible.

The structure of this paper is as follows. After this introduc-
tion, Sec. II deals with variational DFT for metals: The MVP
[37] variational DFT for metals is reviewed, some considera-
tions on the space of potentially occupied wave functions are
introduced, and then smearing schemes are detailed. In the
latter, it is shown that resmearing [38] the Fermi-Dirac (FD)
distribution with the MP smearing [25] at finite temperature
does not break the monotonic behavior of the occupation func-
tion, for a range of resmearing parameter. Related to Sec. II,
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Sec. S1 in the Supplemental Material [39] fixes notation prob-
lems and typos present in Ref. [38].

In Sec. III, the variational second-order free energy within
DFPT that includes the treatment of the second-order entropy
is presented. The gradient of the second-order free energy is
written and linked with the de Gironcoli [3] linear-response
DFPT approach for metals. In the Supplemental Material
[39], Sec. S2 gives a detailed derivation of the variational
second-order free energy, while Secs. S3 and S4 give some
technical details to obtain the gradients, also related to the
nonhermiticity freedom for the first-order off-diagonal density
matrix elements.

Section IV focuses on the choice of gauge. The gauge
freedom is first presented, followed by the definition and
properties of the parallel gauge as well as the definition and
properties of the diagonal gauge. The section finishes with
the complete suppression of first-order occupation matrix el-
ements. In the Supplemental Material [39], the covariance
of first-order wave functions and first-order density matrix
elements is presented in Sec. S5. Then the derivation of the
first-order density expression with modified first-order wave
functions is explained in Sec. S6, and finally, nonvariational
expressions are written, for the case of the parallel gauge, in
Sec. S7.

While the previous sections neglected the Bloch character-
istics of the first-order wave functions and energies as well as
the presence of a Brillouin zone, Sec. V upgrades such results
for explicitly periodic systems.

Section VI presents the study of some phonon frequen-
cies of copper, especially focusing on the wave vector grid
sampling and its interplay with the smearing parameter. The
medium- and high-precision regimes are distinguished. In
the Supplemental Material [39], Sec. S8 provides additional
figures.

The influence of underconverged unoccupied states on the
second-order free energy is quantified and analyzed using a
simple model in Sec. VII, with details of the mathematical
treatment given in the Supplemental Material [39], Sec. S9.

Section VIII summarizes the results.

II. VARIATIONAL DFT FOR METALS

In this section, first, the variational approach to DFT of
metals [37] is reviewed, with notations that will then be used
to treat the DFPT case. The need to define a space of po-
tentially occupied wave functions is highlighted. Smearing
schemes are the focus of the last part of this section on DFT.
The monotonic behavior of the occupation function is linked
to the convexity and single-valuedness of the entropy function
of the occupation number.

A. Variational formulation of DFT with varying occupation
numbers at finite temperature

MVP [37] introduced a variational free energy for the
DFT with varying occupation numbers at finite temperature,
especially relevant to treat metals. This approach will also be
a basis for variational DFPT. For simplicity, the formalism
is presented for nonspin-polarized systems (ns = 2 accounts
for the spin degeneracy). Generalization to spin-polarized

systems, including the noncollinear case, is trivial. In this
section as well as Secs. III and IV, one considers finite sys-
tems (with N being the total number of electrons). Periodic
systems are treated in Sec. V. Atomic (Hartree) units are used
throughout.

The MVP electronic free energy F [T ; {ψi}, {ρi j}], for a
given temperature T , is a functional of the (trial) wave func-
tions {ψi} that form an orthonormal basis set and of the (trial)
matrix representation {ρi j} of the one-particle density matrix
operator ρ̂ in this orthonormal set. Explicitly:

F [T ; {ψi}, {ρi j}] = ns

∑
i j

ρ ji〈ψi|K̂ + v̂ext|ψ j〉

+ EHxc[ρ] − T S[{ρi j}]. (1)

In this expression, the sums over i and j extend to infinity,
K̂ is the kinetic energy operator, v̂ext is the external potential
(e.g., created by the nuclei as well as any other additional
external potential), and EHxc is the DFT Hartree and exchange-
correlation energy functional of the density ρ(r), which is
defined as

ρ(r) = ns

∑
i j

ρ jiψ
∗
i (r)ψ j (r). (2)

The one-particle density matrix is Hermitian, with all its
eigenvalues fγ —occupation numbers of the corresponding
state—being between 0 and 1 for the FD entropy (see later for
the behavior of occupation numbers with high-order smearing
schemes). Here, S[{ρi j}] is the entropy, considered as a func-
tional of the density matrix elements. Explicitly,

S[{ρi j}] = ns

∑
γ

ks( fγ ) = nsTr[ks(ρ̂)], (3)

where s( f ), the one-level entropy function (adimensional),
is to be specified, and k is Boltzmann’s constant. The usual
physical situation corresponds to the FD entropy function
sFD( f ), given by

sFD( f ) = −[ f ln( f ) + (1 − f ) ln(1 − f )]. (4)

Smearing techniques, introduced for numerical reasons, will
modify such an entropy function. In what follows, equa-
tions are presented in terms of a generic s( f ) function, with
examples using the FD entropy function. The formulas for
other entropy functions are presented in Sec. II C.

The trace of the occupation matrix is constrained to N , the
number of electrons, possibly considering the spin degener-
acy:

ns

∑
i

ρii = ns

∑
γ

fγ = N. (5)

Following MVP [37], one defines the Hamiltonian matrix,
with elements:

Hi j[ρ] = 〈ψi|K̂ + v̂ext + v̂Hxc[ρ]|ψ j〉, (6)

where v̂Hxc[ρ] is a local operator, with

vHxc[ρ](r) = δEHxc[ρ]

δρ(r)
. (7)
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MVP introduced the Lagrange multiplier μ (identified to
the chemical potential) that enforces the constraint Eq. (5). It
is such that

Hi j[ρ] − kT [s′(ρ̂)]i j = μδi j, (8)

where the notation [s′(ρ̂ )]i j is used in place of
d (tr[s(ρ̂)])/dρ ji. MVP also obtained that, at the minimum, the
Hamiltonian and occupation matrices can be simultaneously
diagonalized.

Working with the diagonal Hamiltonian and occupation
matrices is convenient, but one is free to avoid diagonaliz-
ing them, the so-called gauge freedom that MVP exploited
indeed. Arbitrary unitary transformations between the wave
functions can be accompanied by adequate unitary trans-
formation of the occupation matrix, such that the density
[Eq. (2)], the entropy [Eq. (3)], and the free energy [Eq. (1)]
are invariant.

If the wave functions are chosen to diagonalize both Hamil-
tonian and density matrices, one has

Hi j[ρ] = εiδi j, (9)

and

εi − kT s′( fi ) = μ. (10)

For the FD entropy,

s′
FD( f ) = dsFD

df
= ln

(
1

f
− 1

)
. (11)

Equation 10 can be inverted to deliver the occupation num-
ber as a function of the eigenenergy:

fi = [s′]−1

(
εi − μ

kT

)
, (12)

where the notation [s′]−1 is for the reciprocal of the s′ func-
tion.

For the FD entropy function defined in Eq. (4), Eq. (12)
delivers the usual FD occupations, where

fi = fFD

(
μ − εi

kT

)
, (13)

fFD(x) = [exp(−x) + 1]−1. (14)

Note that, for consistency with the usual definitions for smear-
ing schemes, we choose the fFD(x) function to monotonically
increase from 0 to 1. Then Eq. (13) is such that, for high-
energy states (large εi), the occupation number tends rapidly
to zero exponentially.

In what follows, the choice to diagonalize the Hamiltonian
(together with the occupation matrix) will be referred to as the
diagonal gauge. In the diagonal gauge,

Ĥ |ψi〉 = (K̂ + v̂ext + v̂Hxc[ρ])|ψi〉 = εi|ψi〉. (15)

For the derivation of DFPT equations, done later, this vari-
ational formulation of DFT for metals at finite temperature
is reformulated as an unconstrained minimization, based on

Lagrange multipliers, as follows. The free energy is aug-
mented with the Lagrange contributions from both types of
constraints, namely,

F+[T ; {ψi}, {ρi j}] = F [T ; {ψi}, {ρi j}]
−

∑
i j

� jins(〈ψi|ψ j〉 − δi j )

−μ

(
ns

∑
i

ρii − N

)
. (16)

The optimal electronic free energy Fel(T ) is obtained by min-
imizing such augmented free energy:

Fel[T ] = min
{ψi},{ρi j}

F+[T ; {ψi}, {ρi j}], (17)

without specific constraints on {ψi}, {ρi j} during the mini-
mization but where the Lagrange multipliers � ji and μ are
chosen to enforce them afterwards. In this formulation as
well, unitary transforms between the wave functions and oc-
cupation matrix leave the density, entropy, and free energy
invariant. One can check that, at the minimum,

�ki =
∑

j

Hk jρ ji. (18)

In the diagonal gauge, this becomes

� ji = εiδ jiρii. (19)

B. The space of potentially occupied wave functions

In practice, first-principles calculations for metals at fi-
nite temperature (or finite smearing) only explicitly treat a
finite number of eigenstates, among which some are (nearly)
fully occupied, some have intermediate occupation numbers,
and some have vanishing occupation numbers. Occupation
numbers of the states outside of this space of potentially
occupied states are so small that they can be set to zero
and ignored. Thus, there is an active space of potentially
occupied wave functions. This space plays the same role as
the occupied state space for the first-principles treatment of
semiconductors.

This approach might not be practical when the temperature
is quite large, yielding a large number of wave functions in the
active space. However, even a temperature as high as 6000 K
(corresponding to ∼0.5 eV, which is beyond melting of all
known materials at ordinary pressure) does not induce an
unreasonable increase of the number of states compared with
the number of bands strictly needed at 0 K.

The number of potentially occupied wave functions, pocc,
is defined at the start of the computation. It must sufficiently
exceed the number of electrons N for the highest states in
this space to have vanishing occupations. Thus, instead of
minimizing Eq. (16) with the definition in Eq. (1), which
implicitly supposes that the set of {ψi} spans the whole Hilbert
space, the functional to be considered is defined in terms of a
finite number of orthonormal functions and the corresponding
finite occupation matrix elements, with i and j running from
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1 to pocc. This gives the following modified definition:

F+[T, {ψi}, {ρi j}]

= ns

pocc∑
i j

ρ jihi j + EHxc[ρ] − kT ns

pocc∑
γ

s( fγ )

−
pocc∑

i j

� jins(〈ψi|ψ j〉 − δi j ) − μ

[(pocc∑
i

nsρii

)
− N

]
.

(20)

The orthonormalization constraint only applies between
the functions belonging to the potentially occupied wave
functions. The notation Spocc will later denote that space of
functions.

C. Smearing schemes

Smearing schemes aim to decrease the numerical effort
needed to deal with rapidly varying occupation numbers when
the Brillouin zone of metals is sampled. They allow one to rely
on fewer wave vectors to obtain the same numerical precision
as without smearing. The difficulty to reach numerical con-
vergence is especially acute for a vanishing temperature since
the occupation of levels discontinuously changes from 1 to 0
at the Fermi level. Generally speaking, the occupation of an
energy level is defined through an occupation function f (x)
whose argument is the difference between the Fermi energy
and the energy of the level, rescaled by either kT , for the FD
case, or by a smearing energy σ , for pure numerical smearing
schemes. The occupation function f (x) vanishes for infinitely
negative x and tends to 1 for infinitely positive x.

As mentioned in Refs. [25,26], all such occupation func-
tions can be generated from an associated smearing function
δ̃(ε), which is normalized to 1. The related occupation func-
tion is

f (x) =
∫ x

−∞
δ̃(ε)dε, (21)

where x = μ−ε

σ
. Note that x is adimensional as well as the inte-

grand ε, while ε, μ, σ , and kT have the dimension of energy.
Here, x and ε are rescaled energies without dimensions. For
the FD case, the smearing function is

δ̃FD(x) = 1

[exp(x) + 1][exp(−x) + 1]
. (22)

The occupation function deduced from this smearing function
is given by Eqs. (13) and (14), as expected.

To obtain the entropy s( f ) as a function of the occupation,
one first defines the entropy s̃(x) as a function of the adimen-
sional x:

s̃(x) = −
∫ x

−∞
εδ̃(ε)dε. (23)

Note the slight change of notation for the entropy function of
the rescaled energy s̃ with respect to the one in Ref. [26], s for
the same quantity. Indeed, the notation s is already used in the
present context for the entropy as a function of f , see Eq. (3).
The latter had not been examined in Ref. [26].

Such a function s( f ) is deduced from Eq. (23) by using the
reciprocal of the function f defined in Eq. (21), denoted [ f ]−1

so that

s( f ) = s̃{[ f ]−1( f )}. (24)

Indeed, with definitions Eqs. (21) and (23) and the same
definition of x as in the text before Eq. (21), the relation
Eq. (12), which links the occupation number to the energy
through the derivative of the entropy as a function of the occu-
pation number, is fulfilled. Note, however, that s( f ) might be a
multivalued function in the case where the f (x) function is not
monotonically decreasing. This is encountered for advanced
smearing schemes. Also, the one-level contribution to the free
energy −T s( f ) might not be convex.

For the FD case, the corresponding −kT sFD( f ), Eq. (4), is
univalued and convex.

Beyond the FD case, the Gaussian (G) and MP smearing
functions are often encountered. We will not analyze so-called
cold smearings [40] which, for the purpose of the present anal-
ysis, exhibit the same problematic feature as the MP smearing,
namely, the nonmonotonicity of the occupation function.

For the G case, the smearing function is

δ̃G(x) = 1√
π

exp(−x2). (25)

The occupation function fG(x) is 1 + erf(x)/2. Its reciprocal
cannot be expressed easily. The entropy function of x is half
the broadening function:

s̃G(x) = 1

2
√

π
exp(−x2). (26)

This entropy function of the occupation is univalued.
For the MP broadening,

δ̃MP(x) = 1√
π

(
3

2
− x2

)
exp(−x2), (27)

fMP(x) can be >1 and <0 and is not easily expressed. It is
not monotonically increasing; hence, the sMP( f ) function is
multivalued. The corresponding entropy function of the scaled
energy is

s̃MP(x) = 1

2
√

π

(
1

2
− x2

)
exp(−x2). (28)

By convention, for the G and MP scheme, one replaces kT
by the smearing parameter σ in the definition of the individual
occupations in terms of the distribution function, Eq. (13). As
mentioned earlier, the goal of the G and MP smearings is to
provide the T = 0 properties of metals with less numerical
effort than with the sudden change of the occupation from 1
to 0 at the Fermi energy, albeit with some loss of precision,
nevertheless under control. The advantage of the MP smearing
function comes from vanishing low-order Taylor terms up to
and including the third order with respect to the smearing
parameter σ in the expansion of the correction to the free
energy due to the smearing. In the G smearing, the second
order does not vanish, while it vanishes for MP and cold
smearing. However, as mentioned above, the MP occupation
function becomes nonmonotonic.

At finite temperatures, a smearing methodology can also
help. The so-called resmearing scheme has been introduced
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to obtain physical finite-temperature quantities with decreased
numerical effort [38,41]. The resmeared delta function δ̃rsm is
defined as

δ̃rsm(y, R) =
∫

δ̃FD(y − Rz)δ̃2(z)dz, (29)

where R = σ
kT is the ratio between the smearing parameter and

the physical electronic temperature, and δ2 is the broadening
function (either the G broadening or the MP broadening in
this paper) that is convoluted with the FD broadening function
δ̃FD. While the broadening function δ2 might indeed be such a
generic function, in the remainder of this paper, we will focus
on the case δ2 = δMP.

The actual broadening function corresponding to some
physical electronic temperature T , denoted as the total
broadening in Refs. [38,41], is obtained as

δ̃tot(μ − ε, kT, σ ) = 1

kT
δ̃rsm

(
μ − ε

kT
,

σ

kT

)
, (30)

where the explicit dependence of such a function on three
arguments having the dimension of an energy has been made
clear.

While preparing this paper, it became clear that the nota-
tion in Ref. [38], to which one of us contributed, was fuzzy.
Also, several typos were present. To bypass such problems,
Sec. S1 in the Supplemental Material [39] contains a mathe-
matically rigorous rewriting of the key equations found in the
original reference.

Depending on the ratio R, the total broadening resembles
the original FD broadening (small R) or the other broadening
function δ̃2 (large R), although in the latter case, its argument
is rescaled by R, and its value is inversely rescaled by R, to
keep the integral unity.

For the specific resmearing of the FD broadening with MP
broadening function, the value R = 2 is critical since it is the
largest R value for which the total broadening is positive for
the entire range of its argument, as will be shown later. For this
reason, the resmeared function with R = 2 will be illustrated:
In the forthcoming figures, results are presented with a smear-
ing parameter σ twice as big as the energy corresponding to
the physical electronic temperature kT . Note that the authors
of Ref. [26] used R of ∼2.565 in comparing the FD and G
cases. On the one hand, they were interested in working with
the FD and G functions, while we are interested in the FD and
MP functions, and on the other hand, they based their study
on another criterion (the similarity between the G and FD
occupation function). In practice, the resmearing parameter σ

is, however, taken to be a constant, irrespective of the physical
electronic temperature.

Figure 1(a) presents the different broadening functions
mentioned above (with R = 2 and δ2 = δMP for δ̃rsm). All
functions, except MP, are positive, going smoothly from 0
to their maximum then back to 0. Only the MP broadening
exhibits negative values for some range of its argument. The
asymptotic behavior of δ̃rsm is analyzed in Sec. S1 in the
Supplemental Material [39]. It is shown there that the expo-
nentially decreasing tail of δ̃rsm changes sign at R = 2.

Similarly, Fig. 1(b) presents the different associated oc-
cupation functions, with the characteristic monotonically
increasing behavior, except for the MP scheme, and Fig. 1(c)

presents the different one-level entropy functions s̃(x), all
positive everywhere except the MP one. In the context of the
variational DFT (or DFPT), the shape of the entropy function
with the occupation as argument s( f ) is crucial. Indeed, it
enters the free energy to be minimized through the −kT s( f )
contribution of each one-electron level. Nonconvexity of this
term might induce nonconvexity of the global free-energy
functional.

The positive monotonic behavior of ∂ f
∂x is directly linked

to the convexity of the −kT s( f ) function. Indeed, using the
chain rule followed by Eqs. (21) and (23), one finds

∂s

∂ f
= ∂ s̃

∂x

∂x

∂ f
= −xδ̃(x)[δ̃(x)]−1 = −x. (31)

This equation is derived with respect to f to give

∂2s

∂ f 2
= − ∂x

∂ f
= −

(
∂ f

∂x

)−1

. (32)

Thus, if ∂ f
∂x � 0 everywhere, then also everywhere

∂2s

∂ f 2
� 0, (33)

and −kT s( f ) is convex. Here, ∂ f
∂x � 0 everywhere is also the

criterion to avoid multiple chemical potentials, as described
in Ref. [26]. This criterion is violated by the MP scheme but
fulfilled in the other schemes.

The s( f ) function is represented in Fig. 1(d) for the differ-
ent smearing schemes. The MP one is particularly interesting.
Its domain of definition extends beyond the 0–1 range, and
outside of this range, the function is multivalued, with two
branches. This multivalued function has characteristic singu-
larities at the smallest values that it can reach, where two
branches merge with a common tangent. This happens at the
critical rescaled energy x∗ at which the broadening MP func-
tion vanishes, x∗ = ±

√
3
2 . Indeed, at that value, both fMP(x)

and s̃MP(x) reach an extremum. Their curvature is identical on
the left and right of x∗, which explains the common tangent.

III. SECOND-ORDER FREE ENERGY FOR METALS

A. Variational formulation of DFPT for metals

Reference [24] describes a general framework for the per-
turbation theory of variational principles, including the case
of constraints. In Ref. [4], such a framework is applied to
DFT in the case of discretized levels and fixed occupation
numbers at 0 K. We follow the variational framework of
Ref. [24], including its notations, and generalize Ref. [4] to
varying metallic occupations. The details of the derivation are
presented in Sec. S2 in the Supplemental Material [39].

For the unperturbed wave functions and occupation matrix,
one works in the diagonal gauge: The starting wave functions
|ψ (0)

i 〉, belonging to Spocc, fulfill Eq. (15), and the unperturbed
occupation numbers are obtained from Eq. (12)—or its equiv-
alent for smearing schemes other than FD. Due to Eq. (15),
all off-diagonal elements of the unperturbed density matrix
vanish.

The augmented variational second-order free energy, a
functional of the first-order wave functions and first-order
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FIG. 1. Comparative representation of the broadening function, occupation function, and entropy functions (s̃ and s) in the Fermi-Dirac
(FD), Methfessel-Paxton (MP), Gaussian (G), and resmeared cases. The last three are displayed with rescaling factor R = 2. Also, δ2 = δMP

for the resmearing case. (a) Comparative representation of the Fermi-Dirac broadening function δ̃FD(x) with the rescaled Methfessel-Paxton
one Rδ̃MP(x/R), the rescaled Gaussian one Rδ̃G(x/R), and the rescaled smearing one Rδ̃rsm(x/R, R), with R = 2, see text, (b) Comparative rep-
resentation of various occupation functions δ̃FD(x), fMP(x/R), fG(x/R), and frsm(x/R, R), with R = 2, see text. (c) Comparative representation
of various entropyfunctions s̃FD(x), s̃MP(x/R), s̃G(x/R) and s̃rsm(x/R, R), with R = 2, see text, and (d) Comparative analysis of various entropy
functions s(f) of the occupation f.

density matrix elements, including Lagrange multipliers terms, is obtained as

F+(2)
[
T,

{
ψ

(1)
i

}
,
{
ρ

(1)
i j

}] = ns

pocc∑
i

f (0)
i F (2)

i

[
ψ

(1)
i

] + ns

pocc∑
i j

ρ
(1)
ji F (1)

i j

[
ψ

(1)
i

] + 1

2

∫∫
KHxc(r, r′)ρ (1)(r)ρ (1)(r′)drdr′

− T S(2)
[
T ;

{
ρ

(1)
i j

}] − ns

pocc∑
i j

�
(1)
ji

[〈
ψ

(1)
i

∣∣ψ (0)
j

〉 + 〈
ψ

(0)
i

∣∣ψ (1)
j

〉] − nsμ
(1)

pocc∑
i

ρ
(1)
ii , (34)

with the shorthand notations

F (2)
i

[
ψ

(1)
i

] = 〈
ψ

(1)
i

∣∣Ĥ (0) − ε
(0)
i

∣∣ψ (1)
i

〉 + 〈
ψ

(0)
i

∣∣v̂(2)
ext

∣∣ψ (0)
i

〉
+ [〈

ψ
(1)
i

∣∣v̂(1)
ext

∣∣ψ (0)
i

〉 + (c.c.)
]
, (35)

and

F (1)
i j

[
ψ

(1)
i

] = 〈
ψ

(0)
i

∣∣v̂(1)
ext

∣∣ψ (0)
j

〉 + 〈
ψ

(1)
i

∣∣Ĥ (0)
∣∣ψ (0)

j

〉
+ 〈

ψ
(0)
i

∣∣Ĥ (0)
∣∣ψ (1)

j

〉
. (36)
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The dependence of this second-order free energy F+(2) on
the zeroth-order quantities {|ψ (0)

i 〉} and { f (0)
i } is not men-

tioned explicitly, for sake of compactness. Similarly, the
dependence of the second-order entropy S(2) on { f (0)

i } is not
mentioned. This choice is made because the unperturbed sys-
tem is considered known, and one is focusing on the effect
of perturbations on the system. In Sec. VII, we will study the
effect of underconverged {|ψ (0)

i 〉}.
The temperature is explicitly mentioned as an argument of

F+(2) and S(2). They indeed depend on it directly. Moreover,
note that a change of T also affects |ψ (0)

i 〉 and { f (0)
i } and thus,

indirectly, F+(2) and S(2).
The Hartree and exchange-correlation kernel is defined as

KHxc[ρ](r, r′) = δ2EHxc[ρ]

δρ(r)δρ(r′)
. (37)

The first-order density is computed from

ρ (1)(r) = ns

pocc∑
i

f (0)
i

[
ψ

(1)∗
i (r)ψ (0)

i (r) + ψ
(0)∗
i (r)ψ (1)

i (r)
]

+ ns

pocc∑
i j

ρ
(1)
ji ψ

(0)∗
i (r)ψ (0)

j (r). (38)

As in the case of the unperturbed situation, the minimiza-
tion of the augmented second-order free energy delivers the
optimal electronic second-order free energy:

F (2)
el [T ] = min

{ψ (1)
i },{ρ (1)

i j }
F+(2)

[
T ;

{
ψ

(1)
i

}
,
{
ρ

(1)
i j

}]
. (39)

The Lagrange parameters �
(1)
ji and μ(1) in Eq. (34) must be

tuned, after minimization, so that the constraints〈
ψ

(1)
i

∣∣ψ (0)
j

〉 + 〈
ψ

(0)
i

∣∣ψ (1)
j

〉 = 0, (40)

for i and j in Spocc, and

pocc∑
i

ρ
(1)
ii = 0 (41)

are enforced.

The second-order entropy term, evaluated with zeroth- and
first-order elements of the density matrix (no second-order
elements, see Ref. [4,24]) needs to be worked out carefully.
Indeed, although none of the second-order elements of the
density matrix should be considered (following Ref. [24]),
the eigenvalues of the density matrix will be modified up to
second order from first-order variations of the density matrix,
and this will have an effect on the evaluation of the trace
present in the second-order entropy term. From Eq. (3),(

S
[{

ρ
(1)
i j

}])(2) = ns

∑
γ

k[s( fγ )](2)

= ns

∑
γ

k

{
s′[ f (0)

γ

]
f (2)
γ + s′′[ f (0)

γ

] [
f (1)
γ

]2

2

}
.

(42)

In the FD case, the first-order derivative of s with respect
to its argument is given by Eq. (11), while the second-order
derivative is

s′′
FD( f ) = d2sFD

df 2
= − 1

(1 − f ) f
, (43)

a function that is negative for all values of f between 0 and 1,
with negative curvature in this range, and that diverges at both
0 and 1. Considering the −kT prefactor of the second-order
entropy in the augmented second-order free energy, Eq. (34),
the s′′ term gives a positive contribution to that second-order
free energy. The derivatives of occupation matrix eigenvalues
f (1)
γ and f (2)

γ are to be computed from f (0)
i and ρ

(1)
i j , excluding

any higher-order contribution from the occupation matrix,
in line with the general DFPT formalism [4,24]. The eigen-
values fγ are computed by diagonalizing the ρ matrix, and
similarly for their perturbation expansion, expressed in terms
of Sternheimer equations of different orders. The first-order
eigenvalues are found easily using the Hellmann-Feynman
theorem [42,43]:

f (1)
γ = ρ (1)

γ γ , (44)

while the second-order eigenvalues are obtained as

f (2)
γ = ρ (2)

γ γ −
pocc′∑

i

∣∣ρ (1)
iγ

∣∣2

f (0)
i − f (0)

γ

, (45)

where the prime superscript to the summation sign means that the sum over i excludes the vanishing denominator case. The
latter equation is valid in the nondegenerate case but might be generalized to the degenerate case through degenerate perturbation
theory. Equation (45) contains the second-order ρ (2)

γ γ that must be discarded in the context of the computation of Eq. (42) and its
contribution to Eq. (34), as mentioned previously. Thus, the second-order entropy contribution is

−T S(2)
[{

ρ
(1)
i j

}] = −kT ns

⎧⎨
⎩−

pocc′∑
i j

s′[ f (0)
j

] ∣∣ρ (1)
i j

∣∣2

f (0)
i − f (0)

j

+
pocc∑

i

s′′[ f (0)
i

] [
ρ

(1)
ii

]2

2

⎫⎬
⎭, (46)

where the prime superscript to the summation sign means that the double sum over i and j excludes the vanishing denominator
case. It can be further worked out, using Eqs. (10) and (32), eliminating the s function and its derivatives, then using the
hermiticity of the ρ̂ (1) operator:

−T S(2)
[{

ρ
(1)
i j

}] = −ns

⎧⎨
⎩

pocc′∑
i j

ε
(0)
i − ε

(0)
j

f (0)
i − f (0)

j

∣∣ρ (1)
i j

∣∣2

2
+

pocc∑
i

[
∂ f

∂x

∣∣∣∣
x=ε

(0)
i −μ(0)

]−1 [
ρ

(1)
ii

]2

2

⎫⎬
⎭. (47)
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With this explicitation of the second-order entropy, the
expression of the second-order variational free energy in
Eqs. (34)–(36) is complete.

Quadratic terms in {ψ (1)
i } appear in Eq. (35) and in the Hxc

contribution, the third term of Eq. (34). Quadratic terms in
{ρ (1)

i j } appear in the entropy contribution, Eq. (47), as well
as in the Hxc contribution. Also, bilinear terms in {ψ (1)

i } and
{ρ (1)

i j } appear in the second term of Eq. (34) and in the Hxc
contribution.

The whole expression must be definitely positive with re-
spect to changes of {ψ (1)

i } and {ρ (1)
i j } taken in their quadratic/

bilinear contribution. For a monotonically decreasing f (x)
function, the prefactor of ρ

(1)
i j or ρ

(1)
ii in Eq. (46) [or Eq. (47)]

is positive, and these contributions are convex. The situation
is also clear for the KH contribution to Eq. (34) but not so
for the whole KHxc. Indeed, while KH is a positive-definite
kernel, the kernel Kxc is not (even Kxc is definite-negative in
the local density approximation). To finalize the analysis of
the extremal character of Eq. (34), we also need to address the
quadratic term in ψ

(1)
i . This will be done when discussing the

gauge choices.

B. Minimization of the second-order free energy

The second-order free energy F+(2), Eq. (34), can now be
minimized, by computing the gradients with respect to the
variables {ψ (1)

i } and {ρ (1)
i j }. The need to impose the Hermitian

character of {ρ (1)
i j } might seem to yield some complication.

However, this can be bypassed by generalizing Eq. (34) to
non-Hermitian {ρ (1)

i j }, as is done in Supplemental Material
[39] Sec. S3. The gradients are explicitly written in Supple-
mental Material [39] Sec. S4. At the minimum, the gradients
vanish, and one finds the following equations, which are in-
dependent of the choice of gauge. Depending on the gauge,
such expressions might further simplify. This will be seen in
Sec. IV.

Imposing zero diagonal occupation gradient delivers

ρ
(1)
ii = ∂ f

∂ε

∣∣∣∣
ε

(0)
i −μ(0)

[
ε

(1)
i − μ(1)

]
, (48)

while for the case of off-diagonal occupation gradients, one
gets

ρ
(1)
i j = f (0)

i − f (0)
j

ε
(0)
i − ε

(0)
j

〈
ψ

(0)
i

∣∣Ĥ (1)
∣∣ψ (0)

j

〉
− [

f (0)
i − f (0)

j

][〈
ψ

(1)
i

∣∣ψ (0)
j

〉 − 〈
ψ

(0)
i

∣∣ψ (1)
j

〉]
, (49)

where

Ĥ (1) = v̂
(1)
ext +

∫
KHxc[ρ](r, r′)ρ (1)(r′)dr′. (50)

Imposing zero projected gradient of F+(2) with respect to
〈ψ (1)

i | in the Spocc space gives an expression for the first-order

Lagrange multipliers:

�
(1)
ki = f (0)

i

{[
ε

(0)
k − ε

(0)
i

]〈
ψ

(0)
k

∣∣ψ (1)
i

〉
+ 〈

ψ
(0)
k

∣∣Ĥ (1)
∣∣ψ (0)

i

〉} + ρ
(1)
ki ε

(0)
k . (51)

The diagonal elements are

�
(1)
ii = f (0)

i ε
(1)
ii + ρ

(1)
ii ε

(0)
i . (52)

Imposing zero projected gradient of F+(2) with respect
to 〈ψ (1)

i | out of the Spocc space gives the usual Sternheimer
equation of DFPT [4]:

P̂⊥
[
Ĥ (0) − ε

(0)
i

]
P̂⊥

∣∣ψ (1)
i

〉 = −P̂⊥Ĥ (1)
∣∣ψ (0)

i

〉
. (53)

This is also directly connected to a key equation in the work
of de Gironcoli [3], the projection of his Eq. (11) in the
space perpendicular to the active space of unperturbed wave
functions.

IV. THE DIFFERENT GAUGES

A. The gauge freedom

From the very start, the diagonal gauge has been chosen
for the unperturbed wave functions and occupations, namely,
Eq. (15), giving Eq. (19) and

ρ
(0)
i j = δi j f (0)

i , (54)

Ĥ (0)
∣∣ψ (0)

j

〉 = ε
(0)
j

∣∣ψ (0)
j

〉
, (55)

and

�
(0)
k j = f (0)

j δk jε
(0)
j . (56)

However, no gauge choice has been made for the first-order
quantities, while there is indeed a gauge freedom originating
from the possibilities of a unitary transform in the starting
problem. The constraints (to be fulfilled whatever the gauge)
are Eqs. (40) and (41). Equation (40) fixes the symmetric part
of the scalar product between the zeroth- and first-order wave
functions. However, the asymmetric part of the scalar product
between the zeroth- and first-order wave functions is not fixed:〈

ψ
(1)
i

∣∣ψ (0)
j

〉 − 〈
ψ

(0)
i

∣∣ψ (1)
j

〉 = Ai j . (57)

We first examine the consequences of choosing Ai j = 0,
which is called the parallel gauge for the first-order wave
functions, then examine other possibilities. Note that Ĥ (1),
ρ (1), and F (2) must be invariant under such a choice. Section
S5 in the Supplemental Material [39] shows how the first-
order wave functions and occupation matrix elements change
concurrently.

B. The parallel gauge

First-order wave functions in the parallel gauge are noted
|ψ (1)

||,i 〉, like for the first-order density matrix elements. One
imposes 〈

ψ
(0)
i

∣∣ψ (1)
||, j

〉 = 0 (58)

when i and j ∈ Spocc. The second-order free energy F+(2),
Eqs. (34)–(36), simplifies: The last two contributions to
Eq. (36) vanish as well as the fifth term of Eq. (34).
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One gets

F+(2)
[
T ;

{
ψ

(1)
||,i

}
;
{
ρ

(1)
||,i j

}] = ns

pocc∑
i

f (0)
i

{〈
ψ

(1)
||,i

∣∣Ĥ (0) − ε
(0)
i

∣∣ψ (1)
||,i

〉 + 〈
ψ

(0)
i

∣∣v(2)
ext

∣∣ψ (0)
i

〉 + [〈
ψ

(1)
||,i

∣∣v(1)
ext

∣∣ψ (0)
i

〉 + (c.c.)
]}

(59a)

+ ns

pocc∑
i j

ρ
(1)
||, ji

〈
ψ

(0)
i

∣∣v(1)
ext

∣∣ψ (0)
j

〉 + 1

2

∫∫
KHxc(r, r′)ρ (1)(r)ρ (1)(r′)drdr′ (59b)

− ns

2

pocc′∑
i j

ε
(0)
i − ε

(0)
j

f (0)
i − f (0)

j

∣∣ρ (1)
||,i j

∣∣2 − ns

2

pocc∑
i

∂ε

∂ f

∣∣∣∣∣
f (0)
i

[
ρ

(1)
||,ii

]2 − nsμ
(1)

pocc∑
i

ρ
(1)
||,ii. (59c)

The analysis of the extremal character of F+(2), started at
the end of Sec. III A, can be pursued. Indeed, the quadratic
term in ψ

(1)
||,i in Eq. (59a):〈

ψ
(1)
||,i

∣∣Ĥ (0) − ε
(0)
i

∣∣ψ (1)
||,i

〉
, (60)

is obviously convex since ψ
(1)
||,i can be decomposed in the

basis of eigenvectors of Ĥ (0) and has only components with
eigenenergies ε

(0)
j higher (or equal) to ε

(0)
i (see details in

Sec. S7 in the Supplemental Material [39]).
The combination of KHxc with the positive-definiteness of

Eq. (60) and the ones of Eqs. (59b) and (59c) (discussed at
the end of Sec. III A) allows one to better understand the F (2)

extremal character. In any case, this property is also linked to
the extremal character of the unperturbed F .

Let us now examine the equations at the minimum in
the parallel gauge. Some of them do not change: Eq. (48)
is unchanged, and ρ (1) is still obtained from Eq. (38). The
off-diagonal first-order density matrix gradients, see Eq. (49),
are simplified and deliver at the minimum:

ρ
(1)
||,i j = f (0)

i − f (0)
j

ε
(0)
i − ε

(0)
j

〈
ψ

(0)
i

∣∣Ĥ (1)
∣∣ψ (0)

j

〉
. (61)

The projected gradient of the first-order wave functions in
the Spocc space, Eq. (51), becomes

�
(1)
ki = f (0)

i

〈
ψ

(0)
k

∣∣Ĥ (1)
∣∣ψ (0)

i

〉 + ρ
(1)
||,kiε

(0)
k . (62)

C. The diagonal gauge

Is it possible to choose a gauge where all the matrix
elements ρ

(1)
i j vanish? Indeed, this would bring back the

formalism for metals to the one found for gapped systems,
without modification of the occupations.

Unfortunately, it is not possible to adjust the diagonal val-
ues of ρ (1) thanks to a choice of gauge. Indeed, whatever the
gauge,

ρ
(1)
ii = ρ

(1)
||,ii = ∂ f

∂ε

∣∣∣∣∣
ε

(0)
i −μ(0)

[
ε

(1)
i − μ(1)

]
. (63)

If some states are partially occupied, ∂ f
∂ε

does not vanish, and

thus, also ρ
(1)
ii does not vanish (except possibly due to sym-

metry reasons). By contrast, for the nondiagonal elements, it
is possible to impose

0 = ρ
(1)
||, ji − 1

2 Aji
[

f (0)
j − f (0)

i

]
. (64)

This choice will be called the diagonal gauge. The relation
between the diagonal and parallel gauge wave functions is

∣∣ψ (1)
di

〉 = ∣∣ψ (1)
||,i

〉 − pocc′∑
j

〈
ψ

(0)
j

∣∣Ĥ (1)
∣∣ψ (0)

i

〉
ε

(0)
j − ε

(0)
i

∣∣ψ (0)
j

〉
. (65)

Then |ψ (1)
di 〉 fulfills

P̂⊥,i
[
Ĥ (0) − ε

(0)
i

]
P̂⊥,i

∣∣ψ (1)
di

〉 = −P̂⊥,iĤ
(1)

∣∣ψ (0)
i

〉
, (66)

that is, the Sternheimer equation, in the diagonal gauge. The
notation P̂⊥,i is for the projector on the space perpendicular to
the unperturbed state i. Also,〈

ψ
(1)
di

∣∣ψ (0)
j

〉 + 〈
ψ

(0)
i

∣∣ψ (1)
d j

〉 = 0. (67)

The second-order free energy can be computed in the di-
agonal gauge and simplifies due to the constraint in Eq. (67).
Equations (34)–(36) become

F+(2)[T,
{
ψ

(1)
di

}
,
{
ρ

(1)
dii

}] = ns

pocc∑
i

f (0)
i

{〈
ψ

(1)
di

∣∣Ĥ (0) − ε
(0)
i

∣∣ψ (1)
di

〉 + 〈
ψ

(0)
i

∣∣v̂(2)
ext

∣∣ψ (0)
i

〉 + [〈
ψ

(1)
di

∣∣v̂(1)
ext

∣∣ψ (0)
i

〉 + (c.c.)
]}

+ ns

pocc∑
i

ρ
(1)
dii

〈
ψ

(0)
i

∣∣v̂(1)
ext

∣∣ψ (0)
j

〉 + 1

2

∫∫
KHxc(r, r′)ρ (1)(r)ρ (1)(r′)drdr′

− ns

2

pocc∑
i

∂ε

∂ f

∣∣∣∣∣
f (0)
i

[
ρ

(1)
dii

]2 − nsμ
(1)

pocc∑
i

ρ
(1)
dii , (68)
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with

ρ (1)(r) = ns

{ pocc∑
i

ρ
(1)
dii ψ

∗(0)
i (r)ψ (0)

i (r) + f (0)
i

[
ψ

∗(1)
di (r)ψ (0)

i (r) + ψ
∗(0)
i (r)ψ (1)

di (r)
]}

. (69)

Note the presence of only the diagonal elements of ρ (1) in
both Eqs. (68) and (69).

D. Complete suppression of first-order
occupation matrix elements

The diagonal gauge is numerically inconvenient because
of the presence of the denominator ε

(0)
j − ε

(0)
i in Eq. (65),

so that the corresponding term can become very large for
small differences, while the contributions of pairs i j and ji
will nearly cancel each other in Eqs. (67) and (69). Also,
one would prefer to use the same formula (hence the same
coding) to build ρ (1)(r) as in the case of insulators, with the
only modification being the presence of occupation numbers:

ρ (1)(r) = ns

pocc∑
i

f (0)
i

[
ψ

∗(1)
mod,i(r)ψ (0)

i (r) + ψ
∗(0)
i (r)ψ (1)

mod,i(r)
]
.

(70)

This can be achieved as follows. Instead of Eq. (65), one
defines

∣∣ψ (1)
mod,i

〉 = ∣∣ψ (1)
||,i

〉 + pocc∑
j

�
[

f (0)
i , f (0)

j

]

× f (0)
j − f (0)

i

f (0)
i

〈
ψ

(0)
j

∣∣Ĥ (1)
∣∣ψ (0)

i

〉
ε

(0)
j − ε

(0)
i

∣∣ψ (0)
j

〉
, (71)

where �[ f (0)
i , f (0)

j ], to be defined later, is such that

�
[

f (0)
i , f (0)

j

] + �
[

f (0)
j , f (0)

i

] = 1, (72)

�
[

f (0)
i = 0, f (0)

j

] = 0. (73)

This allows one to avoid the divergence in Eq. (71). Note
that, when f (0)

i = f (0)
j ,

�
[

f (0)
i , f (0)

j

] = 1
2 . (74)

Also, in Eq. (71), one has to understand that

f (0)
j − f (0)

i

ε
(0)
j − ε

(0)
i

= ∂ f

∂ε

∣∣∣∣
ε

(0)
i

(75)

when ε
(0)
j = ε

(0)
i .

In principle, the occupation numbers are positive, but this
is broken in case of advanced smearing schemes. Thus, the
function � should also be defined outside of the 0 � f (0) � 1
range.

In the Supplemental Material [39], Sec. S6, it is checked
that the condition expressed by Eq. (72) insures that the com-
putation of Eq. (70) delivers the correct ρ (1), equal to the one
obtained in the parallel gauge. Similarly, one can show that
the terms linear in ψ

(1)
i and ρ

(1)
ji in Eq. (59a) are equivalent

in the parallel gauge or with the modified wave functions. By
contrast, for the evaluation of F+(2), the quadratic terms in
ψ

(1)
||,i in Eq. (59a) are not left invariant. Instead of correcting

them, it is better to stick with the formula for F+(2) in the
parallel gauge.

In ABINIT, the following � function is implemented:

�( fi, f j ) = H (| fi| − | f j |), (76)

where H (x) is the Heaviside step function, with value 1
2 at

x = 0:

H (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x > 0
1
2 x = 0

0 x < 0.

(77)

The advantage of this formulation, beyond satisfying
Eqs. (72) and (73) trivially, comes from the fact that the sum∑pocc

j in Eq. (71) includes only the wave functions |ψ (0)
j 〉

with absolute occupation lower than the one of |ψ (0)
i 〉, which

translates usually [when f (ε) is a monotonically decreasing
function of ε, bounded by 0 and 1] into energy ε

(0)
j higher

than ε
(0)
i . This yields some CPU time savings, about a factor

of two in that operation, instead of doing the sum
∑pocc

j on all
states.

In practice, the parallel gauge first-order wave functions
|ψ (1)

||,i 〉 are computed, at fixed Ĥ (1), and then |ψ (1)
mod,i〉 is com-

puted, which allows us afterwards to compute ρ (1). The
computation of the second-order free energy can be done
using the parallel gauge formula Eqs. (59a)–(59c), which is
variational.

V. PERIODIC SYSTEMS

Although the occupation numbers and the density matrix
have been explicitly treated, the DFT and DFPT formulas pre-
sented until now are valid for the case of finite systems, with
a set of discretized levels where the occupation number varies
with temperature according to the FD statistics. Systems are
now treated with lattice periodicity, hence corresponding to
the case of extended metals. The above theory is adapted to
such a case, with treatment of Brillouin zone integral and the
appearance of a continuous band structure as a function of the
wave vector. Notations are obvious adaptations to the metallic
case of those from Ref. [5], Appendix A. One focuses first on
DFT then on DFPT.
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A. DFT for metallic periodic systems

The DFT electronic free energy per unit cell is written

F [T ; {unk}, {ρnmk}] = ns0

(2π )3

∫
BZ

∑
nm

ρnmk〈umk|K̂kk + v̂ext,kk|unk〉dk + EHxc[ρ] − T S[{ρnmk}]. (78)

This is a generalization of Eq. (1) to periodic solids. The
matrix element of the kinetic operator and external potential
operator is evaluated over the primitive cell with volume 0.
The Hartree and exchange-correlation energy EHxc[ρ] is also
evaluated for one primitive cell as well as for the entropy.
The u’s are periodic parts of Bloch wave functions. The wave
vector k integral is performed over the Brillouin zone, with
volume (2π )3

0
. Here, n and m are band indices. The expression

of the electronic density is

ρ(r) = ns

(2π )3

∫
BZ

∑
nm

ρnmku∗
mk(r)unk(r)dk. (79)

In Eqs. (78) and (79), the wave functions are normalized as
follows:

〈umk|unk〉 = 1

0

∫
0

umk(r)∗unk(r)dr = δmn. (80)

The Hamiltonian and occupation matrix can be simultane-
ously diagonalized, as in the discrete situation, with

Ĥkk|unk〉 = (K̂kk + v̂ext,kk + v̂Hxc,kk[ρ])|unk〉
= εnk|unk〉. (81)

Minimization of the free energy yields the same relationship
between the eigenenergy and occupation number as in the
discrete case, Eq. (12).

In this diagonal gauge, the Brillouin zone integral enter-
ing the electronic density can be transformed to an energy
integral, as follows. The energy-resolved electronic density is
defined as

ρ(r, ε) = ns

(2π )3

∫
BZ

∑
n

δ(ε − εnk )u∗
nk(r)unk(r)dk, (82)

such that

ρ(r) =
∫ +∞

−∞
f

(
μ − ε

kT

)
ρ(r, ε)dε. (83)

B. DFPT for metallic periodic systems

DFPT for periodic systems allows one to treat perturba-
tions that are characterized by a wave vector q: Like Bloch
wave functions, they have a periodic part and a phase. In
Sec. IV of Ref. [5], the strategy to deal with such generic
perturbations is explained and involves factorizing the phase
in all DFPT equations. We keep the same notations as in that
reference and proceed with the systematic generalization of
the quantities developed in the DFPT for varying occupations,
as obtained in the previous sections, for the parallel gauge
case. The generalization to other gauges proceeds in a similar
way.

Starting with first-order quantities, one finds that Eq. (58)
becomes 〈

u(0)
mk+q

∣∣u(1)
||,nk,q

〉 = 0 [m, n ∈ Spocc], (84)

which is like eq. (43) of Ref. [5]. For Eq. (61), one defines

ε
(1)
mk+q,nk = 〈

u(0)
mk+q

∣∣Ĥ (1)
k+q,k

∣∣u(0)
nk

〉
, (85)

then

ρ
(1)
||,mk+q,nk = f (0)

mk+q − f (0)
nk

ε
(0)
mk+q − ε

(0)
nk

ε
(1)
mk+q,nk. (86)

Equation (38) becomes (see eq. (44) of Ref. [5]):

ρ̄ (1)
q (r) = 1

(2π )3

∫
BZ

ns

[pocc∑
nm

ρ
(1)
||,mk+q,nku∗(0)

nk (r)u(0)
mk+q(r) + 2

pocc∑
m

f (0)
mk u∗(0)

mk (r)u(1)
mk,q(r)

]
dk, (87)

where ρ̄ (1)
q (r) is the periodic part of the first-order density change. The Sternheimer equation in the periodic case, coming from

Eq. (53), is

P̂⊥k+q
[
Ĥ (0)

k+q,k+q − ε
(0)
mk

]
P̂⊥k+q

∣∣u(1)
||,mk,q

〉 = −P̂⊥k+qĤ (1)
k+q,k

∣∣u(0)
mk

〉
, (88)

where

Ĥ (1)
k+q,k = v̂

(1)
ext,k+q,k +

∫
KHxc[ρ](r, r′)ρ̄ (1)

q (r′) exp[−iq(r − r′)]dr′. (89)

Equations (88) and (89), respectively, can be compared with Eqs. (45) and (46) of Ref. [5]. The two Sterneimer equations are
identical, while the definition of Ĥ (1)

k+q,k is similar, although in Ref. [5], an additional term is also coming from a possible
dependence of the Hartree and exchange-correlation potential on the perturbation, neglected in the present account for the sake
of simplicity but implemented in ABINIT.
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Let us now examine the second-order free energy F+(2). For a nonperiodic perturbation, i.e., q �= 0, all diagonal elements of
ε (1) or ρ

(1)
|| vanish. For such a case, Eq. (59c) becomes

F+(2)
el,−q,q

[
T,

{
u(1)

||
}
,
{
ρ

(1)
||

}]

= 0

(2π )3

∫
BZ

ns

{pocc∑
m

f (0)
mk F (2)

mk

[
u(1)

||
] + 1

2

pocc∑
mn

[
ρ

(1)
||,nk,mk+q

〈
u(0)

m,k+q

∣∣v̂(1)
ext,k+q,k

∣∣u(0)
nk

〉 + (c.c.)
]}

dk

+ 1

2

∫
0

∫
KHxc(r, r′)ρ̄∗(1)

q (r)ρ̄ (1)
q (r′) exp[−iq(r − r′ )]drdr′ − ns

2

0

(2π )3

∫
BZ

pocc∑
mn

ε
(0)
m,k+q − ε

(0)
nk

f (0)
m,k+q − f (0)

nk

∣∣ρ (1)
||,mk+q,nk

∣∣2
dk, (90)

where

F (2)
mk

[
u(1)

||
] = 〈

u(1)
||,mk,q

∣∣Ĥ (0)
k+q,k+q − ε

(0)
mk

∣∣u(1)
||,mk,q

〉
+ 〈

u(0)
mk

∣∣v̂(2)
ext,k,k

∣∣u(0)
mk

〉
+ [〈

u(1)
||,mk,q

∣∣v̂(1)
ext,k+q,k

∣∣u(0)
mk

〉 + (c.c.)
]
. (91)

Equations (90) and (91) can be compared with Eq. (42) in
Ref. [5]. In the latter, three additional terms also come from a
possible dependence of the Hartree and exchange-correlation
potential on the perturbation, also not included in the present
account, like in the equation for the first-order Hamiltonian.
Also, the dependence of F+(2)

el,−q,q on q is not mentioned in
Eq. (90), for the sake of simplicity. By the same token, the
q dependence is also not indicated for the second-order F (2)

mk .
By contrast, v̂

(2)
ext,k,k has no q dependence, see Eq. (49) in

Ref. [5].
The commensurate perturbation case, that is, either q = 0,

or q is a vector of the reciprocal lattice, is quite similar to the
case of finite systems, so the explicit formula is obvious and
will not be written here.

VI. APPLICATIONS

As mentioned in the introduction, there have been many
different applications of the formalism presented in the pre-
vious sections. However, in such studies, usually, results have
been presented with little or no emphasis on understanding
and characterizing the convergence characteristics with re-
spect to the temperature (or with respect to the smearing
energy) jointly with the sampling of the Brillouin zone. Inter-
estingly, the target precision of the calculation, or its purpose,
is seen to play an important role in the definition of the
convergence regime.

In the following, the phonon frequencies of copper at
the X point in the Brillouin zone, for both transverse and
longitudinal modes, are taken as examples. The Perdew-
Burke-Ernzerhof exchange-correlation functional is used,
with the optimized norm-conserving Vanderbilt pseudopoten-
tial [44] from the PSEUDO-DOJO [45], and an energy cutoff
of 46.0 Ha. Bulk copper metal is face-centered cubic, with
optimized lattice parameter 3.63 Å for the conventional cell
edge. Calculations have been done with ABINIT v9.8.3.

Computing the phonon frequencies is often done with a
target of 1 cm−1. This will be our reference target indeed
for this property. Such precision is not difficult to reach and
corresponds to a range of parameters that might be called

medium precision. However, one might also be interested in
the examination of the specific change of phonon frequencies
as a function of electronic temperature. The changes are much
smaller, and it is much more demanding to reliably obtain
such temperature dependence. This regime is called high pre-
cision.

In Fig. 2, the phonon frequencies are presented, as a func-
tion of the discreteness of the grid used to sample the Brillouin
zone. One targets the estimation of the phonon frequencies at
0 K. The FD broadening is used here only for the purpose of
alleviating some of the numerical burden.

The precision obtained for the longitudinal and transverse
frequencies, for the same parameters of the computation, is
quite different. With the coarse 4 × 4 × 4 mesh at the lowest
temperature (50 K), the longitudinal frequency (lower panel)
is not so bad and already close to the target precision of
1 cm−1. At variance, for such a coarse grid, the transverse
frequency is hardly significant. Moreover, the computation
of the low-temperature phonon frequencies does not need a
low temperature: Indeed, for the larger grid used in Fig. 2,
26 × 26 × 26, it is seen that the effect of the temperature is
very small; going from 50 to 2000 K modifies the phonon
frequencies by �1 cm−1 for such a grid. Hence, the large
smearing temperature of 2000 K can be used for the coarser
grids; the low-temperature phonon frequency is obtained well
within the target precision of 1 cm−1

Being more quantitative, with a small broadening temper-
ature of 50 K, one needs a 16 × 16 × 16 wave vector grid to
reach the target precision for the transverse mode frequency
(see the inset), while for a broadening temperature of 2000 K,
the same precision is obtained with a 8 × 8 × 8 wave vector
grid. This amounts to a large savings of computational re-
sources. Computing time and memory (or disk space) scale
indeed linearly with the number of wave vectors in the Bril-
louin zone. Hence, the speed-up obtained by using the coarser
grid instead of the fine grid is about an order of magnitude.

Figure 3 presents results obtained with the resmearing
scheme (FD statistics and MP smearing), where the MP
smearing parameters correspond to a temperature of 3000 K.
One sees that, irrespective of the physical electronic temper-
ature value, the phonon frequencies are converged within the
target value for a 8 × 8 × 8 wave vector grid.

Let us now turn to the high-precision regime, for which
the target is to obtain the change of phonon frequencies as
a function of the physical electronic temperature. Using the
4 × 4 × 4, 8 × 8 × 8, or 16 × 16 × 16 wave vector grid does
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[Nx, Ny, Nz ]

[Nx, Ny, Nz ]

FIG. 2. Phonon frequencies as a function of the wave vector
mesh, using the Fermi-Dirac statistics, across a range of physical
electronic temperatures (50–2000 K). The inset provides a closer
view of the 160–172 cm−1 range. The horizontal axis defines the
linear discretization Nx = Ny = Nz of these three-dimensional wave
vector meshes [Nx , Ny, Nz]. (a) Transverse phonon frequencies (b)
Longitudinal phonon frequencies.

not yield meaningful temperature dependence of these phonon
frequencies. Such a temperature dependence can be obtained
with much finer grids of 30 × 30 × 30 or even 42 × 42 × 42
(for the latter, see Supplemental Material [39] Sec. S8).

Figure 4 presents the phonon frequencies as a function
of the physical temperature, for different values of the MP
broadening parameter, again for the transverse as well as
longitudinal phonon modes. The scale of this figure is quite
different than the previous figures. Indeed, the change of
phonon frequencies from a low temperature to the highest
temperature (2000 K) is on the order of 0.5 cm−1 for the
frequency of the transverse mode and even smaller for the
frequency of the longitudinal mode, as seen previously. Thus,
the target precision must be much smaller as well. Having in
mind the description of the global behavior, one sees that,
for MP broadening < 3000–4000 K, at small physical elec-
tronic temperature, there are considerable deviations from the

[Nx, Ny, Nz ]

[Nx, Ny, Nz ]

FIG. 3. Phonon frequencies as a function of the wave vec-
tor mesh obtained with the resmearing scheme (broadening value
3000 K), across physical electronic temperatures from 50 to 2000 K.
The horizontal axis defines the linear discretization Nx = Ny = Nz

of these three-dimensional wave vector meshes [Nx , Ny, Nz]. (a)
Transverse phonon frequencies (b) Longitudinal phonon frequencies.

expected parabolic behavior, for this very fine 30 × 30 × 30
wave vector grid. In Sec. S8 in the Supplemental Material
[39], an even finer 42 × 42 × 42 grid is used. However, with-
out MP broadening, the behavior is not guaranteed to be
even qualitatively correct. We have not pushed beyond such
a 42 × 42 × 42 grid.

VII. UNDERCONVERGED GROUND-STATE
WAVE FUNCTIONS

Until now, all the formulas in DFPT assume that the un-
perturbed wave functions ψ

(0)
i are perfect solutions to the

unperturbed Schrödinger equation. In practice, while the oc-
cupied ones are usually excellent indeed, the unoccupied ones
can be loosely converged since they do not contribute to the
ground-state unperturbed total energy or density. They might
be more difficult to converge than the lower-lying ones, espe-
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FIG. 4. Phonon frequencies obtained from various Methfessel-
Paxton (MP) broadening values (0–5000 K), as a function of physical
electronic temperatures (50–2000 K), obtained with a 30 × 30 × 30
wave vector grid. (a) Transverse phonon frequencies (b) Longitudinal
phonon frequencies.

cially if there is a degeneracy between the highest state in the
partially occupied space and the lowest state outside of it.

However, in DFPT, slightly incorrect ψ
(0)
i in the partly

occupied space [or even ψ
(0)
i associated with vanishing

occupations] will induce proportional errors in F (2). This can
be seen and quantified, as shown hereafter, analytically in a
simple model as well as numerically.

Let us first examine a three-state model in the noninter-
acting case. The three exact eigenstates are denoted |ψ (0)

1 〉,
|ψ (0)

2 〉, and |ψ (0)
3 〉 with exact eigenvalues ε

(0)
1 , ε

(0)
2 , and ε

(0)
3 .

The first state occupation number is 1 − δ f , where δ f is
not very large but still finite, while the second state occupation
number is δ f , and the third state is unoccupied. This is the
Spocc space of the problem.

The ground-state total energy of this independent-particle
system, considering the spin degeneracy, as done in the previ-
ous sections, is

E (0) = ns
[
(1 − δ f )ε (0)

1 + δ f ε (0)
2

]
. (92)

The perturbation couples the different states, with matrix
elements denoted

Hi j = 〈
ψ

(0)
i

∣∣Ĥ (1)
∣∣ψ (0)

j

〉
. (93)

The computation of E (2) gives

E (2) = ns

2

∑
i �= j

f (0)
i − f (0)

j

ε
(0)
i − ε

(0)
j

∣∣〈ψ (0)
i

∣∣Ĥ (1)
∣∣ψ (0)

j

〉∣∣2

= ns

[
2δ f − 1

ε
(0)
2 − ε

(0)
1

|H12|2 − 1 − δ f

ε
(0)
3 − ε

(0)
1

|H13|2

− δ f

ε
(0)
3 − ε

(0)
2

|H23|2
]
, (94)

with the hypothesis that the occupation numbers are frozen
(this hypothesis might be removed and does not affect the final
proportionality relation).

Now let us suppose that the ground-state Schrödinger equa-
tion has not been solved exactly but approximately, so that
there is a small contamination of the second eigenvector |ψ (0)

2 〉
by the third eigenvector |ψ (0)

3 〉 and vice versa. The contami-
nated quantities are denoted with a tilde. This contamination is
determined by the admixture angle α, which should be small:∣∣ψ̃ (0)

2

〉 = cos α
∣∣ψ (0)

2

〉 + sin α
∣∣ψ (0)

3

〉
. (95)

Similarly, the third eigenvector is contaminated by |ψ (0)
2 〉, and

both contaminated vectors are kept orthogonal:∣∣ψ̃ (0)
3

〉 = − sin α
∣∣ψ (0)

2

〉 + cos α
∣∣ψ (0)

3

〉
. (96)

The error in the second eigenvector is quantified in terms
of its residual |R2〉 defined as

|R2〉 = [
Ĥ (0) − ε̃

(0)
2

]∣∣ψ̃ (0)
2

〉
, (97)

where

ε̃
(0)
2 = 〈

ψ̃
(0)
2

∣∣Ĥ (0)
∣∣ψ̃ (0)

2

〉
. (98)

The norm of the residual vector (or its square) of an approxi-
mate eigenvector is a common measure of the convergence of
a solution of the Schrödinger equation.

After some intermediate calculation (see Sec. S9 in the
Supplemental Material [39]), the squared norm R2 of the
residual of the second eigenvector is obtained:

R2
2 = 〈R2|R2〉 = cos2 α sin2 α

[
ε

(0)
3 − ε

(0)
2

]2
. (99)

It is proportional to sin2 α, hence the square of the admixture
angle when the latter is small.

Then the contaminated, approximate, second-order deriva-
tive of the energy is computed, starting from

Ẽ (2) = ns

2

∑
i �= j

f (0)
i − f (0)

j

ε̃
(0)
i − ε̃

(0)
j

∣∣〈ψ̃ (0)
i

∣∣Ĥ (1)
∣∣ψ̃ (0)

j

〉∣∣2
. (100)

For the three-state model, ε̃
(0)
1 = ε

(0)
1 (no contamination),

ε̃
(0)
2 is given by Eq. (98), and a similar formula holds for ε̃

(0)
3 .

This expression is worked out, see Sec. S9 in the Supplemen-
tal Material [39], and a Taylor expansion of Ẽ (2) in terms
of the small admixture angle is performed, where quadratic
contributions are discarded (e.g., cos2 α  1).
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After such computation, the difference between the ap-
proximate Ẽ (2) and E (2) is found:

Ẽ (2) − E (2) ∼= ns2 sin α�e(H∗
12H13)

×
[

−1 + 2δ f

ε
(0)
2 − ε

(0)
1

+ 1 − δ f

ε
(0)
3 − ε

(0)
1

]
+ O(sin2 α).

(101)

Thus, the error Ẽ (2) − E (2) is proportional to the admixture
angle, not to its square. This is at variance with the error of
E (2) with respect to an error in ψ (1) since E (2) is variational
with respect to ψ (1). It emphasizes that the determination of
eigenvectors in the potentially occupied space must be rather
accurate for E (2) to be accurate. Ignoring prefactors, improv-
ing R2 by ∼10−6 brings only 10−3 decrease of the difference
Ẽ (2) − E (2).

Also, Eq. (101) reveals that, in this three-band model, an
error is present even if δ f = 0, provided ε

(0)
2 �= ε

(0)
3 . For the

more general many-band case, there will always be unoccu-
pied states with different energies, so that the outcome of this
analysis is that, whatever occupation, metallic or insulating
materials, if some states in the space of explicitly treated
unperturbed wave functions are approximate, there will be
nonnegligible errors. Finally, the �(H∗

12H13) factors indicate
that an interference effect between the transition from state 1
to state 2 and the transition from state 1 to state 3 is at the
origin of the dominant error.

To substantiate these statements, numerical tests have been
made, in which the convergence of the explicitly treated
highest-lying states was not perfect, and the second-order
derivative of the total energy error was monitored.

As for the previous section, calculations were done for
phonon frequencies in copper. The plane-wave kinetic energy
cutoff was 50 Ha, and a 12 × 12 × 12 wave vector grid was
used for the Brillouin zone sampling. Phonon calculations
were done on a 6 × 6 × 6 phonon wave vector sampling grid
to accumulate statistics. In the ground-state calculations, the
number of explicitly treated bands was varied between 10 and
22. A stringent convergence criterion was set for the potential
residual at 10−20, ensuring precise results for the potential and
density. Still, the higher-lying bands that do not contribute
to the density were not fully converged. We systematically
varied the number of line steps for the conjugate gradient
minimization in the Sternheimer equation from 4 to 18 and
monitored the maximum of the square of the wave function
residuals. Figure 5 collects the resulting errors in the second-
order derivative of the free energy for a whole set of elements
of the dynamical matrices as a function of the maximum
squared wave function residual. The global trend is in line
with the expectations, namely, the maximum absolute error
is roughly proportional to square root of the the maximum
squared wave function residual (or equivalently proportional
to the wave function residual). When the maximum squared
residual is <∼10−13, the maximum absolute error saturates
at ∼10−8 Ha. Without having pursued this matter further,
it seems plausible that sources of errors independent of the
wave function residual exist at that numerical level and start
to dominate.

FIG. 5. Relationship between the resulting errors in the second-
order derivative of the free energy and the square of the wave
function residual. The scatter plot illustrates the observed errors,
while the solid line corresponds to a square root behavior.

VIII. CONCLUSIONS

In this paper, a variational formulation of DFPT for metals
has been described, covering in detail the consequences of
the presence of an entropy contribution; different smearing
schemes, including a resmearing scheme to deal with finite
temperatures; the treatment of the space of potentially oc-
cupied wave functions; the different possible gauges, their
advantages and drawbacks; and specificities of the treatment
of periodic systems. In line with the well-established generic
theorems in DFPT, the second-order derivative of the free
energy is formulated as a variational functional of trial first-
order wave functions and the trial first-order density matrix.
A contribution from the second-order entropy is present in
the second-order free energy. The changes of the occupation
numbers are explicitly considered.

Concerning applications, this formalism has been available
for some time in ABINIT and has already yielded many publi-
cations. Nevertheless, two advanced application-related topics
have been covered. For the first topic, the study of the con-
vergence of phonon frequencies with respect to wave vector
sampling, two regimes, medium and high precision, naturally
emerge, corresponding to whether the phonon frequencies
or temperature dependence as such are the target property.
The second topic relates to the impact of the preliminary
unperturbed calculation on the subsequent DFPT calculation
if the unoccupied wave functions have not been sufficiently
accurately computed.
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