
PHYSICAL REVIEW B 109, 014315 (2024)

Qubit dynamics beyond Lindblad: Non-Markovianity versus rotating wave approximation
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With increasing performance of actual qubit devices, even subtle effects in the interaction between qubits
and environmental degrees of freedom become progressively relevant and experimentally visible. This applies
particularly to the timescale separations that are at the basis of the most commonly used numerical simulation
platform for qubit operations, namely, the conventional Lindblad master equation (LE): the Markov approx-
imation and the rotating wave approximation (RWA). In this contribution, we shed light on the questions (i)
to which extent it is possible to monitor violations of either of these timescale separations experimentally and
(ii) which of them is the most severe to provide highly accurate predictions within (approximate) numerical
schemes in relevant parameter ranges. For this purpose, we compare three simulation methods for the reduced
density matrix with progressively growing accuracy. In particular, predictions for relaxation and decoherence of
a qubit system in the presence of reservoirs with Ohmic and sub-Ohmic spectral densities are explored and, with
the aid of proper protocols based on Ramsey experiments, the role of non-Markovianity and RWA are revealed.
We discuss potential implications for future experiments and the design of approximate yet accurate numerical
approaches.
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I. INTRODUCTION

One of the major obstacles to realize universal quantum
computing is the omnipresence of decoherence. Impressive
progress has been achieved in the last decade in terms of
coherence times [1,2] and gate fidelities [3–5] but particu-
larly for implementations on solid state platforms such as
superconducting circuits and semiconducting devices, larger
arrays of qubits still suffer from residual noise sources [6–8].
However, the susceptibility of single and few qubit devices
has approached a level where even minute details of environ-
mental effects can be monitored, e.g., cosmic radiation and
radioactivity [9]. While the latter appear as rare events on in-
trinsic qubit timescales, subtle details of ubiquitous broadband
noise, effective also on short and moderate timescales, have
turned into the focus to improve circuit designs and protocols
[10].

A very powerful approach to include noise in a quantum
dynamical setting is a description of qubit operations in terms
of the Lindblad master equations (LE) [11]. However, these
come with severe limitations such that numerical predictions
may no longer match fidelities of the experimental perfor-
mance [12]. Roughly speaking, for weak system–reservoir
couplings, a prerequisite for qubit operations, the LE follows
from the general framework of open quantum systems in
terms of system+reservoir models by assuming two types
of timescale separations [13–15]. The first appears in the
interaction picture and implies a timescale separation between
the dynamics of the reduced density operator and the decay
of correlations in the reservoir. This leads effectively to a
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time-local equation of motion for the reduced density operator
(Born–Markov approximation), the so-called Bloch–Redfield
equation [16], which in general is not of Lindblad form
though. The LE appears through an additional time coarse
graining on timescales t � 1/ωq with qubit transition fre-
quency ωq. This second time coarse graining is consistently
performed in the eigenbasis of the system Hamiltonian and
boils down to a rotating wave approximation (RWA), also
known as secular approximation, where rapid oscillations of
the system are neglected. Hence, conventional LEs not only
come with limited ranges of applicability (sufficiently ele-
vated temperatures, weak coupling) and, within this range,
with limited predictive power in terms of accuracy.

While the Born–Markov approximation and RWA go hand
in hand in the LE, one may wonder whether they lead to
distinct phenomena that can be distinguished based on the
improved sensing capabilities of advanced qubit devices. As
an example, we mention a recent study [17], where an ex-
perimental protocol is proposed to monitor non-Markovianity.
However, it remains still unclear which timescale separation,
Born–Markov or RWA, is the most severe one in the parameter
ranges, where qubits are operated. To which extent is it possi-
ble to observe violations of either of the timescale separations
experimentally? Which one should be avoided the most in
theoretical simulations if this can be said at all?

Here, we provide an analysis which sheds light onto this is-
sue by comparing predictions from three different simulation
platforms which are chosen according to their progressively
growing level of accuracy: The conventional LE involves
the Born–Markov and the RW approximation, the so-called
universal Lindblad equation (ULE) [18] involves only the
Born–Markov approximation, while the recently extended
version of the Hierarchical Equation of Motion (FP-HEOM)
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produces exact benchmarks (full non-Markovianity, no RWA)
down to temperature zero [19,20]. The goal of this contribu-
tion is thus not to provide a comprehensive comparison of
various approximate simulations schemes for open quantum
systems with exact data but rather to identify the relevance of
the respective timescale separations for realistic qubit descrip-
tions. Our findings may then allow on the experimental side to
develop protocols to monitor deviations from Markovian resp.
RWA qubit dynamics (an interesting issue on its own) and
on the theoretical side to improve approximate but computa-
tionally less expensive schemes to reliably predict multiqubit
operations.

This paper is organized as follows. In Sec. II, we review
the derivation of the conventional Lindblad equation and uni-
versal Lindblad equation. In the following, we simply refer to
the conventional Lindblad equation as the Lindblad equation.
We derive the HEOM in Sec. III. In Sec. IV, we demonstrate
the numerical results obtained with these three methods, and
study the differences caused by the Born–Markov approxima-
tions and RWA. We also propose a new experimental protocol
for the detection of the non-Markovianity there. As a model,
a two-level system is considered. Section V is devoted to the
concluding remarks.

II. DERIVATION OF THE LINDBLAD EQUATIONS

To derive the Lindblad equation (LE) and universal Lind-
blad equation (ULE), we start from the Caldeira–Leggett
Hamiltonian that is in the following form:

Ĥtot = ĤS +
∑

j

(
p̂2

j

2mj
+ 1

2
mjω

2
j x̂

2
j

)
− V̂

∑
j

c j x̂ j

= ĤS + ĤB + ĤI . (1)

Here, we consider heat baths that consist of an infinite num-
ber of the harmonic oscillators (bosons), and the momentum,
position, mass and frequency of the jth oscillator are given by
p̂ j, x̂ j, mj and ω j , respectively. The system and bath interacts
with each other through the system operator V̂ and the bath
operator x̂ j . The quantity c j is the coupling strength between
the system and jth bath, and it defines the spectral density
J (ω) as

J (ω) =
∑

j

c2
j

2mjω j
δ(ω − ω j ).

In the following, we vary the parameters of J (ω) instead of
varying c j’s to change the properties of the heat bath.

The counter term Ĥc = V̂ 2 ∑
j c2

j/(2mjω
2
j ) is usually in-

troduced into Eq. (1) to compensate for the renormalization
of the potential energy [13,15,21]. However, we can omit this
term in our case because of the following reason. In this study,
we only consider a two-level system for the system ĤS , and the
operator V̂ is restricted to the Pauli matrices σ̂α (α ∈ {x, y, z}).
The equation σ̂ 2

α = 1̂ holds for all the Pauli matrices (1̂ is the
identity operator of the two-level system), and this indicates
that the counter term only shifts the origin of the energy and
never affects the dynamics of the system.

The Liouville–von Neumann equation for the Hamiltonian
in Eq. (1) in the interaction picture is expressed as

∂

∂t
ρ̃tot (t ) = − i

h̄
H̃×

I (t )ρ̃tot (t ). (2)

The hyperoperator Ô×
1 Ô2 = Ô1Ô2 − Ô2Ô1 denotes

the commutator, and the operators in the interaction
picture are given by Õ(t ) = ei(ĤS+ĤB )t/h̄Ôe−i(ĤS+ĤB )t/h̄ =
ei(Ĥ×

S +Ĥ×
B )t/h̄Ô. Integrating Eq. (2), we obtain ρ̃tot (t ) =

ρ̃tot (t0) − i
∫ t

t0
dsH̃×

I (s)ρ̃tot (s)/h̄. By substituting this for
ρ̃tot (t ) on the right-hand side of Eq. (2) and by tracing out the
bath degrees of freedom, the equation for the reduced density
operator (RDO) of the system is derived as

∂

∂t
ρ̃S (t ) = ∂

∂t
trB{ρ̃tot (t )}

= − i

h̄
trB{H̃×

I (t )ρ̃tot (t0)}

− 1

h̄2

∫ t

t0

dstrB{H̃×
I (t )H̃×

I (s)ρ̃tot (s)}. (3)

Here, trB denotes the partial trace of the heat bath. As the
initial states at the time t = t0, we adopt the factorized initial
states ρ̃tot (t0) = ρ̃S (t0) ⊗ ρ̂

eq
B . Here, the equilibrium state of

the heat bath is given by ρ̃B(t0) = ρ̂
eq
B = e−βĤB/tr{e−βĤB},

where β = 1/kBT is the inverse temperature (kB is the
Boltzmann constant). Because trB{x̃ j (t )ρ̂eq

B }=trB{ρ̂eq
B x̃ j (t )} =

0, the first term in Eq. (3) vanishes.
Equation (3) is analytically exact. In the following, we im-

pose some approximations to obtain equations in the Lindblad
forms [13,22]. First, we consider the Born approximation: We
assume that the coupling strength between the system and
bath is weak. This leads to the approximation in which the
total density operator is always factorized, with the density
operator of the heat bath time stationary. Considering the
initial states we defined above, the density operator is approx-
imated as ρ̃tot (s) � ρ̃S (s) ⊗ ρ̂

eq
B . Due to this approximation,

Equation (3) is rewritten as

∂

∂t
ρ̃S (t ) = − 1

h̄2

∫ t

t0

dsṼ ×(t ){C(t − s)Ṽ (s)ρ̃S (s)

− C∗(t − s)ρ̃S (s)Ṽ (s)}, (4)

where

C(t ) = h̄
∫ ∞

0
dωJ (ω)

(
coth

β h̄ω

2
cos ωt − i sin ωt

)

=
∫ ∞

−∞
dωSβ (ω)e−iωt

is the two-time correlation function of the heat bath. Here,
we have assumed that the spectral density is an odd function,
as J (−ω) = −J (ω), and defined the spectral noise power as
Sβ (ω) = h̄J (ω)/(1 − e−β h̄ω ). The function C(t ) reaches 0 as
|t | → ∞, and we express the time constant of the decay with
τB.

To impose another approximation, we introduce a
timescale, τR, which indicates the timescale of the relaxation
dynamics of the system in the interaction picture. We assume
that the two-time correlation function C(t ) decays fast enough
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compared with the timescale of the relaxation process of the
system, which implies τB 	 τR. Due to this approximation,
only the integrands at the time s � t contribute to the integra-
tion of Eq. (4), and furthermore, we can assume ρ̃S (s) � ρ̃S (t )
at the time s � t . With this approximation, which is referred
to as the Markov approximation, we can replace ρ̃S (s) of the
integrand in Eq. (4) by ρ̃S (t ). The equation reads

∂

∂t
ρ̃S (t ) = − 1

h̄2

∫ t

−∞
dsṼ ×(t ){C(t − s)Ṽ (s)ρ̃S (t )

− C∗(t − s)ρ̃S (t )Ṽ (s)}. (5)

Here, we take the limit t0 → −∞ to remove the dependence
on the initial time. This approximation is also based on the
fact that C(t ) decays sufficiently fast. We note, however, that
this timescale separation does no longer exist at very low
temperatures when reservoir correlations decay algebraically
rather than exponentially in time. For example, for Ohmic
reservoirs J (ω) ∝ ω, one has at T = 0 that C(t ) ∝ 1/t2.

Equation (5) only depends on the density operator at the
time t , and in this sense, it is a time-local equation. However,
this is not in the Lindblad form; in the following subsections,
we impose further approximation and demonstrate how this
equation is transformed into Lindblad equations.

A. Lindblad equation: rotating wave approximation

In this subsection, we follow the standard method [13] to
obtain the LE from Eq. (5). We decompose the operator V̂ as

V̂ =
∑

ω

∑
ε′−ε=h̄ω

|ε〉〈ε|V̂ |ε′〉〈ε′|

=
∑

ω

V̂ (ω), (6)

where |ε〉 is the eigenvector of the system Hamiltonian
ĤS |ε〉 = ε |ε〉. The interaction picture of V̂ (ω) is given by
eiĤ×

S t/h̄V̂ (ω) = e−iωtV̂ (ω). By using this, we obtain Eq. (5) in
the frequency-dependent form as

∂

∂t
ρ̃S (t ) = 1

h̄2

∑
ω,ω′

[e−i(ω′−ω)t�(ω)(V̂ (ω)ρ̃S (t )V̂ †(ω′)

− V̂ †(ω′)V̂ (ω)ρ̃S (t )) + H.c.], (7)

where H.c. denotes the Hermitian conjugates and �(ω) is
defined as follows:

�(ω) =
∫ ∞

0
dsC(s)eiωs

=
∫ ∞

0
ds

∫ ∞

−∞
dω′Sβ (ω′)ei(ω−ω′ )s

= πSβ (ω) + iP
∫ ∞

−∞
dω′ Sβ (ω′)

ω − ω′

= 1

2
γ (ω) + i�(ω).

Here, the notation P is the Cauchy principal value.
To obtain an equation in the Lindblad form, we impose the

rotating wave approximation (RWA): Because we consider
the slow dynamics of ρ̃S (t ), the contributions of the fast os-
cillating terms e±i(ω′−ω)t with |ω′ − ω| � 1/τR are negligible.

Therefore we only consider the term with ω = ω′ in Eq. (7),
and obtain

∂

∂t
ρ̂S (t ) = − i

h̄

(
Ĥ×

S + Ĥ×
LS

)
ρ̂S (t )

+ 1

h̄2

∑
ω

γ (ω)

[
V̂ (ω)ρ̂S (t )V̂ †(ω)

− 1

2
(V̂ †(ω)V̂ (ω))◦ρ̂S (t )

]
, (8)

which is in the Lindblad form. Here, we return to
the Schrödinger picture, ρ̂S (t ) = e−iĤ×

S t/h̄ρ̃S (t ), and the
hyperoperator Ô◦

1Ô2 = Ô1Ô2 + Ô2Ô1 is the anticommuta-
tor. We introduce the Lamb-shift Hamiltonian as ĤLS =∑

ω �(ω)V̂ †(ω)V̂ (ω)/h̄.

B. Universal Lindblad equation: decomposition
of the spectral density

In the preceding subsection, we consider the RWA, which
depends on the properties of the system, to obtain the LE. A
recent study [18] demonstrated that we can derive an equa-
tion in the Lindblad form irrespective of the properties of
the system, which is referred to as the universal Lindblad
equation (ULE). Here, we briefly review the derivation of the
ULE; for the details, see Ref. [18].

We consider the square root of the spectral noise power,
which is defined as

g(ω) =
√

Sβ (ω)

2π
, (9)

and its Fourier transform g(t ) = ∫ ∞
−∞ g(ω)e−iωt , which is re-

ferred to as the “jump correlator” in the original paper [18].
To obtain the ULE, we exploit the properties of g(t ) instead
of C(t ). With the relation Eq. (9), the two-time correlation
function is rewritten as C(t − t ′) = ∫ ∞

−∞ dsg(t − s)g(s − t ′).
Substituting this in Eq. (5), we obtain

∂

∂t
ρ̃S (t ) =

∫ ∞

−∞
dt ′

∫ ∞

−∞
dsF (t, s, t ′)[ρ̃S (t )]. (10)

Here, we have introduced F (t, s, t ′)[ρ̃S (t )] as

F (t, s, t ′)[ρ̃S (t )]

= − 1

h̄2 θ (t − t ′)(g(t − s)g(s − t ′)Ṽ ×(t )Ṽ (t ′)ρ̃S (t )

− g∗(t − s)g∗(s − t ′)Ṽ ×(t )ρ̃S (t )Ṽ (t ′)), (11)

where θ (t ) is the Heaviside step function.
Similar to C(t ), the jump correlator g(t ) is the function

that decays fast to 0 as |t | grows when the Born–Markov ap-
proximation is imposed. This indicates that only the integrand
around the region t � t ′ � s contributes to the evaluation of
the integral in Eq. (10). By utilizing this, we can change t
with s in Eq. (10), and it is rewritten as

∂

∂t
ρ̃S (t ) =

∫ ∞

−∞
ds

∫ ∞

−∞
ds′F (s, t, s′)[ρ̃S (t )]. (12)

Note that in terms of the accuracy of the approximation, the re-
placement of the density operator ρ̃S (t ) with ρ̃S (s) in Eq. (10)
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is equivalent to the conventional Markov approximation [18],
in which we replace ρ̃S (s) to ρ̃S (t ) in Eq. (4) to obtain Eq. (5).

By substituting Eq. (11) into Eq. (12) and return to the
Schrödinger picture, we obtain the ULE as

∂

∂t
ρ̂S (t ) = − i

h̄

(
Ĥ×

S + Ĥ ×
LS

)
ρ̂S (t )

+ 1

h̄2

[
L̂ρ̂S (t )L̂† − 1

2
(L̂†L̂)◦ρ̂S (t )

]
. (13)

The Lindblad operator L̂ is given by

L̂ = e−iĤ×
S t/h̄

∫ ∞

−∞
dsg(t − s)Ṽ (s)

=
∫ ∞

−∞
dsg(s)Ṽ (−s), (14)

and the Lamb-shift term is expressed as

ĤLS = 1

2ih̄
e−iĤ×

S t/h̄
∫ ∞

−∞
ds

∫ ∞

−∞
ds′

× sgn(s − s′)g(s − t )g(t − s′)Ṽ (s)Ṽ (s′)

= 1

2ih̄

∫ ∞

−∞
ds

∫ ∞

−∞
ds′sgn(s − s′)g(s)g(−s′)Ṽ (s)Ṽ (s′),

(15)

where sgn(s) is the sign function.
When we expand L̂ and ĤLS on the basis of the eigenvec-

tors of the system Hamiltonian |n〉, where ĤS |n〉 = h̄ωn |n〉,
Eqs. (14) and (15) are given by

L̂ =
∑
m,n

√
2πSβ (ωnm)Vmn|m〉〈n|, (16)

ĤLS = 1

h̄

∑
m,n,l

VmlVln f (ωlm, ωnl )|m〉〈n|,

where ωnm = ωn − ωm, Vmn = 〈m| V̂ |n〉 and

f (ω1, ω2) = −2πP
∫ ∞

−∞
dω

g(ω − ω1)g(ω + ω2)

ω
.

The ULE is derived on the basis of the Eq. (5). The starting
points to obtain both LE and ULE are same. The main differ-
ence between the LE and ULE is that in the LE, we impose
the RWA, while we do not in the ULE. We can derive an
equation in the Lindblad form by only utilizing the properties
of the heat bath.

In Sec. IV, we see the differences between the standard LE
and ULE through examples of a two-level system.

III. DERIVATION OF THE HIERARCHICAL EQUATIONS
OF MOTION

In this section, we derive the hierarchical equations of
motion (HEOM) [19], particularly its recent extension to the
FP-HEOM [20], which describes the open quantum systems
in a numerically rigorous manner.

In the same way as the derivation of the LEs, we consider
the Caldeira–Leggett Hamiltonian as the model. The density
operator at the time t is described in the path-integral form,

and by tracing out the bath degrees of freedom, the RDO of
the systems is expressed as

〈α|ρ̂S (t ) |α′〉

=
∫

dαidα′
i

N 2

∫ α(t )=α

α(t0 )=αi

D[α(·)]
∫ α′(t )=α′

α′(t0 )=α′
i

D[α′(·)]

× eiSS [α̇,α;t] 〈αi| ρ̂S (t0) |α′
i〉 e−iSS [α̇′,α′;t]F [α, α′; t]. (17)

Here, |α〉 is the ket vector with the boson-coherent, fermion-
coherent, spin-coherent and displacement representation. The
normalization factor N depends on the representation of α.
We consider the factorized initial states again. The quantity
SS[α̇, α; t] is the action of the system.

The functional F [α, α′; t] is referred to as the influence
functional and is given by

F [α, α′; t]

= exp

[
− 1

h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′V ×(α, α′; t ′)

× {C(t ′ − t ′′)V (α; t ′′) − C∗(t ′ − t ′′)V (α′; t ′′)}
]
. (18)

Here we have introduced the path-integral representa-
tions of the operators and hyperoperators as V (α; t ) and
V ×(α, α′; t ) = V (α; t ) − V (α′; t ), respectively. Note that the
time derivative of Eq. (18) has a close relation to the right-
hand side of Eq. (4).

The FP-HEOM now uses an expansion of the two-time cor-
relation function as C(t ) = ∑K

k=1 dke−zkt for the time t > 0.
The coefficients dk and zk are complex numbers, and Re{zk} >

0. By expressing Sβ (ω) in the barycentric representation [20],
we can obtain the set of {dk} and {zk} with high accuracy
and such that the number of coefficients K remains small to
moderate for almost all spectral bath densities, over the whole
temperature range down to T = 0, and arbitrary coupling
strengths.

To obtain equations of motion for the RDO in Eq. (17)
without any additional approximations, we introduce a new
quantity, “auxiliary density operator” (ADO), which is in the
form of

〈α| ρ̂ �m,�n(t ) |α′〉

=
∫

dαidα′
i

N 2

∫ α(t )=α

α(t0 )=αi

D[α(·)]
∫ α′(t )=α′

α′(t0 )=α′
i

D[α′(·)]

×
K∏

k=1

(∫ t

t0

dt ′′dke−zk (t−t ′′ ) −i

h̄
V (α; t ′′)

)mk

×
(∫ t

t0

dt ′′d∗
k e−z∗

k (t−t ′′ ) i

h̄
V (α′; t ′′)

)nk

× eiSS [α̇,α;t] 〈αi| ρ̂S (t0) |α′
i〉 e−iSS [α̇′,α′;t]F [α, α′; t].

Here, we have introduced the vectors �m = [m1, . . . , mK ] and
�n = [n1, . . . , nK ], whose elements are non-negative integers,
to distinguish ADOs. The ADO ρ̂�0,�0(t ) corresponds to the
RDO.
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Considering the time derivative,

∂ρ̂ �m,�n(t )

∂t
=

∫
dαdα′

N 2
|α〉

× lim
�t→0

〈α| ρ̂ �m,�n(t +�t ) |α′〉−〈α| ρ̂ �m,�n(t ) |α′〉
�t

〈α′| ,

we obtain the following equations of motion:

∂

∂t
ρ̂ �m,�n(t ) = − i

h̄
Ĥ×

S ρ̂ �m,�n(t ) −
K∑

k=1

(mkzk + nkz∗
k )ρ̂ �m,�n(t )

− i

h̄
V̂ ×

K∑
k=1

(ρ̂ �m+�ek ,�n(t ) + ρ̂ �m,�n+�ek (t ))

+
K∑

k=1

(
− mkdk

i

h̄
V̂ ρ̂ �m−�ek ,�n(t )

+ nkd∗
k

i

h̄
ρ̂ �m,�n−�ek (t )V̂

)
, (19)

which we refer to as the HEOM. Here �ek is the unit vector of
the kth element. In the following, we choose the initial states
of ADOs as ρ̂�0,�0(t0) = ρ̂S (t0) and ρ̂ �m �=�0,�n �=�0(t0) = 0.

Here, we remark on the difference between the Lindblad
equations and HEOM. Considering the case of �m = �n = �0 in
Eq. (19), the time differential equation for the RDO is written
as

∂

∂t
ρ̂�0,�0(t ) = − i

h̄
Ĥ×

S ρ̂�0,�0(t )

− i

h̄
V̂ ×

K∑
k=1

(ρ̂�ek ,�0(t ) + ρ̂�0,�ek
(t )).

The Born–Markov approximation corresponds to the approx-
imation of the second term ρ̂�ek ,�0(t ) and ρ̂�0,�ek

(t ) by means of
ρ̂�0,�0(t ). Due to the introduction of the ADOs, we can express
the equations of motion without the approximations. On the
other hand, the number of equations increases, and more com-
putational resources are needed.

To obtain the closed set of the simultaneous differential
equations, we need to truncate Eq. (19): we define the depth
of the hierarchy as N = ∑K

k=1(mk + nk ), and always set
ρ̂ �m,�n(t ) = 0 for the ADOs with N > Nmax. In the following
calculations, we vary the value Nmax and confirm that the
dynamics of RDO converges.

To obtain HEOM in Eq. (19), we do not consider any
approximations, except for the form of the Hamiltonian, in
which the heat bath is represented by the harmonic oscillators.
In the following section, we use results obtained with HEOM
as references for those obtained with the LE and ULE.

Remarks on the influence functional and Markovianity

If we assume that the two-time correlation function of
the heat bath is given by Dirac delta function C(t ) � γ δ(t )
(γ>0),

Eq. (18) is rewritten as

F [α, α; t]

� exp

[
− γ

2h̄2

∫ t

t0

dt ′V ×(α, α′; t ′){V (α; t ′) − V (α′; t ′)}
]

= exp

[
γ

h̄2

∫ t

t0

dt ′
{

V (α; t ′)V (α′; t ′) − 1

2
(V 2)◦(α, α′; t ′)

}]
,

(20)

where (V 2)◦(α, α′; t ) = V (α; t )V (α; t ) + V (α′; t )V (α′; t ).
The time derivative of Eq. (17) with this influence functional
is expressed as the following equation:

∂

∂t
ρ̂S (t )= − i

h̄
Ĥ×

S ρ̂S (t ) + γ

h̄2

[
V̂ ρ̂S (t )V̂ − 1

2
(V̂ 2)◦ρ̂S (t )

]
,

(21)

which is in the Lindblad form. It is worth noting that the LE
[Eq. (8)], ULE [Eq. (13)], and Eq. (21) do not coincide gen-
erally, considering that the coefficients and operators in those
equations are not same. Equation (20) holds for any values
of γ [13]. This contrasts with the LE and ULE, because the
Born–Markov approximation is based on the assumption that
the coupling strength between the system and bath is weak
[13,22]. Following this line of argument, the singular cou-
pling limit has been introduced to recover the Markovianity
in previous studies [13,23,24]. The Caldeira–Leggett master
equation [25,26] is also based on the similar argument to the
above, but the form of this equation is not same as Eq. (20)
and is not the Lindblad form: With the higher-order correction
with respect to the inverse temperature, we obtain equations in
the Lindblad form [13,27].

When we consider the situation in which the system Hamil-
tonian and the system part of the system-bath interaction
commute, Ĥ×

S V̂ = 0, we can rigorously express the RDO
without ADOs. The time derivative of the RDO is similar to
Eq. (21), but the coefficient γ is time-dependent in this case
(also, a time-dependent Lamb-shift term may be included)
[28]. Similar to the time-convolutionless (TCL) master equa-
tion, non-Markovian effects can be expressed in this case due
to the time-dependent coefficients.

IV. NUMERICAL RESULTS

In this section, we illustrate how the approximations in-
troduced above cause errors in the numerical simulations by
comparing the results obtained by the LE, ULE, and FP-
HEOM.

A. Model: qubit dynamics

As a test case, we adopt a two-level system (TLS) for the
system. The operators ĤS and V̂ are respectively given by

ĤS = h̄ωq

2
σ̂z, V̂ = h̄σ̂x, (22)

where σ̂α (α ∈ {x, y, z}) is the Pauli matrix. We express
the ground state and excited state as |0〉 and |1〉. Using
the relations ĤS |0〉 = −h̄ωq |0〉 /2 and ĤS |1〉 = h̄ωq |1〉 /2,
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the decomposition of V̂ in Eq. (6) is expressed as

V̂ = V̂ (ωq) + V̂ (−ωq)

= V̂ †(−ωq) + V̂ †(ωq)

= h̄σ̂− + h̄σ̂+.

Here, σ̂± = (σ̂x ± iσ̂y)/2 is the raising and lowering operator
of the 1/2-spin.

The Lindblad operator for the ULE in Eq. (16) is given by

L̂ = h̄
√

2πSβ (ωq)σ̂− + h̄
√

2πSβ (−ωq)σ̂+,

and the Lamb-shift Hamiltonians for the LE and ULE are as
follows:

ĤLS = h̄�(ωq)|1〉〈1| + h̄�(−ωq)|0〉〈0|,
ĤLS = h̄ f (−ωq, ωq)|1〉〈1| + h̄ f (ωq,−ωq )|0〉〈0|.

Note that in our case, both Lamb shifts of the LE and ULE
coincide, which is indicated as

f (∓ωq,±ωq ) = − 2πP
∫ ∞

−∞
dω

g2(ω ± ωq)

ω

= − P
∫ ∞

−∞
dω

Sβ (ω ± ωq)

ω

= − P
∫ ∞

−∞
dω

Sβ (ω)

ω ∓ ωq

=�(±ωq). (23)

Introducing the matrix elements of the RDO defined as
〈i| ρ̂S (t ) | j〉 = ρi j (t ) (i, j = 0, 1), we obtain the differential
equations for each element. The LE and ULE for the diagonal
elements coincide, which is in the form of[

ρ̇00(t )
ρ̇11(t )

]
= 2π

[−Sβ (−ωq) +Sβ (ωq)
+Sβ (−ωq) −Sβ (ωq)

][
ρ00(t )
ρ11(t )

]
, (24)

while the equations for the off-diagonal elements are different
as follows. For the LE in Eq. (8), we obtain

ρ̇01(t ) =
(
+iω̃ − γr

2

)
ρ01(t )

ρ̇10(t ) =
(
−iω̃ − γr

2

)
ρ10(t ), (25)

and for the ULE in Eq. (13), we obtain

ρ̇01(t ) =
(
+iω̃ − γr

2

)
ρ01(t ) + �ρ10(t )

ρ̇10(t ) =
(
−iω̃ − γr

2

)
ρ10(t ) + �ρ01(t ). (26)

Here, the frequency ω̃ is defined as ω̃ = ωq + �(ωq) −
�(−ωq), and the quantity

γr = 2π (Sβ (ωq) + Sβ (−ωq))

is introduced. The term � = 2π
√

Sβ (ωq)Sβ (−ωq) only ap-
pears in the ULE. Due to this term, the effective frequency
of the Larmor precession is changed from ω̃ to

√
ω̃2 − �2 in

the ULE case.
Diagonalizing the matrix in Eq. (24), one obtains two

eigenvalues, namely, the eigenvalue 0, and γr. The vanishing
eigenvalue corresponds to the equilibrium state while the rate

γr describes the monoexponential relaxation process. Note
that in the LE, the decay rate of the decoherence (dephasing)
is a half of that of the population relaxation when the system
part of the system-bath coupling is given by V̂ = h̄σ̂x. From
the definition of the spectral noise power, the fluctuation-
dissipation relation, Sβ (−ωq) = e−β h̄ωq Sβ (ωq), is derived,
here also known as detailed balance. Applying this relation to
the time-independent eigenvector, we obtain the equilibrium
distribution of the states |0〉 and |1〉 which in the LE is given
by the Boltzmann distribution with respect to the bare system
Hamiltonian ĤS , as ρ

eq,LE
j j = e(−1) jβ h̄ωq/2/[2 cosh(β h̄ωq/2)]

( j = 0, 1).
The difference of the off-diagonal elements between the

LE and ULE is caused by the finite � in Eq. (26), and
it vanishes when we consider the zero-temperature limit.
This is because we can evaluate the value Sβ (−ωq) as
limβ→∞ Sβ (−ωq) = 0.

In the high-temperature limit β → 0, the equation Sβ (ω) =
Sβ (−ω) holds, and therefore the relation γr/2 = � is derived.
With this relation, it is demonstrated that Eq. (26) is same as
Eq. (21) in this limit, except for the difference of the coeffi-
cients [ωq and γ in Eq. (21) and ω̃ and γr/2 = � in Eq. (26)].
By contrast, LE generally does not correspond to Eq. (21)
due to the lack of the �-term in Eq. (25). Note that although
the Caldeira–Leggett master equation (CLM) is derived in the
high-temperature limit, it does neither coincide with the ULE
nor the LE in this limit, as Eq. (21) has a different structure
as the CLM. The CLM is derived by additionally assuming
a qubit–reservoir coupling larger or on the order of typical
system frequencies (Brownian motion limit), while the LE
and ULE require the opposite (quantum optical limit). If we
neglect the term originated from the imaginary part of C(t )
in the Caldeira–Leggett master equation, which appears to be
small in the high-temperature limit, the ULE, Eq. (21) and
Caldeira–Leggett master equation coincide.

To conduct numerical calculations, particularly within the
exact HEOM approach, we chose the following spectral
density:

J (ω) = sgn(ω)
κω1−s

ph |ω|s
(1 + (ω/ωc)2)2

. (27)

Here, the quantities κ and ωc are the coupling strength
between the system and bath and cutoff frequency, respec-
tively. The quantity ωph has been introduced to fix the unit
of κ irrespective of the exponent s. Note that the ratio of
the decay rate to the system frequency, γr/ωq, is propor-
tional to 2π h̄κ , which is a dimensionless quantity. We set
ωph to ωq: With this parameter value, we obtain the value
γr/ωq = 2π h̄κ coth(β h̄ωq/2)/(1 + (ωq/ωc)2)2, which is in-
dependent of the exponent s. We set ωq as the unit of the
frequency, and chose parameter values as β h̄ωq = 5, ωc/ωq =
50, and 2π h̄κ = 10−3, which seems to be in the region where
the LE and ULE can be applied. In addition, we consider
the parameter value 2π h̄κ = 10−2 to study the violation of
the weak-coupling approximation.

For the spectral density, we consider two values of s. In
one case, we chose s = 1, which corresponds to the Ohmic
spectral density. The Ohmic spectral density has been widely
adopted for the studies of open quantum systems, because the
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classical limit of the Ohmic spectral density with ωc → ∞
leads to the Langevin equation. In the other case, we chose
s = 1/4: The spectral density with the condition s < 1 is re-
ferred to as the sub-Ohmic spectral density. It is suggested that
the transmon qubit is subject to 1/ f ε (ε > 0) noise [29,30],
and the sub-Ohmic spectral density exhibits 1/ f ε behavior
in the low-frequency region, as Sβ (ω) ∝ κkBT/ω1−s. For the
calculations of HEOM with the coupling strength 2π h̄κ =
10−3, we computed the set {dk} and {zk} with K = 15 for
the Ohmic spectral density, and K = 30 for the sub-Ohmic
spectral density. We chose Nmax = 2 and 3 for the maximum
depth of the hierarchy with the Ohmic and sub-Ohmic spectral
density, respectively. For the stronger coupling case, 2π h̄κ =
10−2, the parameter values for the FP-HEOM calculations are
as follows: K = 12 and Nmax = 2 for the Ohmic case, and
K = 25 and Nmax = 4 for the sub-Ohmic case.

For the frequencies of the Lamb shift in Eq. (23),
we consider the Ohmic spectral density. They are numer-
ically calculated as �(ωq)/ωq = −1.35 × 10−2 (−0.135)
and �(−ωq)/ωq = −1.15 × 10−2 (−0.115) for the weaker
(stronger) coupling case, respectively.

B. On the definition of non-Markovianity

In this section, we discuss the definition of the
non-Markovianity. The complete-positive-divisibility (CP-
divisibility) of the mapping [13] has been widely accepted
for the definition of the Markovianity, and various measures
have been proposed in a number of previous studies to de-
tect the CP-divisibility. We refer the readers to the review
article [31] for more details about the characterization of
the non-Markovianity. It was demonstrated in the paper [31]
that the time differential equation of the RDO in the Lind-
blad form is CP-divisible, and therefore the LE [Eq. (8)]
and ULE [Eq. (13)] in this paper is definitely Markovian
process. To investigate the Markovianity of the HEOM, we
calculate the Breuer–Laine–Piilo (BLP) quantifier NBLP [31]
of the HEOM. Although it was pointed out that the process
with NBLP = 0 is not always CP-divisible [31], the process
with NBLP > 0 is strictly CP-indivisible and therefore is the
non-Markovian process. We found that the BLP quantifier
for HEOM is positive, and we concluded that the exact dy-
namics without any approximations, which are obtained with
the HEOM method, are the non-Markovian process in this
study. In the following, properties that are found in the HEOM
results while not in the LE and ULE results are identified with
the non-Markovian effects. For more details of the calculation
of NBLP, see the Appendix.

C. Markovianity versus non-Markovianity

In Fig. 1, we depict the dynamics of the population relax-
ation of the excited state ρ11(t ) that is numerically obtained
with the LE, ULE and HEOM, respectively. For the FP-
HEOM calculation, the Ohmic (s = 1) and sub-Ohmic (s =
1/4) spectral density are considered. We adopt ρ̂S (t0 = 0) =
|1〉〈1| as the initial states. As mentioned above, the dynamics
of the LE and ULE coincide. In addition, the decay rate γr

takes a same value irrespective of the exponent s. The results
do not change with s in the LE and ULE cases, and therefore

FIG. 1. Dynamics of the population relaxation of the excited
state ρ11(t ) calculated with the LE, ULE and HEOM in the short-time
region 0 � tωq � 3 (the inset exhibits the whole dynamics up to
(a) tωq � 10000 and (b) tωq � 1000). (a) The weaker (2π h̄κ =
10−3) and (b) the stronger (2π h̄κ = 10−2) coupling cases are de-
picted. In the HEOM case, the Ohmic [s = 1 in Eq. (27)] and
sub-Ohmic (s = 1/4) spectral density are considered. The results
of the LE and ULE coincide, and only a single curve (red curve)
is shown. The decay rate γr takes a same value irrespective of
the exponent s, and therefore the curve does not change with s in
the LE and ULE cases. For this reason, the value of s is omitted in
the legend of LE and ULE. The dashed and dotted black curves in
(a) are the approximate curves of the Ohmic case with a single ex-
ponential function [Eq. (28)] and a sum of two exponential functions
[Eq. (29)], respectively. The green circles and squares in (a) indicate
the universal decoherence [Eq. (30)] with the Ohmic and sub-Ohmic
spectral density.

we do not explicitly mention the value of s in the LE and ULE
cases here.

First, we focus on the analysis of the weaker coupling
case, 2π h̄κ = 10−3. As illustrated in the inset of Fig. 1(a),
the dynamics of the LE and FP-HEOM in the intermediate-
to long-time region are qualitatively same. The same is true
for the dependence on the exponent s of the spectral density
which causes qualitatively negligible effects. Quantitatively,
the maximum difference of the population ρ11 between the LE
case and FP-HEOM case is on the order of 10−3. We discuss
the equilibrium state in detail in Sec. IV D.

For the fault-tolerant quantum computation, according to
common wisdom fidelities greater than 0.9999 are required.
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We infer from this constraint that even differences on the order
of 10−3 between the results of LE/ULE and HEOM found in
our study is significant. We should not optimistically ignore
this difference in order to aid the development of the practical
quantum computer.

In the short-time domain (ωqt � 3), the exact quantum
dynamics cannot be described within the LE and ULE due to
the underlying time coarse graining. In fact, both approaches
predict a monoexponential decay with rate γr, while for very
short times ωqt < 1, a fast decay of the population is observed
in the Ohmic case. The comparison of corresponding numer-
ical data with benchmark data (HEOM) in Fig. 1 reveal that
for the Ohmic case (s = 1) and on timescales ωqt � 1 a single
exponential approximation according to

ρ̄
(1)
11 (t ) = A(1) exp[−B(1)t] + C(1), (28)

does indeed capture the dynamics quite accurately. One finds
parameters A(1) = 0.992, B(1)/ωq = 1.01 × 10−3, C(1) =
7.15 × 10−3, in line with the predicted relaxation dynamics
γr/ωq = 1.01 × 10−3. In the short-time domain, an approxi-
mation including two exponentials, i.e.,

ρ̄
(2)
11 (t ) = A(2)

1 exp
[ − B(2)

1 t
] + A(2)

2 exp
[ − B(2)

2 t
] + C(2),

(29)

provides a sufficiently precise description with A(2)
1 = 0.992,

B(2)
1 /ωq = 1.01 × 10−3 and A(2)

2 = 7.90 × 10−4, B(2)
2 /ωq =

7.94, and C(2) = 7.15 × 10−3. Before we discuss this in more
detail, we turn to the sub-Ohmic case.

There, the population dynamics shows a nonmonotonous
behavior. It exceeds LE/ULE predictions until times ωqt �
1.5, while it becomes smaller beyond. Subsequent oscillatory
behavior around the LE/ULE data is observed for even longer
times (not shown) but the absolute quantitative difference
gradually decreases towards very long times. This oscillatory
behavior clearly displays the limitation of the Born–Markov
approximation and is due to time retarded feedback in the
qubit–reservoir interaction.

Now, coming back to the short-time region, for tωq 	 1
the contribution of the system dynamics to the total dynamics
is negligible. This assumption implies ĤS � 0 so that the
dynamics of the population is governed by the coupling to the
reservoir only

ρ11(t ) = 1

2

(
1 + exp

[
−4

∫ t

t0

dt ′
∫ t ′

t0

dt ′′Re{C(t ′ − t ′′)}
])

.

(30)

This behavior is referred to as “universal decoherence”
[10,32]. Results are displayed for both Ohmic and sub-Ohmic
reservoirs in Fig. 1(a) as the green circles and squares, re-
spectively. We found that indeed the sharp drop of population
in this time domain is very well captured up to the time
tωq � 0.1 in the Ohmic case. The short-time behavior of
the sub-Ohmic case is also well described with the universal
decoherence. Because the impact of the system Hamiltonian
is approximately absent in this time region, a perturbative
approach with respect to V̂ cannot be applied. This indicates
another break-down of the Born–Markov approximation.

We thus conclude that both the fast initial decay and the os-
cillatory behavior of the population relaxation are signatures
of the non-Markovianity as they can neither be described by
the LE (Markov approximation+RWA) and the ULE (Markov
approximation only).

Next, we investigate the stronger coupling case (2π h̄κ =
10−2) in Fig. 1(b). The profile of Fig. 1(b) is qualitatively
same as Fig. 1(a), except that the scale of the vertical axis is
ten times greater in Fig. 1(b) than in Fig. 1(a). This indicates
that the maximum difference is on the order of 10−2, which
is more significant than the weaker coupling case: the viola-
tion of the Born–Markov approximation is more significant
when the coupling strength is increased, and it is preferable
to use HEOM approach when the coupling strength is not
sufficiently small.

The inset of Fig. 1(b) shows that the population decay is
approximately ten times faster than the weaker coupling case.
This is due to the ten times stronger system-bath coupling in
Fig. 1(b) than in Fig. 1(a).

D. Long-time behavior of the density matrices

Here, we discuss the long-time behavior of the RDO. Be-
cause we adopt the time-evolution equations in this study, we
cannot obtain the equilibrium states strictly: the difference of
the RDO with respect to time is not zero at any time due to the
computation. For the HEOM, steady states are numerically
obtained by solving the equation ∂ρ̂ �m,�n(t )/∂t = 0 in a self-
consistent manner [33], but this method is computationally
expensive. For these reasons, we consider the states at a long
time whose difference with respect to time is negligibly small
as the equilibrium states. Figure 2 displays the dynamics
of Fig. 1 in the long-time region. In Fig. 2(a), the absolute
difference of the population |ρ11(tωq = 10000) − ρ11(tωq =
9999)| is less than 10−6, and we consider the system at
tωq = 10000 as the equilibrium states. The same discussion is
applied to the stronger coupling case at the time tωq = 1000,
and we consider the system at this time as the equilibrium
states in this case.

The gray line in Fig. 2 is the Boltzmann distribution of
the bare system, ρ

eq,LE
11 . As discussed above, the equilibrium

distribution obtained with the LE and ULE is analytically
the Boltzmann distribution with respect to the bare system
Hamiltonian. The small difference of the population between
the Boltzmann distribution and the LE/ULE result at tωq =
10000 in Fig. 2(a) and tωq = 1000 in Fig. 2(b) (approximately
4 × 10−5) implies the validity of our adoption of the equilib-
rium states.

The exact equilibrium state obtained with the FP-HEOM
approach originates from the total Hamiltonian as ρ̂eq,exact =
trB{e−βĤtot }/Z (Z = tr{e−βĤtot }), which is in principle different
from the Boltzmann distribution of the bare system. The dif-
ference of the equilibrium population between the LE/ULE
result and HEOM ones is on the order of 10−4 in Fig. 2(a).
This relatively small difference between ρ̂eq,LE and ρ̂eq,exact

is originated from the small coupling strength between the
system and heat bath, 2π h̄κ = 10−3. For the larger coupling
case in Fig. 2(b), 2π h̄κ = 10−2, the enhanced difference on
the order of 10−3 was observed. For even larger coupling
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FIG. 2. Dynamics of the excited-state population ρ11(t ) in the
long-time region (a) 9000 � tωq � 10000 and (b) 900 � tωq �
1000. The same curves as Fig. 1 are depicted, and gray horizontal
line is added to indicate the Boltzmann distribution of the bare
system, ρ

eq,LE
11 . (a) The weaker (2π h̄κ = 10−3) and (b) the stronger

(2π h̄κ = 10−2) coupling case are depicted.

strengths, the difference is more significant [10], and we must
seriously take into account the effects of ĤI .

It is interesting that the order of the population changes
when the coupling strength changes: in Fig. 2(a), the excited-
state population in the sub-Ohmic case is larger than in the
Ohmic case, while that in the sub-Ohmic case is smaller than
in the Ohmic case in Fig. 2(b).

It is worth noting that the HEOM method is stable for
the long-time simulations. For example, algebraic decay of
the two-point correlator of the spin-boson model, Szz(t ) =
〈σ̂z(t )σ̂z(0) + σ̂z(0)σ̂z(t )〉/2, was simulated with high accu-
racy with the FP-HEOM method in a previous study [20].

E. Experimental protocol: RWA versus non-Markovianity

Next, we consider an experimental method proposed in a
previous study to probe differences between Markovianity and
non-Markovianity in open qubit dynamics [17]. In that study,
Ramsey experiments with two different pulse sequences are
explored: One sequence consists of pulses that rotates the
qubit about the x axis, while the other one consists of pulses
that rotate the qubit about the y axis. These pulse sequences
are expressed as X̂−π/2 f̂t X̂π/2 and Ŷπ/2 f̂t Ŷ−π/2, respectively.
Here, X̂θ (Ŷθ ) corresponds to the ideal rotation operator with

the angle θ about the x (y) axis, and f̂t indicates the time
evolution without the pulses but with the heat bath. Note in
passing that the difference of the sign of the pulse sequences
between this study and the previous one [17] is based on a
different sign in the Hamiltonian ĤS in Eq. (22).

Assuming that the initial states of the systems before the
pulse application are given by |0〉〈0|, we evaluate the popula-
tion of the ground state after the pulse sequences as follows:
For the sequence X̂−π/2 f̂t X̂π/2, we have

�
(X )
00 (t ) = 1

2 + Im{〈0| ρy
S (t ) |1〉}, (31)

and for the sequence Ŷπ/2 f̂t Ŷ−π/2,

�
(Y )
00 (t ) = 1

2 + Re{〈0|ρx
S (t )|1〉}. (32)

Predictions for the RDO ρx
S (t ) and ρ

y
S (t ) are obtained within

the LE [Eq. (25)], the ULE [Eq. (26)], and the FP-HEOM
[Eq. (19)] with initial states ρ̂x

S (t0 = 0) = (1̂ + σ̂x )/2 and
ρ̂

y
S (t0 = 0) = (1̂ + σ̂y)/2, respectively. To quantify the poten-

tial difference between both sequences, it is convenient to
introduce the difference of the populations as

�p(t ) = �
(X )
00 (t ) − �

(Y )
00 (t )

= Im
{〈0|ρy

S (t )|1〉} − Re
{〈0|ρx

S (t )|1〉}.
Figure 3 displays the various time traces for �p(t ). Again,

we first analyze the weaker coupling case [2π h̄κ = 10−3,
Fig. 3(a)]. In the HEOM calculation, both Ohmic and sub-
Ohmic spectral density are considered. In the LE and ULE
cases, the Lamb shift is calculated on the basis of the Ohmic
case (s = 1), as mentioned above. However, in the LE case,
the following argument holds for any value of the exponent
s, and we do not explicitly mention the value of s in the
LE case. While the difference �p(t ) in the LE case, derived
from Eq. (25), is always zero, nonzero values are observed
in the ULE and HEOM cases. Remarkably, the amplitudes
of �p(t ) are substantially larger for the benchmark data
(HEOM) compared to the ULE case: the maximum absolute
value is approximately 1 × 10−3 for the HEOM with the
Ohmic spectral density compared to 8 × 10−5 for the ULE.

In the sub-Ohmic case, FP-HEOM data predict somewhat
smaller amplitudes (approximately 8 × 10−4) together with a
characteristic asymmetric behavior with respect to �p = 0,
see inset of Fig. 3(a): the mean value of local maxima and
minima is negative. In the Ohmic case, a weaker asymmetric
behavior was found only in the short-time region, tωq � 1.
There, the amplitude of the first local minimum is slightly
smaller than the amplitude of the subsequent oscillation.
Our results indicate that an asymmetric behavior lasts for a
longer time when the relative portion of low frequency modes
increases (smaller s). Similar asymmetric behavior was found
in a previous study [17].

The frequency of oscillations in �p(t ) carries also valuable
information about the relevant qubit timescale in presence
of reservoirs. From the inset of Fig. 3(a), we retrieved the
following frequencies: ω�p/ωq = 0.998 for ULE, 0.999 for
FP-HEOM with the Ohmic spectral density and 1.00 for sub-
Ohmic spectral density, respectively. Note that since the initial
phase of the oscillations is different in these three cases, local
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FIG. 3. Difference, �p(t ), of the ground-state population ob-
tained after the application of the different pulse sequences,
X̂−π/2 f̂t X̂π/2 and Ŷπ/2 f̂t Ŷ−π/2. (a) The weaker (2π h̄κ = 10−3) and
(b) the stronger (2π h̄κ = 10−2) coupling cases calculated with the
LE, ULE and HEOM are depicted. In the HEOM case, the Ohmic
(s = 1) and sub-Ohmic (s = 1/4) spectral density are considered.
As a representative, the Ohmic case is depicted for the ULE case.
The value �p(t ) is always zero in the LE case irrespective of the
exponent s, and we omit the value of s in the legend of LE case.
(Inset) Time evolution of �p(t ) in the short-time region. In the ULE
case, the amplitude is scaled up to depict the behavior clearly. The
corresponding scale is given by the second axis.

maxima and minima are observed at different times. We can
as well extract the qubit’s effective Larmor frequency from
the Fourier transform of �

(X )
00 and �

(Y )
00 which are indeed in

agreement with the respective frequencies ω�p.
To gain further insight into the small deviations of these

frequencies to the bare qubit transition frequency ωq, we con-
sider the Lamb shift induced by the quantum reservoir. For
the cases of LE and ULE, the predictions for modified qubit
frequencies ω̃ are given through the function � via ω̃ − ωq =
�(ωq) − �(−ωq); explicit results coincide indeed with the
values for ω�p. Note that the effective Larmor frequency is
expressed as

√
ω̃2 − �2 in the ULE case, but �/ωq � 10−4 is

small in our case (2π h̄κ = 10−3), and the main contribution
of the frequency shift in the ULE is the Lamb shift.

Predictions of the Lamb shift within the FP-HEOM for
weakly coupled Ohmic reservoirs (h̄κ 	 1) are very well
described within the framework of the noninteracting-blip

approximation (NIBA) [10,15]. Then, for a spectral density
of the form J (ω) = κωe−|ω|/ωc , one derives

ω̃2 = ω2
eff

{
1+2K

[
Re

{
ψ

(
iβ h̄ωeff

2π

)}
− ln

(
β h̄ωeff

2π

)]}
.

(33)

Here, K = 2h̄κ is the Kondo parameter, and ωeff is given by

ωeff = [�̄(1 − 2K) cos(πK)]1/[2(1−K)](ωq/ωc)K/(1−K)ωq.

The functions ψ (x) and �̄(x) are the digamma and gamma
functions, respectively. Using the chosen parameter values,
the effective Larmor frequency is given by ω̃/ωq = 0.999
in full agreement with ω�p/ωq in the Ohmic case, although
the form of the spectral density is different. It was reported
previously [10] that the Lamb shift can be evaluated precisely
with Eq. (33) irrespective of the cutoff function in the weak
coupling regime.

These findings verify that ω�p is determined by the effec-
tive Larmor frequency ω̃ and that for weak coupling already
a second order estimate provides a quite good description.
Interestingly, the frequency difference between ULE, Ohmic,
and sub-Ohmic cases is relatively small given that the am-
plitude differ by about an order of magnitude. If the RWA is
not performed, one can obtain from the ULE precise informa-
tion about the frequency of �p(t ) (not about the amplitude
though). Thus the RWA plays a significant role for the estima-
tion of �p(t ).

This brings us back to the previous study [17], where re-
sults with the LE and a TCL master equation, which can also
describe non-Markovian dynamics (while the Born approxi-
mation is still imposed), were studied at zero temperature. It
was reported that the difference �p(t ) vanishes in the LE case
and does not so in the case of the TCL master equation, in
line with our results. It was then concluded that this difference
clearly originates from non-Markovianity.

However, as we have seen above, this statement is ques-
tionable at nonzero temperatures: the difference �p(t ) does
not vanish for the ULE which imposes a Markov approxima-
tion but not the RWA. In fact, at nonzero temperatures one can
distinguish Markovianity and RWA based on the LE and ULE,
but this distinction becomes subtle at the zero temperature.
Namely, then the ULE reaches the LE since Sβ (−ωq) = 0.
We conclude that non-Markovianity cannot be identified only
based on the observation of a finite �p(t ). Other parameters
such as temperature must be taken into account as well.

Here, we study the behavior of �p(t ) in the stronger cou-
pling case, 2π h̄κ = 10−2, in Fig. 3(b). Similar to Fig. 1, the
profiles of Figs. 3(a) and 3(b) are qualitatively same, except
for the scale of axes: the amplitude in the stronger case is
ten times greater than in the weaker case, and the decay is
ten times faster in case (b). Note that the frequencies ω�p

are almost the same for cases (a) and (b). We emphasize
again that when the coupling strength is not sufficiently small,
the Born–Markov approximation is violated, and the HEOM
approach provides more reliable results.
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F. Proposal of an experimental protocol for the distinction
between the Markovianity and non-Markovianity

In the preceding section, we found that the previously
proposed experimental method is not sufficient to distinguish
the Markovianity from the non-Markovianity: Rather, it seems
to be helpful to measure the impact of the RWA. Here,
we propose a new experimental method to detect the non-
Markovianity: a method to obtain a quantity that is zero in
the LE and ULE cases, while nonzero in the HEOM cases.
Similar to the previous method, we consider pulse applica-
tions with the different rotation axis. However, we utilize the
π pulse here, X̂π and Ŷπ , and the initial state is the equilibrium
state, which we discussed in Sec. IV D. We assume that we
experimentally obtain the equilibrium state

ρ̂eq = e−βĤtot

tr{e−βĤtot } (34)

after the relaxation process without any operations to the
qubit. As discussed in Sec. IV D, the equilibrium density
operator is approximated with

ρ̂eq � e−βĤS

tr{e−βĤS } ⊗ e−βĤB

tr{e−βĤB} (35)

within the Born–Markov approximation. We aim to detect
these difference by means of the method proposed below.

With the equilibrium initial state, we apply the π pulse
and then simply monitor the population relaxation of the
system. We consider two different π pulses, X̂π and Ŷπ , and
the sequences are symbolically expressed as f̂t X̂π and f̂t Ŷπ .
Explicitly, the ground-state populations we experimentally
obtain are described as follows; for the f̂t X̂π sequence,

�̃
(X )
00 (t ) = 〈0|trB{e−iĤtott/h̄X̂π ρ̂eq X̂ †

π eiĤtott/h̄}|0〉, (36)

and for the f̂t Ŷπ sequence,

�̃
(Y )
00 (t ) = 〈0|trB{e−iĤtott/h̄Ŷπ ρ̂eq Ŷ †

π eiĤtott/h̄}|0〉. (37)

For the LE and ULE, ρ̂eq in Eqs. (36) and (37) is approximated
with Eq. (35), and the time evolution e∓iĤtott/h̄ is replaced with
Eqs. (25) and (26). Note that because ρ̂eq coincides in the LE
and ULE cases, �̃

(X )
00 (t ) and �̃

(Y )
00 (t ) are same in both cases.

In the HEOM calculation, the RDO and ADOs at the time
t eq = 10000/ωq and 1000/ωq are used as ρ̂eq respectively for
the weaker (2π h̄κ = 10−3) and stronger (2π h̄κ = 10−2) cou-
pling case (see Sec. IV D). The pulse applications X̂π ρ̂eq X̂ †

π

and Ŷπρeq Ŷ †
π correspond to the operation X̂π ρ̂ �m,�n(t eq )X̂ †

π and
Ŷπ ρ̂ �m,�n(t eq )Ŷ †

π for all the ADOs. The time evolution is evalu-
ated with the HEOM [Eq. (19)].

Similar to the previous method, we define the difference
of the ground-state population between the different pulse
sequences as

�p̃(t ) = �̃
(X )
00 (t ) − �̃

(Y )
00 (t ).

Figure 4 displays the dynamics of �p̃(t ) obtained with the
LE/ULE and HEOM. In the HEOM case, the Ohmic and
sub-Ohmic spectral density are considered. The population
obtained with the LE and ULE is independent of the exponent
s, which is same as Figs. 1 and 2, and therefore we do not
explicitly mention the value of s in the LE and ULE cases
here. Because the equilibrium state is the product state in the

FIG. 4. Difference, � p̃(t ), of the ground-state population ob-
tained after the different pulse sequences, f̂t X̂π and f̂t Ŷπ . (a) The
weaker (2π h̄κ = 10−3) and (b) the stronger (2π h̄κ = 10−2) cou-
pling cases calculated with the LE, ULE and HEOM are depicted.
In the HEOM case, the Ohmic (s = 1) and sub-Ohmic (s = 1/4)
spectral density are considered. The results obtained with LE and
ULE coincide, and therefore only one line is shown. Also, this results
is independent of the exponent s, and the value of s is omitted in
the legend of LE and ULE. (Inset) Time evolution of � p̃(t ) in the
short-time region.

LE/ULE case, the difference of the rotation axis does not
affect the following time evolution. This leads to the time-
independent zero value of � p̃(t ). By contrast, due to the term
ĤI in the exact equilibrium state [Eq. (34)], the difference of
the rotation axis affects the following time evolution, which
leads to the nonzero value of � p̃(t ) in the HEOM cases. For
the Ohmic case, fast monotonic decrease and slow monotonic
increase was observed, while in the sub-Ohmic case, oscilla-
tory behavior was found (see the insets of Fig. 4).

On the basis of the value of � p̃(t ), we can distinguish the
results of LE/ULE and HEOM. This implies that the non-
Markovianity is detected with the aid of the quantity �p̃(t ).

Finally, we compare the weaker and stronger coupling
cases. Similar to the above results, the profiles of Figs. 4(a)
and 4(b) are qualitatively same except for the scale of the
axes. Similar to �p(t ), the frequency of the oscillation of
the sub-Ohmic case in the short-time region hardly changes
with the change of the coupling strength. The signature of
the non-Markovianity is enhanced when the strength of the
system-bath coupling becomes large.
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V. CONCLUDING REMARKS

In this paper, we focused on the distinction between the
Born–Markov approximation and rotating wave approxima-
tion, which have been widely adopted hand in hand for the
studies of open quantum dynamics. We reviewed three equa-
tions of motion that describe the dynamics of open quantum
systems, the approximate LE, ULE and the exact HEOM, and
investigated how the approximations imposed to obtain the LE
and ULE cause numerical errors in the dissipative dynamics
of qubits.

Starting from the Born–Markov approximation, one ob-
tains the ULE only on the basis of the properties of the
heat bath (system agnostic), while we need additional in-
formation about the system to impose the RWA and to
obtain the standard LE. These two examples of Lindblad
equations demonstrate that there are a number of methods
(approximations) to obtain the Markov equations for the open
quantum systems in Lindblad form.

Comparing the dynamics of the population relaxation from
the qubit’s excited state obtained with the LE, ULE, and
FP-HEOM, we explored the errors caused by using the LE
and ULE. When the coupling strength between system and
heat bath is sufficiently small, results obtained with LE
and ULE on moderate to long timescales are qualitatively
in agreement with exact results and only minor deviations
asymptotically. Signatures of the limitation of these approx-
imate equations are found in the short-time region of the
dynamics and for non-Ohmic reservoirs: The universal initial
decay and the oscillatory behavior cannot be expressed with
a single monoexponential decay as predicted by LE/ULE.
The stronger the coupling strength becomes, the more sig-
nificant are differences between the approximate and exact
results [10,34]. Also, when we consider experiments with
more complicated pulse sequences, those differences may be-
come prominent [35] even when the system-bath coupling is
weak. For quantum computing experiments quantitative pre-
dictions with very high accuracy are demanded. In this respect
numerically rigorous methods without approximations must
definitely be used while Lindblad equations may typically
provide only a relatively rough picture. For the improvement
of approximate but computationally less expensive schemes,
the above discrepancy between the HEOM and Lindblad
equations must be considered, especially in the context of the
simulations of quantum computation.

Through numerical calculations of the difference of the
ground-state population, �p(t ), obtained from the different
pulse sequences, we distinguished the impact of the Born–
Markov approximation and the RWA on the qubit’s dynamics.
A finite �p(t ) is observed even when the Born–Markov ap-
proximation is imposed at finite temperatures, in contrast to
the zero temperature case considered previously in Ref. [17].
We found that the RWA plays a more crucial role in the
dynamics of �p than the Born–Markov approximation. The
conclusion is that one cannot determine whether a system
coupled to a heat bath obeys Markovian or non-Markovian
dynamics merely based on observing finite values for �p(t ).
While we found that the amplitude of �p(t ) is substan-
tially larger in the non-Markovian case, the threshold that
unambiguously distinguishes it from the Markovian cannot

easily be identified. It depends as well on system specific
properties.

To overcome this problem, we proposed a new experimen-
tal protocol. Similar to the previously proposed protocol, we
utilize the different rotation axis of the pulse and calculate the
difference of the ground-state population. The main difference
from the previous protocol is that we use the π pulse instead
of the π/2 pulse and that we consider the correlated equi-
librium state in terms of the total system+bath Hamiltonian
for the initial state. The obtained value with this protocol,
� p̃(t ), is always zero for the LE and ULE cases, and nonzero
for the HEOM cases. This unambiguously distinguishes the
non-Markovianity from the Markovianity. We hope that this
new protocol is utilized for deeper understandings of the open
quantum dynamics in the future experimental works.
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APPENDIX: BREUER–LAINE–PIILO (BLP) QUANTIFIER
FOR THE HEOM

In this Appendix, we discuss the Breuer–Laine–Piilo
(BLP) quantifier of the HEOM. The BLP quantifier is defined
as [31,36]

NBLP = max
ρ̂1,ρ̂2

∫
σ>0

dtσ (ρ̂1, ρ̂2, t ), (A1)

where

σ (ρ̂1, ρ̂2, t ) = d

dt
D[ρ̂1(t ), ρ̂2(t )]

and D[ρ̂1(t ), ρ̂2(t )] = ||ρ̂1(t ) − ρ̂2(t )||/2 is the trace distance
between a pair of the RDOs at the time t with different initial
states, ρ̂1(t ) and ρ̂2(t ).

Numerically, the integral in Eq. (A1) is evaluated as
follows:∫

σ>0
dtσ (ρ̂1, ρ̂2, t ) =

N∑
n=1

max(0, δD[ρ̂1(nδt ), ρ̂2(nδt )]).

(A2)

Here, the finite difference of the trace distance is defined as

δD[ρ̂1(nδt ), ρ̂2(nδt )] = D[ρ̂1(nδt ), ρ̂2(nδt )]

− D[ρ̂1((n − 1)δt ), ρ̂2((n − 1)δt )],

and the step size and total step for the numerical integration
are given by δt and N , respectively. In this study, δtωq is set to
0.1. The function max(a, b) returns the larger value of a and b.

Although we need to consider all the pairs of RDOs to
obtain the exact value of NBLP, we can demonstrate that the
process is non-Markovian only by obtaining the finite value
of Eq. (A2) for some pair of RDOs [31,36]. We calculated
the value of Eq. (A2) of the HEOM for the pair of ρ̂

y
S (t )

and ρ̂x
S (t ) in Eqs. (31) and (32). We set the total step for

the integral as N = 10000/(δtωq ) for the weaker coupling
case and N = 1000/(δtωq ) for the stronger coupling case, and
obtained the value 0.207 for the Ohmic bath and 3.37 × 10−3
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for the sub-Ohmic bath in the weaker coupling case, and 0.204
for the Ohmic bath and 3.43 × 10−3 for the sub-Ohmic bath in
the stronger coupling case. From these values, we concluded

that the BLP quantifier NBLP for the HEOM is not zero and
that the exact process without any approximations is the non-
Markovian process in our case.
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