
PHYSICAL REVIEW B 109, 014312 (2024)

Spread complexity evolution in quenched interacting quantum systems
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We analyze time evolution of spread complexity (SC) in an isolated interacting quantum many-body system
when it is subjected to a sudden quench. Characteristics features of the time evolution of the SC after the quench
are analyzed for different timescales, both in integrable and chaotic models. For a short time after the quench,
the SC shows universal quadratic growth, irrespective of the initial state or the nature of the Hamiltonian, with
the timescale of this growth being determined by the local density of states. The characteristics of the SC in the
next phase depend on the nature of the system, and we show that, depending on whether the survival probability
of an initial state is Gaussian or exponential, the SC can continue to grow quadratically, or it can show linear
growth. To understand the behavior of the SC at late times, we consider sudden quenches in two models, a full
random matrix in the Gaussian orthogonal ensemble, and a spin-1/2 system with disorder. We observe that, for
the full random matrix model and the chaotic phase of the spin-1/2 system, the SC shows linear growth at early
times and saturation at late times. The full random matrix case shows a peak in the intermediate-time region,
whereas this feature is less prominent in the spin-1/2 system, as we explain.

DOI: 10.1103/PhysRevB.109.014312

I. INTRODUCTION

The concept of complexity in the context of a quantum-
mechanical state refers to how “difficult” it is to construct the
desired state via some pre-assigned basis states and operators.
Even though it is a widely used measure in quantum com-
putation research, the recent flurry of activity in quantum field
theory and statistical systems started after the work of Ref. [1],
where a proposal for circuit complexity of a quantum state
was described based on Nielsen’s geometric approach to the
circuit complexity [2–4]. The Nielsen complexity and various
other related notions of complexity of a quantum state under
a unitary evolution was proposed and studied subsequently in
several works [5–7] (see the review [8] for a compendium of
related works).

Besides these measures of circuit complexity, in a slightly
different context of probing operator growth in quantum-many
body systems, the notion of Krylov complexity (KC) was
proposed in Ref. [9]. The central result of this work was em-
bodied in the “universal operator growth” hypothesis, which
states that, for a nonintegrable quantum many-body system
in the thermodynamic limit, the so-called Lanczos coeffi-
cients must grow linearly with n (with logarithmic corrections
present for one-dimensional systems, where n denotes the
index of the ordered Krylov basis). This implies that the corre-
sponding operator complexity must grow exponentially fast, a
feature quite generic in quantum chaotic systems. Since then,
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KC has become a popular measure to study various aspects of
quantum many-body dynamics in and out of equilibrium. For
a partial set of works see Refs. [10,11] for the use of Krylov
complexity in operator growth [12–14], for works in CFTs
[15–17], for works on open systems [18], for KC in bosonic
systems [19], for a tool of probing delocalization properties
in integrable quantum systems, and [20,21] for a focus on
billiard systems. Important steps have also been taken to un-
derstand features of KC in quantum field theories [22,23].
Various other important results have also been reported in
Refs. [24–45].

From a viewpoint more in line with the Nielsen-like com-
plexities, where the complexity is defined as the minimum
of a “cost functional” associated with the evolution, the idea
of spread complexity (SC) was proposed in Ref. [44]. In that
work, it was shown that the cost that measures the spread of
a reference wave function in a fixed basis of states on the
Hilbert space under a unitary Hamiltonian evolution is the
minimum when computed with respect to the Krylov basis
constructed by using the Hermitian operator generating the
evolution. The associated complexity, the SC, is the analog
of the operator complexity for quantum states. Starting from
the work of Ref. [44], the generic features of SC in quantum
systems have been explored in a variety of works that include
quantum phase transitions [46–48], work statistics in quantum
quenching [49,50], and probing quantum scar states [51]. In
this paper our main focus will be SC evolution in quantum
many-body systems which are far from equilibrium.

We note that the evolution of various few-body observables
has been studied in the literature, specifically due to their
importance in quench experiments. However, studies on the
quench dynamics of the SC have been relatively rare, and
these have been mostly confined to Hamiltonians that can be
transformed to integrable systems [46,48] (there are various
works that have studied the evolution of other measures of
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complexities after a quantum quench, see, e.g., Refs. [52–60]).
In this context, the importance of introducing interactions in
an otherwise isolated quantum system cannot be overempha-
sized, since integrable systems constitute a small subset of
realistic quantum systems with interactions. With this moti-
vation, in this work, we go beyond the realm of integrable
models and understand the evolution of SC after a sudden
quantum quench is performed in generic interacting many-
body quantum systems. Here, we highlight the differences
in the characteristics of the time evolution shown by the SC
for different timescales after the quench, both in integrable
and chaotic models. It is known that the exact nature of the
dynamics of an interacting quantum system after a sudden
quantum quench depends on how the local density of states
(LDOS) is filled up after the quench. Therefore, the spread
of an initial state before the quench in the Krylov basis, and
hence the SC, should crucially depend on how the LDOS
behave in that interacting system. Our aim in this paper is to
find out this connection. We highlight how the filling of the
LDOS affects the evolution of the SC after the quench.

To begin with, the basic approach of obtaining the Lanczos
coefficients (LCs) and the associated SC after a sudden quan-
tum quench used in this paper is the following: We recall that
all information about the LCs, which are the main ingredients
of constructing the Krylov basis by means of the Lanczos
algorithm [9,44,61,62], are encoded in the moments of the so-
called autocorrelation function, which measures the overlap
between the evolved quantum state with the initial one. Once
this is known, the full set of Krylov basis can be constructed
from the moments of the autocorrelation function at t = 0,
where t denotes the time after the quench [61]. Typically, for
the Hamiltonian evolution, there are two sets of LC, which
are denoted an and bn. The first set of coefficients give the ex-
pectation value of the Hamiltonian in each Krylov basis, and
the second set represents the normalization constants for these
bases. Therefore, we can extract all the relevant information
about the dynamics in Krylov space, and the time evolution
of SC, once we have an analytical (or numerical) expression
for the autocorrelation function in hand. In this context, we
note that the characteristic function (CF, which is just the
complex conjugate of the autocorrelation function) is one one
of the most commonly studied quantities in sudden quenches
of interacting quantum many-body system and by itself can re-
veal important information about the nature of the postquench
Hamiltonian and the initial state before the quench. For exam-
ple, usually when the CF after a quench decays exponentially,
it means that the postquench Hamiltonian is chaotic in nature
[63,64], however, whenever the initial state is “sufficiently
delocalized” in the energy basis, similar exponential decay
can also be observed in integrable systems [65].

With this discussion in mind, in this work we first explore
in detail the evolution of SC in generic interacting lattice
quantum-many body systems, where the analytical form of
the autocorrelation functions are known in the literature for
a wide range of such systems at different timescales after a
sudden quench. In many cases approximate analytical expres-
sions for such autocorrelation functions have been obtained
by comparing with results from numerical simulations. In this
work we use these generic expressions for such autocorrela-
tion functions to obtain the nature of SC evolution for a wide

class of realistic interacting quantum many-body systems after
a sudden quench.

In the next section, first we use the expression for the
survival probability (SP) of an initial state before the quench,
available in the literature for sudden quantum quenches of a
parameter of the Hamiltonian of a generic quantum system,
to comment on the universal features of SC. We find that the
SC shows quadratic growth at early times, where the rate of
the growth is set by the variance of the local density of states,
or equivalently, the LC b1. It is to be noted that the quadratic
early time behavior of SC was also reported in Ref. [44] for
evolution with random matrices. Our result points toward the
universality of this feature in an interacting quantum many-
body system. However, our results also suggest that, besides
this universal early time quadratic growth, this type of growth
can persist on even larger times scales in quenches of quantum
many-body systems where the interaction is strong. Next,
to explore the behavior of complexity at late times, we use
an interpolating functional form of the SP that incorporates
between the quadratic decay at early times and exponential
decays at late times, valid when the external perturbation is
not strong, to show that, in such a case, the LCs bn follow a
linear growth for relatively small values of n (which determine
the early time evolution of the complexity) and the SC, after
the initial universal quadratic growth, merges into a linear
growth at late times.

In the rest of Sec. III, we briefly describe the results for
LCs and the SC evolution when one uses a full random matrix
(FRM) to describe the Hamiltonian of the interacting quan-
tum many-body system after quantum quench by sampling its
elements from a Gaussian orthogonal ensemble (GOE). Here,
we use the tridiagonal Hessenberg form of the Hamiltonian to
extract the corresponding LCs and later use this form to find
the nature of the SC at various timescales. In this context, we
note that, in the original work, which introduced the notion
of SC [44], the evolution of the SC was explored in detail
for quantum chaotic systems modeled by random matrices. It
was established that the SC shows a characteristic structure—
linear ramp, peak, slope, and plateau around a constant value.
These characteristics were further studied in Ref. [45], where
it was shown that the late-time features of SC are determined
by the probability amplitude of each Krylov basis, and is a
universal indicator of quantum chaos. In this work we use an
analytical form for the autocorrelation function after a sudden
quench (obtained in Ref. [66]) to find out an approximate
shape of the distribution of bn.

In Sec. IV, we consider a more realistic model of an inter-
acting quantum many-body system, i.e., an interacting spin-
1/2 model with disorder. With increasing disorder, the system
transforms from an integrable to nonintegrable phase, and
finally to an intermediate limit between the chaotic phase and
the many-body localized phase for large disorder values. Us-
ing a phenomenological expression for the SP after a sudden
quench, we obtain both sets of LCs and hence the SC when
the system is in chaotic domain, as well as in the intermediate
phase. Our observations show that, in the nonintegrable phase,
the SC shows linear growth at early times and saturation at
late times; however, the peak in the complexity, present in the
FRM case, is less pronounced here. The implications of these
results and conclusions are discussed in Sec. V.

014312-2



SPREAD COMPLEXITY EVOLUTION IN QUENCHED … PHYSICAL REVIEW B 109, 014312 (2024)

II. AUTOCORRELATION FUNCTION AND SURVIVAL
PROBABILITY AFTER A SUDDEN QUANTUM QUENCH

We assume that a quantum many-body system with an
initial Hamiltonian H0 and prepared in the ground state |ψ0〉
is quenched at time t = 0 to a new Hamiltonian H , whose
eigenvalues and eigenfunctions are denoted by En and |n〉,
respectively. To find out the behavior of the time evolution of
the SC, we need to study timescales associated with the CF,
which in this case is given by

G(t ) = 〈ψ0|�(t )〉 =
∑

n

∣∣Cn
0

∣∣2
e−iEnt , (1)

where Cn
0 = 〈n|ψ (0)〉 represents the overlap between the ini-

tial state and the eigenstates of the postquench Hamiltonian
(|n〉). The autocorrelation function S (t ) is defined as the over-
lap of the time-evolved state after the quench with the initial
state before quench, i.e., S (t ) = 〈�(t )|ψ0〉. From Eq. (1), we,
therefore, see that the autocorrelation function is actually the
complex conjugate of the CF, S (t ) = G∗(t ). By introducing
the LDOS

ρ0(E ) =
∑

n

∣∣Cn
0

∣∣2
δ(E − En), (2)

we can write the CF as the Fourier transform of the LDOS,
i.e.,

G(t ) =
∫

dEρ0(E )e−iEt . (3)

Therefore, once the LDOS is known for an initial state before
the quench and the final Hamiltonian, the behavior of the CF,
and hence the autocorrelation function is completely fixed.
Here we also note that, for a given final Hamiltonian, the time
evolution of the CF can be different for different choices of
the location of the initial state in the energy spectrum of the
initial Hamiltonian.

Detailed studies of the survival probability F (t ) (which
is just the modulus squared of the autocorrelation F (t ) =
|G(t )|2, i.e., the fidelity) under quenches in integrable and
chaotic quantum many-body systems have been carried out
in a series of works [67–71].1 Here we briefly describe the
behavior of the SP for different timescales after the quench,
following the above-mentioned references.

For a very short time after the quench, the SP shows a uni-
versal quadratic decay, independent of the final Hamiltonian
or the initial state before the quench. To check this, we first
notice that the mean and the variance of the LDOS are given,
respectively, by

E0 =
∑

n

∣∣Cn
0

∣∣2
En, and σ 2

0 =
∑

n

∣∣Cn
0

∣∣2
(En − E0)2 = b2

1,

(4)
where in the second expression we have used an identifica-
tion between the variance of the LDOS and the LC b1 [49].
These two quantities are extremely important in determining
the nature of the subsequent dynamics after a quench. Now

1This list of references is indeed incomplete, see references and
citations of these works for a more complete review of the literature
on this subject.

expanding the expression for the SP, it is easy to see that, for
small times t � σ−1

0 , it behaves as [70,71]

F (t ) ≈ 1 − σ 2
0 t2 = 1 − b2

1t2. (5)

After this initial quadratic decay, the behavior of the SP
depends on the strength of the external perturbation (see be-
low). For example, in systems with two-body interactions, the
shape of the LDOS, as well as the density of states (DOS) is
Gaussian, so that the resulting shape of the SP is given by the
Gaussian function of the form F (t ) = exp(−σ 2

0 t2) [67,72,73],
and this decay can go up to a saturation. Furthermore, the
LDOS can also be of the Lorentzian shape, so that the SP
decays exponentially with time. This behavior usually holds
up to a timescale of σ−1

0 � t � tP, where tP indicates the
timescale where the decay of the SP follows a power law.

Therefore, at late times, the SP attains a power-law decay
of the form F (t ) ∝ t−γ , where the exact value of the exponent
γ crucially depends on the nature of the system under consid-
eration, i.e., how the LDOS fills up, as well as the initial state
before the quench. A detailed study of this power-law decay
and calculation of the resulting exponent has been performed
in Ref. [71], where it was shown that from the numerical value
of γ , we can predict whether a given initial state will thermal-
ize, therefore providing a way to probe the thermalization of
an initial state based only on the dynamics after quench. It is
thus clear that the exact nature of the dynamics of the SC will
depend on how the LDOS is filled for the quantum many-body
system under consideration. In this paper, our broad goal is to
perform such analysis of the evolution of SC depending upon
the different types of LDOS filling after a sudden quench.

III. BEHAVIOUR OF SPREAD COMPLEXITY AT EARLY
TIMES AFTER A SUDDEN QUENCH

Before considering quench dynamics in some specific
models, here we first study the approximate evolution of the
SC at different timescales after the quench, and the behavior
of the resulting LC using the evolution of the SP as described
above. We assume that the Hamiltonian of the quantum sys-
tem under consideration can be written as H = H0 + gV ,
where H0 is the unperturbed Hamiltonian, and V is an exter-
nal perturbation, and g denotes the strength of the external
perturbation. We also assume that the state |ψ0〉 of the system
before the quench is the first state of the Krylov basis i.e.,
|K0〉 = |ψ0〉.

A. Krylov basis construction and the spread complexity

In this section we briefly review the construction of the
Krylov basis states using the Lanczos algorithm and the sub-
sequent definition of the SC of an arbitrary time evolved initial
state after a quench under a new Hamiltonian. This procedure
has been used later in this section to find the LC and the
SC. All other relevant details, which have been used in our
numerical analysis, can be found in Refs. [44,61,62].

Assume that a sudden quench is performed on a quantum
system at in initial time t0 = 0, and, subsequently, the state
before the quench evolves under the new Hamiltonian H .
In the Lanczos algorithm, one constructs new elements of
the Krylov basis starting from an initial one by using the
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following procedure:∣∣Kn+1〉 = 1

bn+1
[(H − an)|Kn〉 − bn|Kn−1〉]. (6)

Here, |K0〉 = |ψ0〉, i.e., the first element of the Krylov basis
is the initial state before the quench, and H represents the
Hamiltonian after the quench. The two sets of coefficients an

and bn are the LCs. The bn fix the normalization of the Krylov
basis vectors at each step of the recursion and the an are given
by the expectation value of the postquench Hamiltonian in the
Krylov basis, i.e.,

an = 〈Kn|H |Kn〉. (7)

The recursion stops when bn = 0 for some value of n.
Now we can expand the time-evolved state after the quench

in terms of the Krylov basis vectors,∣∣ψ (t )〉 =
∑

n

φn(t )
∣∣Kn〉, (8)

where φn(t ) are the expansion coefficients, and by using the
Schrödinger equation satisfied by the Hamiltonian H , one
can show that φn(t ) satisfy the following discrete Schrödinger
equation

iφ̇n(t ) = anφn(t ) + bnφn−1(t ) + bn+1φn+1(t ). (9)

Here, an overdot represents a derivative with respect to time.
In Ref. [44] it was proved that if we consider cost functions of
the form CB(t ) = ∑

n n|〈ψ (t )|Bn〉|2, to indicate the spread of a
time-evolved wave function in terms of a complete orthonor-
mal basis |Bn〉, then this cost is minimized when evaluated in
the Krylov basis |Kn〉. Therefore, we arrive at the definition of
the SC as the minimum of the above cost as

C(t ) =
∑

n

n|〈ψ (t )|Kn〉|2 =
∑

n

n|φn(t )|2. (10)

We conclude this section by briefly outlining the procedure
of obtaining the LCs from the moments of the return ampli-
tude S (t ) following Ref. [61]. Consider the expansion of the
autocorrelation function in terms of the moments

S (t ) =
∞∑
n

M∗
n

tn

n!
. (11)

The next step is to construct two sets of auxiliary matrices
L(n)

k and M (n)
k from the moments M∗

n . The two sets of LCs are
then obtained from these auxiliary matrices as bn = (M (n)

n )1/2

and an = −L(n)
n , where we have to chose initial conditions

properly so that b0 = 0 [44,61]. Knowing the full set of LCs
we can then solve the discrete Schrödinger equation in (9)
to obtain the time-dependent expansion coefficients φn(t ) and
subsequently obtain the complexity by evaluating the sum in
Eq. (10).

B. Analysis for Gaussian exponential decays

First we consider the timescale t � σ−1
0 , during which, as

we have discussed above, the SP decays quadratically with
time irrespective of the nature of the system under consid-
eration or the initial state before the quench. Since before the
quench, the state of the system is the lowest state of the Krylov
basis, for times scales t � σ−1

0 just after the quench, the time

FIG. 1. Numerical values of the first few bn. Here we have set
σ0 = 1, and bn are proportional to

√
σ0. The red curve is of the form

n1nn2 , and provides a good fit of the bn with n1 ≈ 0.0014 and n2 ≈
4.6446.

evolved state |�(t )〉 will spread over only the first few Krylov
basis elements with small basis number n. Now we can use
the autocorrelation function of the form S (t ) = 1 − 1

2σ 2
0 t2 to

obtain the first few LCs as well the SC. It can be checked that
for this autocorrelation function, an = 0, while bn grow with
n and are proportional to the width σ0 of the LDOS.2 In Fig. 1,
we have provided the numerical values of the first few bn with
σ0 = 1.

The time evolution of the SC in this case is shown in
Fig. 2. Along with the SC, calculated numerically (the red
curve), we have also shown the plot of t2, which reasonably
approximates the SC curve at early times. Since the quadratic
decay of the SP after quench is universal, we conclude that
irrespective of the nature of the quantum many-body system
under consideration, and the initial state before the quench,
the SC will always grow quadratically, with the coefficient of

2The LC and, subsequently the SC are obtained from this SP by
using the procedure reviewed in Sec. III A.

FIG. 2. Time evolution of SC (red curve) for t � σ−1
0 after the

quench. Here we have set σ0 = b1 = 1. The dotted black curve is
the plot of t2, which have a reasonably accurate matching with the
numerically evaluated SC at early times.
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the growth being determined by the variance of the LDOS, or
equivalently, the LC b1.

As we have discussed in the introduction, after this initial
quadratic decay, the nature of the time evolution of the SP and
the autocorrelation function will depend on the exact nature
of the quantum system under consideration. Two of the most
common types of time evolutions encountered in the literature
for quenches in interacting many-body quantum systems are
the Gaussian and the exponential decays. These two types of
decays appear in a chaotic system precisely when the shape of
the LDOS is Gaussian and a Breit-Wigner form, respectively.

In the presence of strong interactions,3 the shape of the
LDOS is Gaussian, so that the SP can be a function of the
variable σ 2

0 t2 for a timescale much longer than t0 � σ−1
0 [74],

and the autocorrelation function [obtained from Eq. (1)] is of

the form S(t ) ≈ exp(− σ 2
0
2 t2). For such a Gaussian form for the

autocorrelation, the behavior for the LC and the SC are well
known, see, e.g., Refs. [44,75]. Here the LCs are given by
an = 0, and bn = σ0

√
n, and the resultant SC grows quadrat-

ically with time, with the coefficient of this growth being
determined by the variance σ0 of the LDOS. Therefore, in the
presence of strong interactions, the initial quadratic growth of
the SC persists for timescales longer than t0(� σ−1

0 ).
In many cases, even in the presence of a Gaussian LDOS,

an initial Gaussian decay can change to an exponential decay
before reaching saturation [72,74] (see below for dynamics
of the SC in such cases). However, the Gaussian decay can
also persist until saturation. This was indeed shown to be
the case for sudden quenches in XX model, and spin-1/2
systems with impurities in Ref. [68]. Therefore, for quenches
in these systems, the characteristic quadratic growth of the SC
continues up to the saturation point of the SP.

For perturbations that are not very strong (g < 1), the long
time decay of the SP is exponential, and hence it can be
written as F (t ) ≈ exp(−	t ), where 	 is the width of the
corresponding Breit-Wigner distribution of the LDOS. In this
case, it is interesting to consider an extrapolation formula for
the SP derived in Ref. [74], which interpolates between the
initial quadratic and the long-time exponential decays. The
proposed form for the CF can be written as

G(t ) = exp

[
	2

4σ 2
0

− 1

2

√
	4

4σ 4
0

+ 	2t2

]
. (12)

It can be easily checked from this expression that, for 	 < σ0,
this functional form for the CF represents the initial quadratic
decay of the form in Eq. (5), while at late times it gives rise
to F (t ) ≈ exp(−	t ). Furthermore, we also note that, for this
form for the SP, the width (i.e., the second moment) of the
corresponding LDOS is not σ0. We use this CF to calculate
the LC and the time dependence of the SC.

The first set of LC an calculated from the CF in Eq. (12)
are zero in this case as well, while the first few bn are shown
in Fig. 3 for two different values of the variance of the LDOS.
As can be seen in both cases, these bn evaluated numerically
can be fitted with curves of the form bn = n1nn2 , where the

3See Refs. [72,73] for the exact quantification of the interaction
strength in the context of two-body random interaction models.

FIG. 3. Numerical values of the first few bn calculated from the
CF in Eq. (12). The red dots are with σ0 = 2, and blue dots are with
σ0 = 1.2, where in both the cases 	 is fixed to 0.5. The straight lines
show the linear fitting to the numerically evaluated bn.

exponent n2 is approximately equal to unity in both the cases,
i.e., bn ≈ n1n. The slope of the straight line fitting depends
on the variance σ0 in such a way that higher the variance, the
higher is the slope of the straight-line fitting. For example,
for the red dots with σ0 = 2 we find n1 = 21.687, and for
the blue dots, plotted with σ0 = 1.2 we obtain n1 = 7.682.
Therefore, for systems with LDOS of the same shape but
different widths, the growth rate of bn is higher when width
of the LDOS is greater, which in turn results in faster decay of
the SP.

The time evolution of the SC (with values of σ0 = 2 and
	 = 0.5, for the red dots in Fig. 3) is shown in Fig. 4. For
other values of the parameters, the features shown by the time
evolution of the SC are similar. As can be seen, the initial
quadratic growth of the SC (valid for the timescale t � σ−1

0 )
transforms to an approximately linear growth at later times.

Since the variance of the LDOS, i.e., σ0 is the quantity
which sets the timescale of the initial quadratic growth, the
time where the quadratic growth matches with the linear
growth occurs at a later time in the second case (blue dots)

FIG. 4. Time evolution of SC with σ0 = 2 and 	 = 0.5 (red
dots in Fig. 4). The initial quadratic growth transforms to a linear
growth at late times, with the timescale of the transformation being
determined by the variance of the LDOS.
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considered in Fig. 3, than the one first case (red dots). There-
fore, when σ−1

0 = 1.2, the quadratic growth of the SC persists
for a longer amount of time than when σ−1

0 = 2. In the oppo-
site case, where we fix the variance of the LDOS, and change
	, the higher value of 	 leads to lower values of the slope of
the linear fit for the bn. This observation clearly illustrates the
role of the initial state before the quench on the growth rate of
the corresponding LCs, and hence the SC.

C. Analysis with full random matrices

After finding out the behavior of the SC at timescales just
after the quench (t0 � σ−1

0 ), and in intermediate times before
the power law of the SP sets up for a wide class of generic
interacting quantum many-body system, in the rest of this
section we consider evolution of SC in late times after the
quench. First we consider time evolution when the postquench
Hamiltonian is modeled by the FRM.

Indeed, one of the most common approaches used to study
a strongly chaotic quantum system is to model them as a FRM.
A quantum chaotic system usually shows Wigner-Dyson dis-
tribution of the spacings of neighboring energy levels due to
the presence of strong level repulsion [76,77]. In this section,
we assume the quenched Hamiltonian to be a FRM from the
Gaussian orthogonal ensembles (GOEs), so that it is actually
possible to obtain an analytical expression for the SP and
hence the CF [70]. Modeling a quantum many-body system
as a FRM is clearly not a realistic choice, since it implies
simultaneous as well as infinite-range interactions between
all the particles of the system. However, in this case, we can
use the analytical formula for the CF to gain insights into the
nature of the LC and the complexity evolution after quench so
that we can apply these in a more realistic model considered
in the next section.

In this context, we mention that the LC and the SC in evolu-
tion with random matrices (RM) have been studied in detail in
Ref. [44], where universal characteristics of the SC evolution
for such RM models were established.4 Here our main goal
is to use the analytical expression for the SP obtained in
Refs. [70,79], when FRM is used to model the Hamiltonian
after a quench, and to understand the effect of the two-level
form factor (which is nonvanishing only in systems that have
correlations between energy levels) in the expressions for the
LC and the time evolution of the SC.

As before, we assume that the Hamiltonian after a quench
is given by H = H0 + gV , where H0 is the unperturbed Hamil-
tonian, and V is an external perturbation, i.e., by quenching
we give a nonzero value to it.5 When we use the FRM, the
matrix elements of the Hamiltonian Hnm are random numbers,
and since we are considering the GOE, these numbers are
taken from a Gaussian distribution with a mean value of zero.
The expression for the SP for a quenched quantum system
modeled by FRM belonging to the GOE can be written as

4See also Refs. [10,28,78] for some related works on SC in the
contexts of the RM.

5In the rest of this section, we have set the strength of the perturba-
tion g to 1 for convenience.

[66,70]

〈F (t )〉FRM = 1 − 〈F̄ 〉FRM

N − 1

[
4N J2

1 (ηt )

(ηt )2
− B2

(
ηt

4N

)]

+ 〈F̄ 〉FRM. (13)

Here, 〈.〉FRM denotes the ensemble average, N is the size
of the RM under consideration, η = √

2N , and J1(t ) is the
Bessel function of the first kind. Furthermore, F̄ = ∑

n |Cn
0 |4,

so that for the GOE FRM we have 〈F̄ 〉FRM = 3/(N + 2). The
functional form for the time dependence of the function B2(t ),
known as the two-level form factor is given by [66,70]

B2(t ) = [1 − 2t + t ln (1 + 2t )]�(1 − t )

+
[

t ln

(
2t + 1

2t − 1

)
− 1

]
�(t − 1), (14)

where � is the Heaviside step function.
The function B2(t ) is nonzero only when the energy levels

of the Hamiltonian are correlated. For integrable systems,
where the levels are uncorrelated, the two-level form factor
vanishes, i.e., B2(t ) = 0. The quantity 〈F̄ 〉FRM determines the
long-time saturation value of the SP, so that, at very late
times after the quench, the SP only fluctuates around this
constant value. The time evolution curve of the SP can be
divided into the following three characteristics regions: (1)
The Bessel function term appearing above governed the initial
decay, which is of the form 1/t3 [71,80]. (2) At very late times,
the SP acquires a saturation value 〈F̄ 〉FRM. (3) Between the
power-law decay and the final saturation, there is a dip in the
SP (below the saturation value) due to the presence of the two-
level form factor (and hence correlations between the energy
levels) which is known as the correlation hole [81–83]. When
the quantum system under consideration is an integrable one,
this correlation hole region vanishes from the dynamics of the
SP.

From the above discussion it is clear that, if we calculate
the LCs and the resultant SC using the SP given in Eq. (13)
for two different cases, first with the full analytical expression
given in this equation (valid for FRM in the GOE), and the
second one with B2(t ) = 0, we expect that the LC and the
SC will show universal characteristics features of a quantum
chaotic system, established in Ref. [44] for the first case only.

First, we consider the case when the two-level form factor
is zero. In this case, we obtain the CF by directly using Eq. (3),
and the fact that here the ensemble average 〈δ(E − Eα )〉FRM is
just the density of states which we denote as R(E ). Now using
the well-known fact that for FRM, the LDOS and the DOS
are equal, and both have a semicircular form [67,77,84], we
obtain

〈S (t )〉FRM = J1(2αt )

αt
, (15)

where 4α is the length of the spectrum. Notice that from
this autocorrelation function in the limit of large times, the
saturation value of the SP is zero, instead of 〈F̄ 〉FRM. We can
use this autocorrelation function to calculate the LC and the
SC of evolution after the quench.

Using the Lanczos algorithm we obtain that here, the an =
0 and bn = α. The SC shows linear growth with time after the
quench (this linear growth actually comes after a quadratic
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FIG. 5. Variation of bn with n for the case of FRM in the GOE.
Here we have taken N = 1000. The solid line represents an approx-
imate fitting for the bn and is of the form bn = n1(N − n)n2 . We fix
the unknown constants by using the exact SP in Eq. (13).

growth at very early times, see the discussion at the begin-
ning of this section). Here we also note that, for a realistic
few-body quantum system, considered in the next section, the
DOS, unlike the FRM considered here, is not of semicircular
shape; rather, it has a Gaussian form. Therefore, the LDOS of
these realistic interacting systems cannot exceed the Gaussian
shape.

Next, we consider the case with nonzero two-level form
factor. Here we directly use FRM in the GOE and obtain the
Hessenberg form to find out the LC. From the Hessenberg
form we see that the an ≈ 0, and the variations of bn with n
is shown in Fig. 5. The solid line represents an approximate
fitting for the bn, and is a curve whose equation is of the form
bn = n1(N − n)n2 . Below we fix the numerical values for the
two constants appearing in this equation.

In Fig. 6 we show the early-time behavior of the SC for the
FRM case and compare it with the evolution in the absence
of the two-level form factor term. In both cases, the universal

FIG. 6. Early time evolution of SC when the quenched Hamilto-
nian is modeled with FRM in the GOE (the red curve). The dashed
brown curve represents evolution when the two-level form factor is
absent from the SP. In both cases, an early quadratic growth (shown
clearly in the inset) merge into a linear growth at late times.

FIG. 7. Evolution of the SC after a quench for three different RM
in the GOE. Here N = 1000. The presence of the correlation hole in
the SP is responsible for the peak in the SC.

quadratic growth at very early times merges into linear growth
at late times. The plots for SC with and without correlations
between the energy levels match with each other for early
times. This is due to the fact that, in both cases, early time
decay of the SP is governed by the Bessel function term (and
hence a power-law decay), and only after this initial power-
law decay, the effect of the two-level form factor manifests
itself through the presence of the correlation hole in the SP,
and thus the two curves for the SC differ from each other only
after this time.

Now to determine the unknown constants in the fitting
curve for the bn we use the exact SP in Eq. (13) and com-
pute the analytical expressions for the first few bn. Then we
expand these expressions, taking N � 1, and find out the
dominant contribution of N . For example, we have b1 ≈√
N /2 + √

1/2N + O(N−3/2). Comparing this with the fit-
ting function in the limit N � 1, we get n1 = 1/

√
2 and

n2 = 1/2. This matching can be done by taking the analytical
expressions for any higher order bn as well. Furthermore, we
also notice that, when all the bn are expanded in powers of
N , the leading order contribution which survives in N → ∞
limit is proportional to

√
N .

Time evolution of the SC at late times after quench with
different FRM in the GOE is shown in Fig. 7. In all the cases,
after an initial linear growth, the SC reaches a maximum value
and then decays smoothly to a saturation value at late times.
The peak in the SC for the FRM is due to the presence of
the two-level form factor (and hence the correlation hole) in
the SP. Furthermore, these features are consistent with the
universal nature of the evolution of the SC of RM models
discussed in Refs. [44,45].

IV. SPREAD COMPLEXITY IN QUENCHES OF
INTERACTING SPIN-1/2 MODELS

As we have discussed in the beginning of the previous
section, the FRM is a somewhat unrealistic approximation
of a realistic quantum many-body system. However, the an-
alytical expression for the SP for this FRM models, given in
Eq. (13), can be used as a reference to obtain the expression
for the SP under quench for more realistic one-dimensional
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(1D) spin-1/2 quantum system, which shows chaotic behavior
in certain limits. Using numerical analysis, it is possible to
obtain the SP of an initial state for sudden quench done on
such 1D systems. Comparing these numerical results with the
exact analytical expression for the SP for FRM it is possible to
identify the following general dynamical features of quenched
realistic many-body quantum systems [70,84]: (1) an initial
power-law decay; (2) presence of a correlation hole, where
the SP decrease below the saturation value, and (3) saturation
at late times. The saturation value of the SP is equal to its
infinite time average, i.e., F̄ (t ) ∼ ∑

n |Cn
0 |4, which, in turn, is

just the inverse of the participation ratio of the initial state. In
this section we demonstrate how these typical features of SP
affect the evolution of SC at different times scales after when
a sudden quench is performed in such a spin-1/2 system.

The Hamiltonian we consider is that of a one-dimensional
spin-1/2 system, which has two parts, H = H0 + gV , i.e., the
original Hamiltonian H0, and a perturbation V , respectively.
Here we assume these to be of the form [70]

H0 =
L∑

j=1

h jS
z
j, V =

L∑
j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + Sz

jS
z
j+1

)
,

(16)
where L is the total number sites, and periodic boundary
conditions are assumed to be applied. Since the parameter h is
nonzero, the system is disordered, and hj are random numbers
taken from a uniform distribution [−h, h]. From the structure
of the Hamiltonian, we see that, before the quench, the cou-
pling strength g = 0 and, after the quench, it abruptly changes
to a nonzero value, which we set to 1 in the numerical analysis.
Thus the system is taken far from equilibrium through the
quench.

With increasing the disorder strength from an initial zero
value, the Hamiltonian H typically shows three distinct re-
gions, a sharp transition from integrable (corresponding to
zero disorder strength) to a chaotic domain, which is followed
by a chaotic region. Finally, as the disorder strength is further
increased, the system acquires an intermediate region between
chaotic and many-body localized phases [85,86]. The level
spacing distribution corresponding to the Hamiltonian H ac-
cordingly starts from Poisson, transforms to Wigner-Dyson,
and then again goes back to Poisson as the disorder strength
is increased.

Before proceeding to the computation of the LC and the
SC, we emphasize here some of the motivations and advan-
tages of working with this particular system.

(1) Various static and dynamic properties of this model
are well studied in the literature. Specifically, as we have
mentioned above, the level statistics of this Hamiltonian for
different values of the disorder strength are known, and as
previous studies have shown, increasing the disorder strength,
the level spacing distribution transforms from a Poisson to a
Wigner-Dyson one, thereby confirming that it can be used as
a realistic model for interacting chaotic quantum many-body
system. Furthermore, the time evolution properties of other
information theoretic quantities, such as the Shannon entropy,
entanglement entropy, or the out-of-time order correlator, are
also well studied [66,85], so that these can be compared di-
rectly with the time evolution of the SC in this model.

FIG. 8. Variation of an with n for the quench in the integrable
limit spin-1/2 model with disorder. Here we have taken L = 14, h =
0, and the initial state is a domain wall.

(2) By comparing numerical results with the SP of a FRM,
an analytical formula for the SP of an initial state can be
obtained (see below).

(3) Finally, an important practical advantage of working
with this model is that it has a spin-conserving sector, which
enables the study of the dynamics (in both chaotic and inte-
grable regimes) within the sector of smaller dimensions than
the entire Hilbert space, which is exponential in system size,
therefore allowing us to deal with spin chains of comparably
larger size. This is one of the main reasons for choosing this
model compared with other clean nonintegrable spin models.

In this paper we consider the largest subspace of the to-
tal Hilbert space of the system which has Sz = 0, and has
dimension N = L!/(L/2)!2, where Sz = ∑

k Sz
k is the total

spin along the z direction and is a conserved quantity for the
Hamiltonian under consideration.

For the type of system under consideration, after a sudden
quench, an analytical form for the SP can be obtained by
comparing results from numerical simulations and the SP for
the FRM given in Eq. (13), and this is given by [66]

〈F (t )〉h = 1 − 〈F̄ 〉FRM

N − 1

[
N g(t )

g(0)
− B2

(
σ0t

N

)]
+ 〈F̄ 〉h, (17)

where the 〈· · · 〉h now represents the disorder average, and the
functional form for the function g(t ) is given by

g(t ) = e−σ 2
0 t2 + A1 − e−σ 2

0 t2

σ 2
0 t2

. (18)

The constant A can be obtained by fitting this function with
results for SP obtained from numerical simulations.

First we study the LCs and the SC of the spin-1/2 model in
the nonchaotic case. As the initial state before the quench, we
consider a domain wall, i.e., | ↑↑↑ · · · ↓↓↓〉. The variation
of the LCs an and bn with respect to n, with L = 14 sites are
shown in Figs. 8 and 9, respectively. The ans are distributed
almost uniformly around zero. On the other hand, the bn show
initial sharp growth for lower values of n, reach a maximum
peak, then decay gradually towards zero as we reach towards
the end of the Krylov basis. As expected, after initial growth,
the SC oscillates with time.
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FIG. 9. Variation of bn with n for the quench in the integrable
spin-1/2 model with disorder. Here we have taken L = 14, h = 0,
and the initial state is a domain wall.

Next we consider quench in the nonintegrable limit of this
model. Here once again we take the domain wall as the initial
state before the quench and assume the disorder parameter
to be [−0.4, 0.4]. Here it is easy to see that, compared with
the integrable limit of this model, the LCs are less randomly
distributed. In particular, the variation of bn in this case is
almost similar to the case of FRM shown in Fig. 5, although,
there is an initial growth in the LCs for the spin-1/2 model
which was not present in the FRM case. After the initial
growth the bn reach a peak and then continue down to zero
as we reach towards the end of the Krylov chain.

The difference in the distribution of the LCs for the chaotic
and nonchaotic domains can be better visualized from the
histogram plots for these coefficients shown in Figs. 10 and 11
for an and bn respectively. As can be clearly seen from these
plots, when the disorder strength is away from the chaotic
domain, the LCs are widely distributed compared with the
case when the disorder strength is in the chaotic domain. The
variance of the distribution of an changes from 0.584 in Fig. 8
to a subsequently lower value of 0.449 corresponding to the
chaotic domain in Fig. 12. Similarly, variance of the distribu-

FIG. 10. Histogram of the distribution of the LCs an for the
chaotic (brown) and nonchaotic domains (blue).

FIG. 11. Histogram of the distribution of the LCs bn for the
chaotic (brown) and nonchaotic (blue) domains.

tion of bn increases from 0.313 in the chaotic case (Fig. 13) to
2.319 (in Fig. 9) as the disorder strength is increased.

The time evolution of the SC in this case is shown in Fig. 14
(for reference we have also shown the SC with L = 12 as
well). We notice that, similar to the case of quench modeled
with FRM (shown in Fig. 6), there is an initial linear growth
at earlier times, however, the peak in the complexity is less
pronounced compared with the FRM case. This behavior of
the SC can be understood from the fact that in the case of
FRM, the correlation hole is deeper, while for the disordered
spin-1/2 system, as the disorder strength is increased, the
correlation hole becomes less pronounced, and fades for larger
value of disorder. At late times, the SC fluctuates around the
long-time average value, which depends on the dimension
of the Krylov space and, hence the system size. Increasing
the system size increases the saturation value of the SC.6

Therefore, as the strength of the disorder of the quenched spin
chain is changed such that the system changes from integrable

6Also, there are oscillations present at late times due to the fact that
we have not averaged over all the disorder realizations of the system.

FIG. 12. Variation of an with n for a quench in the chaotic limit
of the spin-1/2 model with disorder. Here L = 14, h = 0.4, and the
initial state is a domain wall.
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FIG. 13. Variation of bn with n for a quench in the chaotic spin-
1/2 model with disorder. Here L = 14, h = 0.4, and the initial state
is a domain wall.

to chaotic, the SC can capture the necessary features of the
corresponding phase in both the cases.

V. SUMMARY AND CONCLUSIONS

In this paper, we have performed a detailed analysis of the
evolution of the SC after sudden quenches in interacting quan-
tum many-body systems. We have shown that, for timescales
that are small compared with the inverse of the width of the
LDOS, the SC grows quadratically with time, irrespective of
the final Hamiltonian or the initial state before the quench,
with the rate of the growth being determined by the width of
the LDOS (the width, in turn, is equal to the LC b1). Behavior
of SC evolution in the next timescale is determined by the ini-
tial state, as well as the strength of the perturbation introduced
via the quench. Exponential and Gaussian decays of the SP
are two of the most commonly encountered behaviors of the
SP after the initial quadratic decay. In the presence of strong

FIG. 14. Time evolution of the SC after quench in a chaotic
spin-1/2 model with disorder, for L = 12 (brown) and L = 14 (red),
and h = 0.4. After a characteristics initial growth, the SC attains
a saturation at late times. However, the peak in the complexity is
almost absent in this case.

perturbations, the SP shows Gaussian decay and, hence, the
quadratic growth of the SC persists for a time longer than
the inverse of the width of the LDOS. For sudden quenches
in the XX model and spin-1/2 systems with impurities, the
quadratic growth can persist even up to the saturation point of
the SP.

On the other hand, when the strength of the external per-
turbation is not strong, the initial quadratic decay merges into
an exponential decay at late times. Using an interpolation
formula connecting these two different decays, proposed in
Ref. [72], we have obtained the associated LC and the SC.
The LC bn grows linearly with n (whereas an = 0), with the
slope of the linear growth being determined by the width of
the LDOS, and the initial quadratic growth of the SC merges
into a linear growth at late times due to the presence of the
exponential decay of the SP.

To understand the behavior of SC at late times, we first
modeled the quenched interacting system as a FRM in the
GOE. The LC and the SC are then obtained by finding out
the Hessenberg form of these RMs. Here, an ≈ 0 and the
bn can be fitted with a curve of the form bn = n1(N − n)n2 ,
where the two unknown constants have been determined by
using the exact analytical expression in Eq. (13) available in
the literature for the SP after a quench with FRM. Due to
the presence of the correlation hole in the SP, the SC grows
linearly with time, reaches a peak, after which it saturates to a
lower constant value. These features of the SC evolution after
quench are consistent with the behavior for the same observed
in Ref. [44] without such a quench.

As the next example, we considered quenches in an in-
teracting spin-1/2 model in the presence of nearest neighbor
interactions and disorder, which shows nonintegrable behav-
ior in a particular range of the disorder parameter. For this
model, we have obtained the full sets of LCs and the SC,
in both the chaotic and the intermediate region between the
chaotic and many-body localized phases, where the initial
state before the quench is assumed to be a domain wall.
Although the LCs show similar patterns in this case as with
the FRM, the exact details are different. For example, away
from the chaotic phase, the LCs are distributed randomly,
whereas in the nonintegrable phase, the distribution of the
LCs are more compact. Importantly, the sequence of bn shows
a linear growth for small values of n and reaches a peak, a
behavior which is absent for the corresponding bn sequence
for our FRM analysis. The analysis of the SC shows that, in
the chaotic phase of this model, it shows a linear growth at
early times and saturation at late times, with the peak in the
intermediate time between them being less pronounced in this
case compared with that of the FRM.

ACKNOWLEDGMENTS

We sincerely thank the anonymous referees for their con-
structive comments and criticisms which helped to improve a
draft version of this paper. The work of T.S. was supported
in part by the USV Chair Professor position at the Indian
Institute of Technology, Kanpur.

014312-10



SPREAD COMPLEXITY EVOLUTION IN QUENCHED … PHYSICAL REVIEW B 109, 014312 (2024)

[1] R. Jefferson and R. C. Myers, J. High Energy Phys. 10 (2017)
107.

[2] M. A. Nielsen, arXiv:quant-ph/0502070.
[3] M. A. Nielsen, M. R. Dowling, M. Gu, and A. M. Doherty,

Science 311, 1133 (2006).
[4] M. A. Nielsen and M. R. Dowling, arXiv:quant-ph/0701004.
[5] R. Khan, C. Krishnan, and S. Sharma, Phys. Rev. D 98, 126001

(2018).
[6] L. Hackl and R. C. Myers, J. High Energy Phys. 07 (2018) 139.
[7] A. Bhattacharyya, A. Shekar, and A. Sinha, J. High Energy

Phys. 10 (2018) 140.
[8] S. Chapman and G. Policastro, Eur. Phys. J. C 82, 128 (2022).
[9] D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, and E. Altman,

Phys. Rev. X 9, 041017 (2019).
[10] J. L. F. Barbón, E. Rabinovici, R. Shir, and R. Sinha, J. High

Energy Phys. 10 (2019) 264.
[11] B. Bhattacharjee, X. Cao, P. Nandy, and T. Pathak, J. High

Energy Phys. 05 (2022) 174.
[12] A. Dymarsky and A. Gorsky, Phys. Rev. B 102, 085137 (2020).
[13] A. Dymarsky and M. Smolkin, Phys. Rev. D 104, L081702

(2021).
[14] A. Kundu, V. Malvimat, and R. Sinha, J. High Energy Phys. 09

(2023) 011.
[15] A. Bhattacharya, P. Nandy, P. P. Nath, and H. Sahu, J. High

Energy Phys. 12 (2022) 081.
[16] B. Bhattacharjee, X. Cao, P. Nandy, and T. Pathak, J. High

Energy Phys. 03 (2023) 054.
[17] A. Bhattacharya, P. Nandy, P. P. Nath, and H. Sahu, JHEP

(2023) 066.
[18] A. Bhattacharyya, D. Ghosh, and P. Nandi, J. High Energy Phys.

12 (2023) 112.
[19] J. Kim, J. Murugan, J. Olle, and D. Rosa, Phys. Rev. A 105,

L010201 (2022).
[20] K. Hashimoto, K. Murata, N. Tanahashi, and R. Watanabe,

arXiv:2305.16669 [hep-th].
[21] H. A. Camargo, V. Jahnke, H. S. Jeong, K. Y. Kim, and M.

Nishida, arXiv:2306.11632.
[22] A. Avdoshkin, A. Dymarsky, and M. Smolkin,

arXiv:2212.14429.
[23] H. A. Camargo, V. Jahnke, K.-Y. Kim, and M. Nishida, J. High

Energy Phys. 05 (2023) 226.
[24] D. J. Yates and A. Mitra, Phys. Rev. B 104, 195121 (2021).
[25] P. Caputa and S. Datta, J. High Energy Phys. 12 (2021) 188; 09

(2022) 113.
[26] D. Patramanis, Prog. Theor. Experimental Phys. 2022 063A01

(2022)..
[27] F. Ballar Trigueros and C. J. Lin, SciPost Phys. 13, 037 (2022).
[28] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner, J.

High Energy Phys. 03 (2022) 211.
[29] M. Alishahiha and S. Banerjee, SciPost Phys. 15, 080 (2023).
[30] K. Adhikari, S. Choudhury, and A. Roy, Nucl. Phys. B 993,

116263 (2023).
[31] K. Adhikari and S. Choudhury, Fortschr. Phys. 70, 2200126

(2022).
[32] W. Mück and Y. Yang, Nucl. Phys. B 984, 115948 (2022).
[33] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner, J.

High Energy Phys. 07 (2022) 151.
[34] B. Bhattacharjee, S. Sur, and P. Nandy, Phys. Rev. B 106,

205150 (2022).

[35] A. Chattopadhyay, A. Mitra, and H. J. R. van Zyl, Phys. Rev. D
108, 025013 (2023).

[36] B. Bhattacharjee, arXiv:2302.07228.
[37] B. Bhattacharjee, P. Nandy, and T. Pathak, J. High Energy Phys.

08 (2023) 099.
[38] K. Takahashi and A. del Campo, arXiv:2302.05460.
[39] D. Patramanis and W. Sybesma, arXiv:2306.03133.
[40] M. J. Vasli, K. Babaei Velni, M. R. Mohammadi Mozaffar, A.

Mollabashi, and M. Alishahiha, arXiv:2307.08307.
[41] A. Bhattacharyya, S. S. Haque, G. Jafari, J. Murugan, and D.

Rapotu, J. High Energ. Phys. 10 (2023) 157.
[42] A. A. Nizami and A. W. Shrestha, Phys. Rev. E 108, 054222

(2023).
[43] Z. Y. Fan, arXiv:2306.16118.
[44] V. Balasubramanian, P. Caputa, J. M. Magan, and Q. Wu, Phys.

Rev. D 106, 046007 (2022).
[45] J. Erdmenger, S. K. Jian, and Z. Y. Xian, J. High Energy Phys.

08 (2023) 176.
[46] P. Caputa and S. Liu, Phys. Rev. B 106, 195125 (2022).
[47] P. Caputa, N. Gupta, S. S. Haque, S. Liu, J. Murugan, and

H. J. R. Van Zyl, J. High Energy Phys. 01 (2023) 120.
[48] M. Afrasiar, J. K. Basak, B. Dey, K. Pal, and K. Pal, J. Stat.

Mech.: Theory Exp. (2023) 103101.
[49] K. Pal, K. Pal, A. Gill, and T. Sarkar, Phys. Rev. B 108, 104311

(2023).
[50] M. Gautam, N. Jaiswal, and A. Gill, arXiv:2305.12115.
[51] S. Nandy, B. Mukherjee, A. Bhattacharyya, and A. Banerjee, J.

Phys.: Condens. Matter 36, 155601 (2024).
[52] D. W. F. Alves and G. Camilo, J. High Energy Phys. 06 (2018)

029.
[53] H. A. Camargo, P. Caputa, D. Das, M. P. Heller, and R.

Jefferson, Phys. Rev. Lett. 122, 081601 (2019).
[54] G. Di Giulio and E. Tonni, J. High Energy Phys. 05 (2021) 022.
[55] N. Jaiswal, M. Gautam, and T. Sarkar, J. Stat. Mech. (2022)

073105.
[56] K. Pal, K. Pal, and T. Sarkar, Phys. Rev. E 107, 044130 (2023).
[57] M. Gautam, N. Jaiswal, A. Gill, and T. Sarkar, J. Stat. Mech.

(2023) 053104.
[58] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E. H. Kim and N.

Moynihan, Phys. Lett. B 811, 135919 (2020).
[59] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E. H. Kim, and N.

Moynihan, J. High Energy Phys. 04 (2019) 087.
[60] K. Pal, K. Pal, A. Gill, and T. Sarkar, J. Stat. Mech. (2023)

053108.
[61] V. S. Viswanath and G. Muller, The Recursion Method Appli-

cation to Many-Body Dynamics (Springer, Berlin, Heidelberg,
1994).

[62] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
[63] A. Peres, Phys. Rev. A 30, 1610 (1984).
[64] N. R. Cerruti and S. Tomsovic, Phys. Rev. Lett. 88, 054103

(2002).
[65] J. Emerson, Y. S. Weinstein, S. Lloyd, and D. G. Cory, Phys.

Rev. Lett. 89, 284102 (2002).
[66] E. J. Torres-Herrera, A. M. Garcia-Garcia, and L. F. Santos,

Phys. Rev. B 97, 060303(R) (2018).
[67] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. A 89, 043620

(2014).
[68] E. J. Torres-Herrera, M. Vyas, and L. F. Santos, New J. Phys.

16, 063010 (2014).

014312-11

https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/quant-ph/0502070
https://doi.org/10.1126/science.1121541
https://arxiv.org/abs/quant-ph/0701004
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1007/JHEP07(2018)139
https://doi.org/10.1007/JHEP10(2018)140
https://doi.org/10.1140/epjc/s10052-022-10037-1
https://doi.org/10.1103/PhysRevX.9.041017
https://doi.org/10.1007/JHEP10(2019)264
https://doi.org/10.1007/JHEP05(2022)174
https://doi.org/10.1103/PhysRevB.102.085137
https://doi.org/10.1103/PhysRevD.104.L081702
https://doi.org/10.1007/JHEP09(2023)011
https://doi.org/10.1007/JHEP12(2022)081
https://doi.org/10.1007/JHEP03(2023)054
https://doi.org/10.1007/JHEP12(2023)066
https://doi.org/10.1007/JHEP12(2023)112
https://doi.org/10.1103/PhysRevA.105.L010201
https://arxiv.org/abs/2305.16669
https://arxiv.org/abs/2306.11632
https://arxiv.org/abs/2212.14429
https://doi.org/10.1007/JHEP05(2023)226
https://doi.org/10.1103/PhysRevB.104.195121
https://doi.org/10.1007/JHEP12(2021)188
https://doi.org/10.1007/JHEP09(2022)113
https://doi.org/10.1093/ptep/ptac081
https://doi.org/10.21468/SciPostPhys.13.2.037
https://doi.org/10.1007/JHEP03(2022)211
https://doi.org/10.21468/SciPostPhys.15.3.080
https://doi.org/10.1016/j.nuclphysb.2023.116263
https://doi.org/10.1002/prop.202200126
https://doi.org/10.1016/j.nuclphysb.2022.115948
https://doi.org/10.1007/JHEP07(2022)151
https://doi.org/10.1103/PhysRevB.106.205150
https://doi.org/10.1103/PhysRevD.108.025013
https://arxiv.org/abs/2302.07228
https://doi.org/10.1007/JHEP08(2023)099
https://arxiv.org/abs/2302.05460
https://arxiv.org/abs/2306.03133
https://arxiv.org/abs/2307.08307
https://doi.org/10.1007/JHEP10(2023)157
https://doi.org/10.1103/PhysRevE.108.054222
https://arxiv.org/abs/2306.16118
https://doi.org/10.1103/PhysRevD.106.046007
https://doi.org/10.1007/JHEP08(2023)176
https://doi.org/10.1103/PhysRevB.106.195125
https://doi.org/10.1007/JHEP01(2023)120
https://doi.org/10.1088/1742-5468/ad0032
https://doi.org/10.1103/PhysRevB.108.104311
https://arxiv.org/abs/2305.12115
https://doi.org/10.1088/1361-648X/ad1a7b
https://doi.org/10.1007/JHEP06(2018)029
https://doi.org/10.1103/PhysRevLett.122.081601
https://doi.org/10.1007/JHEP05(2021)022
https://doi.org/10.1088/1742-5468/ac7aa6
https://doi.org/10.1103/PhysRevE.107.044130
https://doi.org/10.1088/1742-5468/acd2c5
https://doi.org/10.1016/j.physletb.2020.135919
https://doi.org/10.1007/JHEP04(2019)087
https://doi.org/10.1088/1742-5468/acd4b3
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevLett.88.054103
https://doi.org/10.1103/PhysRevLett.89.284102
https://doi.org/10.1103/PhysRevB.97.060303
https://doi.org/10.1103/PhysRevA.89.043620
https://doi.org/10.1088/1367-2630/16/6/063010


MAMTA GAUTAM et al. PHYSICAL REVIEW B 109, 014312 (2024)

[69] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. E 89, 062110
(2014).

[70] L. F. Santos and E. J. Torres-Herrera, AIP Conf. Proc. 1912,
020015 (2017).

[71] M. Tavora, E. J. Torres-Herrera, and L. F. Santos, Phys. Rev. A
94, 041603(R) (2016).

[72] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E 64, 026124
(2001).

[73] F. M. Izrailev and A. Castaneda-Mendoza, Phys. Lett. A 350,
355 (2006).

[74] V. V. Flambaum, Aust. J. Phys. 53, 489 (2000).
[75] P. Caputa, J. M. Magan, and D. Patramanis, Phys. Rev. Res. 4,

013041 (2022).
[76] M. L. Mehta, Random Matrices (Academic Press, Boston,

1991).
[77] T. Guhr, A. Mueller-Groeling, and H. A. Weidenmuller, Phys.

Rep. 299, 189 (1998).

[78] A. Kar, L. Lamprou, M. Rozali, and J. Sully, J. High Energy
Phys. 01 (2022) 016.

[79] E. J. Torres-Herrera, J. Karp, M. Tavora, and L. F. Santos,
Entropy 18, 359 (2016).

[80] M. Tavora, E. J. Torres-Herrera, and L. F. Santos, Phys. Rev. A
95, 013604 (2017).

[81] L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique, Phys. Rev.
Lett. 56, 2449 (1986).

[82] T. Guhr and H. Weidenmuller, Chem. Phys. 146, 21
(1990).

[83] Y. Alhassid and R. D. Levine, Phys. Rev. A 46, 4650 (1992).
[84] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. A 90, 033623

(2014).
[85] E. J. Torres-Herrera and L. F. Santos, Ann. Phys. (Berlin, Ger.)

529, 1600284 (2017).
[86] E. J. Torres-Herrera and L. F. Santos, Philos. Trans. R. Soc., A

375, 20160434.

014312-12

https://doi.org/10.1103/PhysRevE.89.062110
https://doi.org/10.1063/1.5016140
https://doi.org/10.1103/PhysRevA.94.041603
https://doi.org/10.1103/PhysRevE.64.026124
https://doi.org/10.1016/j.physleta.2005.10.077
https://doi.org/10.1071/PH99091
https://doi.org/10.1103/PhysRevResearch.4.013041
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1007/JHEP01(2022)016
https://doi.org/10.3390/e18100359
https://doi.org/10.1103/PhysRevA.95.013604
https://doi.org/10.1103/PhysRevLett.56.2449
https://doi.org/10.1016/0301-0104(90)90003-R
https://doi.org/10.1103/PhysRevA.46.4650
https://doi.org/10.1103/PhysRevA.90.033623
https://doi.org/10.1002/andp.201600284
https://doi.org/10.1098/rsta.2016.0434

