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Temperature-renormalized phonon and electron transport in thermoelectric Mg3Sb2:
Dominant role of anharmonic phonon modes
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Layered thermoelectric Mg3Sb2 has inspired increasing interest due to its inherently peculiar phonon and
electron properties. Here, we propose the crucial role of temperature-induced renormalization of phonon and
electron transports in the thermal, electronic, and thermoelectric performance by considering the peculiar
temperature-dependent anharmonic phonon vibrational modes. After the phonon renormalization is included,
the lattice thermal conductivity has a very weak temperature dependence of ∼T −0.62 that agrees better with
the experimental results than other theoretical pictures, in sharp contrast to the traditional harmonic T −1 trend.
This is because the strong quartic anharmonicity induces significant hardening of low-lying acoustic phonon
modes at the Brillouin zone boundary with temperature and finally suppresses the scattering rate by reducing the
phonon scattering phase space. The fundamental band gap anomalously increases with temperature rather than
decreasing as in most semiconductors because the greatly strengthened electron-acoustic-phonon coupling by lo-
cally asymmetric atomic vibrations drops the valence band maximum significantly. Furthermore, the temperature
dependence of thermopower is effectively improved by the temperature-renormalized electronic structures, and
then, combined with the phonon renormalization, excellent thermoelectric performance in good agreement with
the experimental data is described. Our work establishes the relationship of temperature-renormalized phonon
and electron transports versus intrinsic anharmonic acoustic phonon modes, which is helpful for describing the
related physical properties more precisely at elevated temperatures.
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I. INTRODUCTION

The layered compound Mg3Sb2 is a well-known n-type
thermoelectric (TE) material near room temperature due
to the low lattice thermal conductivity κL and excellent
electron transport properties [1–3]. At present, accurately pre-
dicting the phonon properties of this strongly anharmonic
material remains challenging; for example, the temperature
dependence of κL is ∼T −0.48 in theory but in the wide
range from ∼T −0.57 to ∼T −0.9 in experiment [4–7]. In the
conventional harmonic T −1 approximation, the temperature-
dependent κL is solely decided by the phonon occupation
number [8]. The temperature-induced phonon renormaliza-
tion usually changes the relationships of phonon scattering
phase space and group velocity versus temperature to further
improve the temperature-dependent κL [9–12]. In Mg3Sb2

[4], the noticeable discrepancy between predicted and mea-
sured data is attributed to neglecting the four-phonon (4ph)
scattering process, although the temperature-renormalized
second- and third-order interatomic force constants (IFCs)
have been included. Here, we systematically explore the
anomalous phonon phenomenon by disclosing how the
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temperature-dependent 4ph scattering phase space and
phonon population affect the scattering rate, highlighting the
importance of phonon renormalization and 4ph scattering pro-
cess in the thermal transport of strongly anharmonic materials.

Excellent thermopower is another key to the high TE per-
formance of Mg3Sb2 because of the peculiar band structure
with a sixfold-degenerate conduction band edge [13,14]. In
general, accurately describing the band structures at different
temperatures, i.e., the device operating conditions, is prac-
tically needed. Unfortunately, these temperature effects are
usually ignored in the majority of theoretical TE studies since
the first-principles calculations are largely performed for the
T = 0 K ground state [15,16]. Temperature, as one of the most
fundamental thermodynamic parameters, governs the elec-
tronic structure and related physical properties, i.e., the band
gap, carrier effective mass and mobility, optical absorption,
and so on. For instance, the carrier effective mass strongly
depends on the temperature-renormalized electronic structure
[17,18], which significantly affects the Seebeck coefficient
S, the electrical conductivity σ , and, eventually, the TE
performance.

The dependence of electronic structure on temperature is
ascribed to two main mechanisms. One is the lattice thermal
expansion, as reported recently in TE materials, such as PbTe,
CoSb3, and SnTe [19–21]. The other is the lattice dynamics,
such as the atomic vibration induced by the activated phonon
mode, known as the electron-phonon renormalization (EPR)
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[22–26]. Taking PbTe as an example, the increasing off-
center displacement of the Pb atom with temperature results
in the convergence of energy bands [27]. Here, to describe
the electron transport more accurately than the conventional
treatments for practical applications of Mg3Sb2, we utilize
the recently developed “one-shot” (also known as the “frozen-
phonon”) method to evaluate the temperature dependence of
electronic structure and thus to establish the relationship of
carrier effective mass versus temperature. The computational
efficiency and accuracy of this method in predicting the effec-
tive electronic structures at different temperatures have been
widely verified [28,29].

In this work, we focus on the temperature-renormalized
phonon and electron transports in Mg3Sb2 by relating them
to the peculiar low-lying acoustic phonon modes at the
Brillouin zone boundary. On the one hand, the temperature-
dependent κL is significantly weakened to quantitatively and
qualitatively match better with the measured data than avail-
able theoretical results by including the anharmonic phonon
renormalization and, particularly, the 4ph scattering process
because of the typical quartic character of anharmonicity. The
temperature-induced hardening of acoustic phonon modes
noticeably reduces the 4ph scattering phase space to offset the
temperature-enhanced phonon population to further weaken
the dependence of phonon scattering rate on temperature. On
the other hand, in contrast to Varshni’s relation [30–32], the
band gap unexpectedly increases with temperature, e.g., by at
least 50% between 0 and 700 K, based on the one-shot config-
urations accounting for the effects from both lattice thermal
expansion via the quasiharmonic approximation (QHA) and
lattice vibrations via the frozen-phonon method. The lo-
cally asymmetric atomic vibrations of acoustic phonon modes
greatly strengthen the electron-phonon coupling, inducing
the anomalously fast drop of the valence band maximum
with temperature. Finally, the temperature-dependent S and
σ are improved by the phonon-renormalized carrier effective
masses at different temperatures. Our work provides a com-
prehensive understanding of TE performance from the point
of view of the temperature-induced renormalization of phonon
and electron transports in Mg3Sb2.

II. COMPUTATIONAL METHODS

The temperature-dependent effective potential (TDEP)
technique, a thorough and accurate method to determine the
anharmonic free energy, is based on the ab initio molecular
dynamics (AIMD), followed by a mapping onto a model
Hamiltonian [33–35]. The effective Hamiltonian at each tem-
perature is fitted by the TDEP method as

H =
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Here, U0 is a constant energy; pi and mi are the momentum
and mass of atom i, respectively; uα

i is the displacement of
atom i in the Cartesian direction α; and �

αβ
i j , �αβγ

i jk , and �
αβγ δ

i jkl
are the elements of the second-, third-, and fourth-order IFCs,
respectively. We fit IFCs of increasing order in a sequential
fashion; that is, we first find the best possible fit of the AIMD
forces using just the second-order IFCs, then fit the third-
order IFCs to the residual atomic forces, and then similarly
fit the fourth-order IFCs. This fitting scheme ensures that H0

in Eq. (1) is the largest, while the effects of H3 and H4 can be
treated as perturbations [8].

A set of renormalized phonon normal mode frequencies is
obtained from H0, where q is the wave vector and s is the
branch index. The lowest-order contribution to the phonon
self-energy contains the terms from both third- and fourth-
order IFCs, i.e.,

∑
qs(	) = ∑(3)

qs (	) + ∑(4)
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frequency,
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(3)
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(4)
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[36]. 
(3)
qs (	), �(3)

qs (	), and 
(4)
qs are temperature dependent,

and the explicit form of this self-energy is described in Sec. I
of the Supplemental Material [37] (see also references [36,38]
therein). The phonon spectral function is obtained from the
renormalized phonon frequency and self-energy as
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∑
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The energy change 
Enk(T ) of the electronic state at band
n, wave vector k, and temperature T is described by [28,29]


Enk(T ) = 
ELE
nk (T ) + 
EVIB

nk (0) + 
EVIB
nk (T ). (3)

The first term describes the lattice thermal expansion. The
second term, referred to as the zero-point renormalization
(ZPR), represents the energy change from the zero-point vi-
brations at T = 0 K. 
EVIB

nk (T ) represents the energy shift
and the lifetime broadening caused by temperature through
the EPR for all phonon modes of branch j, wave vector q, and
frequency ω jq [39],


EVIB
nk (T ) =

∑
jq

∂Enk

∂n jq
+

(
n jq(T ) + 1

2

)
, (4)

where n jq = (eβ h̄ω jq − 1)−1 is the Bose-Einstein phonon oc-
cupation factor with β = 1/kBT . The real part of the complex
interaction coefficient ∂Enk/∂n jq contributes to the energy
shift of the bands and contains both Debye-Waller (DW) and
self-energy (SE) parts, whereas the imaginary part leads to
a lifetime broadening of the electronic states. Obviously, the
band gap renormalization is determined by the difference in
magnitude and the sign of the respective energy shift of the
valence and conduction bands.

Invoking energy conservation transforms the summation in
Eq. (4) into an integral over the phonon frequencies [39]:


EVIB
nk (T ) =

∫ ∞

0
dωg2F (n, k, ω) ·

(
n jq(T ) + 1

2

)
,

g2F (n, k, ω) =
∑

jq

∂Enk

∂n jq
δ(ω − ω jq). (5)
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FIG. 1. (a) Temperature-dependent κL in Mg3Sb2 at different theoretical levels, together with the experimental data for comparison [4].
(b) Frequency-dependent κL at 300 and 700 K. (c) Temperature-dependent phonon in the temperature range from 0 to 700 K. (d)–(f) Potential
energy surfaces (PESs) of the low-lying transverse acoustic phonon mode at the Brillouin zone boundary M, A, and L points, respectively,
together with the corresponding phonon vibrational modes in the insets.

The electron-phonon spectral function g2F (n, k, ω) is es-
sentially the phonon density of states (DOS) appropriately
weighted by the electron-phonon matrix elements. As such,
the spectral function is temperature independent, which means
that the temperature dependence of the electron-phonon con-
tribution to the gap shift arises solely from the Bose-Einstein
occupation factor n jq(T ). The one-shot method allows effi-
cient evaluation of these thermal effects, together with the
theory and computational details described in Sec. II of Sup-
plemental Material [37] (see also references [28,29,40–42]
therein).

The density functional theory (DFT) calculations were
performed within the Perdew-Burke-Ernzerhof (PBE) gener-
alized gradient approximation as implemented in the VASP

package [43–47]. A 500 eV plane-wave energy cutoff and
the �-centered K meshes with 2π × 0.05 Å−1 resolution for
Brillouin zone sampling were adopted to ensure convergence
within 10−8 eV and 10−5 eV/Å for energy and force, respec-
tively. The phonon dispersion, the second-order IFCs, and the
QHA method [40] were calculated by the PHONOPY package
[48]. The temperature-dependent phonon frequencies includ-
ing anharmonic effects were evaluated by the DYNAPHOPY

code to process the VASP AIMD trajectories [49]. The AIMD
simulations based on the lattice parameters at T calculated
by the QHA method were performed in the NV T ensem-
ble using a Nosé-Hoover thermostat with the default Nosé
mass as set by VASP and two femtosecon time steps. The
third-order IFCs, controlling the three-phonon (3ph) scatter-
ing rates, were obtained with the THIRDORDER package [50].
The fourth-order IFCs, controlling the 4ph scattering rates,
were calculated using the FOURPHONON package [51]. The
effective band structure (EBS) was obtained by unfolding the
band structure of the supercell using the BANDUP code to
transform the eigenstates from the supercell into a primitive
cell [52,53]. The phonon transport properties were evaluated
using the Boltzmann transport equation κL = �λCλν

2
λτλ as

implemented in the SHENGBTE code [50]. The electrical con-
ductivity σ and Seebeck coefficient S were calculated with
the AMSET package by including the effects of acoustic defor-
mation potential scattering, polar optical phonon scattering,
and ionized impurity scattering [54,55]. More computational
details are described in Sec. III of the Supplemental Mate-
rial [37], and the convergence tests are shown in Figs. S1
and S2 [37].

III. RESULTS AND DISCUSSION

Pristine Mg3Sb2 is composed of the ionic Mg2+ layer (the
Mg atoms labeled as Mg1) and the covalent [Mg2Sb2]2−
layer (the Mg atoms labeled as Mg2) in the stable Zintl-
type structure with the P3m1 space group, where the Mg1
atom is on the octahedron site and the Mg2 atom is on
the tetrahedron site. The partitioning of the Mg site reflects
the very significant difference in the local bonding envi-
ronment (e.g., the chemical bond strength), which induces
the strong anharmonic effect, reducing κL. We explore the
effects of temperature-induced anharmonic phonon renormal-
ization and 4ph scattering on κL of Mg3Sb2. There are two
main features in the temperature-dependent κL calculations.
One is the thermal expansion effects; the other is the an-
harmonic renormalization of the second-order IFCs extracted
from the AIMD under the corresponding volumes at finite
temperatures.

Figure 1(a) displays the temperature-dependent κL at
different theoretical levels together with the available exper-
imental data for comparison [4]. After including the 3ph
scattering process and the temperature-dependent second-
order IFCs in the TDEP+3ph model, the temperature
dependence of κL is weakened as the ∼T −0.89 relation, which
seriously deviates from the experimental data, especially at
relatively low temperatures. After further including the renor-
malized third-order IFCs in the TDEP+3ph model [4], the
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temperature dependence of κL is improved to ∼T −0.48 in the
trend, compared to the experimental ∼T −0.57; however, κL

is much larger than the experimental data in magnitude be-
cause higher-order anharmonicity and phonon scattering are
ignored. When the renormalized second-order IFCs and the
three- and four-phonon (3+4ph) scattering rates are included
in the TDEP + 3 + 4ph model, κL ∼ T −0.62 matches the ex-
perimental data much better than any other theoretical results
not only in the trend but also in magnitude. This highlights
the importance of high-order anharmonicity in determining
thermal transport in strongly anharmonic crystals, particularly
at elevated temperatures.

The serious deviation of κL from the traditional T −1 trend
reveals the complex role of high-order anharmonic effects in
that they not only lead to the additional phonon scattering
rates but also induce the phonon mode shifts at finite temper-
atures; therefore, the corresponding change in κL is usually
nontrivial. The frequency-dependent κL at 300 and 700 K,
as displayed in Fig. 1(b), reveals that κL mainly arises from
the low-frequency acoustic phonon modes below 2.5 THz.
Figure 1(c) shows the temperature-dependent phonon dis-
persions at different temperatures in the corresponding
low-frequency range. It is interesting to note that the phonon
modes share the distinct temperature dependence. Specif-
ically, as temperature increases, the low-lying transverse
acoustic phonon mode unexpectedly becomes hard, especially
at the Brillouin zone boundary M, A, and L points, while
the other phonon modes routinely become soft; therefore,
the scattering phase space is greatly reduced to suppress the
phonon scattering. This phenomenon is unusual, as most ma-
terials usually show phonon softening due to weakened bond
strengths with increasing temperature, which is confirmed by
the positive Grüneisen parameters in Fig. S3 [37].

To provide an intuitive physical picture of the anomalous
phonon hardening, we visualize the intrinsic low-lying trans-
verse acoustic phonon modes at the M, A, and L points in
the insets of Figs. 1(d)–1(f). These phonon modes mainly
characterize the in-plane asymmetric atomic vibrations within
the [Mg2Sb2]2− layer, which is driven by the peculiar weak
ionic bonding between the Mg2+ and strongly covalent bond-
ing [Mg2Sb2]2− layers in the hierarchical bond structure, as
shown in the inset of Fig. 1(b). In detail, atoms within the
[Mg3Sb2]2− layer vibrate along the same direction but with
different amplitudes at the M point but along opposite direc-
tions at the A point. In contrast, at the L point, the in-plane
vibrations of the Mg2+ and [Mg3Sb2]2− layers have opposite
directions. Therefore, the phonon vibrational mode at the M
point has the most remarkable asymmetric character and dom-
inates the anharmonicity, which is confirmed by the lowest
phonon frequency, as illustrated in Fig. 1(c).

To further quantify the anharmonicity, we calculate the
potential energy surfaces (PESs) with respect to the phonon
displacement of the low-lying transverse acoustic phonon
modes at the Brillouin zone boundary M, A, and L points
in Figs. 1(d)–1(f). All the PESs show the presence of a
relatively deep energy well with a flat bottom and devi-
ate remarkably from the harmonic (i.e., second-order fitting)
term when atomic collective motions have a large magnitude

at elevated temperature. The more significant the deviation
from the quadratic function is, the stronger the anharmonicity
is. The energy variation is approximated by a fourth-order
polynomial as 
E (
r) = k2(r − r0)2 + k4(r − r0)4, where
the third-order coefficient k3 = 0; therefore, the cubic an-
harmonicity is negligible, and the quartic anharmonicity is
dominant in the thermal transport, especially at high tem-
peratures. This clearly explains the fact that introducing only
the renormalized third-order IFCs into the TDEP+3ph model
cannot effectively improve the temperature-dependent κL,
which is much larger than the experimental data, as reported
in Ref. [4]. Furthermore, at the M point, k4 = 3467.4 eV/Å4,
which is at least one order of magnitude larger than 149.3 and
239.1 eV/Å4 at the A and L points, respectively. The quar-
tic anharmonicity mainly stems from the locally asymmetric
atomic vibrations at the M point within the [Mg2Sb2]2− layer.
As temperature increases, this anharmonicity is strengthened
to harden the low-lying transverse acoustic phonon modes.
As a comparison, the lowest optical phonon mode at the �

point displays the typical harmonic character confirmed by
the perfect second-order fitting of the PES in Fig. S4 [37].
This phonon mode is noticeably softened by increasing tem-
perature because of the thermal expansion effects in that the
bond strength is weakened to suppress the harmonic atomic
vibration.

Renormalized phonon dispersions can affect the phonon
group velocity, phonon scattering phase space, and, conse-
quently, κL. When the anharmonic phonon is renormalized
by increasing temperature, the shapes (i.e., the slopes) of
the phonon branches are nearly unchanged, indicating the
negligible variation of group velocity, as shown in Figs. 1(c)
and S5 [37]. The weighted phase space (WPS) that quan-
tifies the symmetry-allowed phonon scattering channels is
expressed as

WPS = 	

(6πn)3

∑
p,p1,p2

∫∫
δ[ωp(q) + ωp1 (q1)

− ωp2 (q + q1 − Q)]d3q1d3q, (6)

where the phonon frequency meets the conservation of mo-
mentum and energy [56]. Here, the anharmonic phonon
renormalization results in the noticeable hardening of low-
frequency phonon modes to reduce the phonon scattering
channels due to the prohibition of energy and momentum con-
servation laws. More importantly, as temperature increases,
the 4ph scattering WPS is significantly reduced, while the
3ph WPS remains nearly unaffected, which is totally different
from the routine inversely proportional relationship of the
3ph and 4ph scatterings versus temperature in the harmonic
approximation, as shown in Figs. 2(a) and S6 [37]. Note
that, compared to the phonon-phonon scattering, the isotope
scattering is not at all dominant in the thermal transport,
as shown in Fig. S7 [37]. This unexpected phenomenon is
ascribed to the dominant quartic anharmonicity induced by
the peculiar asymmetric vibrational modes at the Brillouin
zone boundary. On the other hand, the scattering rates are

014311-4



TEMPERATURE-RENORMALIZED PHONON AND ELECTRON … PHYSICAL REVIEW B 109, 014311 (2024)

10
-2

10
-1

W
P

S
4p

h 
(a

rb
. u

ni
ts

)

(a)

10
-3

10
-1

Г
4p

h 
(p

s-1
）

10
-2

(b)

10
-3

10
-1

10
-2

(c)

Frequency (THz)

300K
500K
700K

TDEP TDEP

10
0

10
-2

W
P

S
3p

h 
(a

rb
. u

ni
ts

)
10

-1

10
0

10
-2

10
-1

10
0

10
-2

10
-1

Г
3p

h 
(p

s-1
）

0 2 4 6 8
Frequency (THz)

0 2 4 6 8
Frequency (THz)

0 2 4 6 8

TDEP TDEP

HA

HA

FIG. 2. (a) Weighted phase spaces WPS3ph and WPS4ph in Mg3Sb2 with the anharmonic phonon renormalization. Phonon scattering rates
�3ph and �4ph (b) with and (c) without the anharmonic phonon renormalization.

expressed as

�
(±)
λλ′λ′′ = h̄π

4

{
nλ′ − nλ′′

nλ′ − nλ′′ + 1

}

ωλωλ′ωλ′′
|V (±)

λλ′λ′′ |2δ(ωλ ± ωλ′ − ωλ′′ )

(7)

�

(

++
+−
−−

)

λλ′λ′′λ′′′ = h̄2π

8N

⎧⎨
⎩

(1 + nλ′ )(1 + nλ′′ )nλ′′′

(1 + nλ′ )nλ′′nλ′′′

nλ′nλ′′nλ′′′

⎫⎬
⎭

nλ

× |V
(

++
+−
−−

)

λλ′λ′′λ′′′ |2
δ

⎛
⎝ωλ

⎡
⎣+

+
−

⎤
⎦ωλ′

⎡
⎣+

−
−

⎤
⎦ωλ′′ − ωλ′′′

⎞
⎠

ωλωλ′ωλ′′ωλ′′′
,

(8)

where Eqs. (7) and (8) are the 3ph and 4ph scattering pro-
cesses, respectively [51]. According to the Bose-Einstein
distribution, the phonon occupation number nλ of the λ mode
is proportional to temperature at the high-temperature limit;
therefore, increasing temperature enhances the phonon scat-
tering rates �3ph and �4ph proportionally. Since the 3ph WPS
is insensitive to temperature, the temperature-dependent nλ

is dominant in the thermal transport, and thus, the TDEP
and harmonic pictures have very similar relationships of �3ph

versus temperature, favoring the κL ∼ T −1 trend. When the
TDEP + 3 + 4ph mode is included to consider the strong
quartic anharmonicity, the completely opposite dependence
of the 4ph WPS and nλ on temperature makes �4ph com-
parable overall at different temperatures, in contrast to the
conventional ∝ T relationship in the harmonic picture, as
illustrated in Figs. 2(b) and 2(c). As a result, in comparison
with the traditional ∼T −1 trend, the temperature dependence
of κL is greatly weakened to ∼T −0.62, agreeing well with
the experimental ∼T −0.57 [4]. Moreover, Fig. S8 [37] shows
that the umklapp process contributes more to the 4ph process
scattering overall than the normal process.

Mg3Sb2 is an indirect band gap semiconductor with
orbital-projected valence and conduction bands near the Fermi

level in Fig. 3(a). The valence band states have the typical
bonding character and are from the Sb p orbitals. Especially,
the valence band maximum (VBM) at the � point is dom-
inated by the Sb pz orbital due to the symmetry-allowed
splitting effects. The conduction band states have the anti-
bonding character and are mainly from the Mg s orbital. The
EBSs by unfolding the supercell band structures are calculated
at the PBE functional level. Despite the underestimated band
gap, other qualitative characteristics of the band structure are
reproduced in comparison with the Heyd-Scuseria-Ernzerhof
functional [57,58], where the computations are very expen-
sive because of the large one-shot supercells. In the one-shot
picture, only a single effective lattice structure, obtained by
displacing atoms from the equilibriums via summation over

FIG. 3. (a) Orbital-projected band structure of ground-state
Mg3Sb2. (b) Indirect and direct electronic band gaps as a function
of temperature. (c) Energy levels of the VBM, CBM, and CBM@�

states as a function of temperature with respect to the Sb 1s orbital
level as the reference; the VBM level at 0 K is set to zero. (d)–(f)
Effective band structures with EPR effects at 300, 500, and 700 K,
respectively.
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the Bose-Einstein-weighted phonon vibration eigenmodes, is
used to represent the effects of thermal vibrations at each
temperature [59]. To confirm the reliability of the one-shot
picture, Fig. S9 [37] displays the relationship of the band gap
with AIMD time at different temperatures, which agrees well
with the one-shot results.

Figure 3(b) shows the anomalous temperature-dependent
band gaps from the EBSs. As temperature increases, the indi-
rect band gap unexpectedly increases by at least 50% in the
temperature range from 0 to 700 K with the conduction band
minimum (CBM) near the L point, contrary to the case in most
semiconductors. In sharp contrast, the energy gap between the
bottom conduction band at the � point (called the CBM@�

hereafter) and the VBM obeys the routine Varshni relation
Eg = E0-aT 2/(T + b) and decreases with temperature, where
a = 1.617 × 10−3 eV/K and b = −26.54 K. Figure 3(c)
shows that, as temperature increases, the VBM, CBM, and
CBM@� simultaneously linearly decrease with respect to the
deepest Sb 1s orbital level, but the CBM drops slower, and the
CBM@� drops faster than the VBM, which eventually results
in the anomalous dependence of the band gap on temperature.
As depicted in Eq. (3), the energy change in the electronic
structure is determined by the lattice thermal expansion, ZPR,
and EPR. Figure S10 [37] reveals that the ZPR contribution
is negligible by showing almost the same EBSs with and
without the ZPR effects. Figure S11 [37] shows that when
the lattice thermal expansion alone is included, the indirect
band gap indeed linearly decreases with temperature, as is
common in most semiconductors. Therefore, the anomalous
increase in band gap with temperature is ascribed to the EPR
effects.

To describe how the EPR effect evolves with tempera-
ture in detail, Figs. 3(d)–3(f) show the typical EBSs at 300,
500, and 700 K, respectively, together with the corresponding
one-shot configurations in Fig. S12 [37]. As the thermally
induced atomic distortion breaks the symmetry of the ground-
state configuration, the unfolded electronic structure exhibits
smeared and blurred bands with a reduced spectral weight,
reflecting the perturbed Bloch characteristic [60]. According
to the empirical pseudopotential method [39,61], both DW
and SE terms cause the moderate energy downshift of the
conduction band with increasing temperature, as confirmed
by Fig. 3(c). The orbital hybridization between the Mg s
and Sb p states at the � point results in a faster drop of
the CBM@� than the CBM. For the valence band states,
the DW correction is positive, and the SE correction depends
on the particular phonon modes involved in the EPR interac-
tion. In conventional semiconductors, the acoustic phonon SE
contribution is generally negative, canceling out the DW con-
tribution; therefore, only the positive optical phonon SE term
pushes the VBM level up to reduce the band gap. However,
in Mg3Sb2, the acoustic phonon couples more strongly with
the electron than the optical phonon because of the peculiar
temperature-induced acoustic phonon hardening, especially
at the Brillouin zone boundary. As sketched in Fig. S13
[37], the enlarged acoustic phonon SE term overwhelms
the DW term to drive the remarkable downshift of VBM
with temperature for the anomalous increase in band gap
due to the temperature-strengthened electron-acoustic-phonon
coupling.
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FIG. 4. Energy levels of the VBM, CBM, and CBM@� states as
a function of phonon mode amplitude: (a)–(c) the TA mode at the A,
M, and L points, respectively, and (d) the lowest TO mode at the �

point. The deepest Sb 1s orbital level is used as the reference, and the
VBM of the zero phonon amplitude at T = 0 K is set to zero.

To verify the dominant role of EPR in the anomalous tem-
perature dependence of the band gap, we focus on the effects
of anharmonic acoustic phonon TA modes at the M, A, and L
points and the lowest harmonic optical phonon TO mode at the
� point on the energy levels at the VBM, CBM, and CBM@�

as a function of the corresponding phonon mode amplitudes in
the primitive cell, as shown in Fig. 4. Here, the Sb 1s level is
set as the reference because of the lowest orbital energy. The
VBM decreases with increasing phonon amplitudes for the TA
modes at the M, A, and L points. Meanwhile, although the TA
mode at the A point decreases the CBM, the CBM is greatly
enhanced by the TA modes at the M and L points, inducing the
anomalous increase in the indirect band gap with temperature.
Moreover, the TA modes drive the CBM@� to decrease faster
than the VBM with increasing phonon amplitudes overall,
especially for the phonon modes at the A and M points;
therefore, the band gap at the � point decreases with tempera-
ture as in most semiconductors, consistent with the empirical
pseudopotential model. In comparison, we also check the
effect of a randomly selected harmonic phonon mode, i.e.,
the lowest TO mode at the � point, on the VBM, CBM,
and CBM@� levels, which remain nearly unchanged as the
harmonic phonon vibrational amplitudes increase. Therefore,
the anomalous dependence of the band gap on temperature is
attributed to the temperature-strengthened EPR by hardening
the anharmonic acoustic phonon modes.

We next focus on the effects of the improved phonon
and electron transports with the temperature-induced renor-
malizations on the TE performance characterized by the
figure of merit ZT = S2σT/(κe + κL ), where the temperature-
dependent carrier effective mass m∗, S, σ , and ZT for the
p- and n-type dopings are illustrated in Fig. 5. The electron
and hole m∗, calculated from the EBSs, significantly increase
with temperature, as shown in Fig. 5(a). This is completely
consistent with the transition from diffusive to localized elec-
tronic states near the Fermi level in disordered semiconductors
at finite temperatures; that is, the enhanced disorder degree
with increasing temperature makes the electronic states more
localized, enhancing m∗. In the treatment of the Boltzmann
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FIG. 5. Temperature-dependent (a) carrier effective mass m∗,
(b) Seebeck coefficient S, (c) electrical conductivity σ , and (d) fig-
ure of merit ZT for the n- and p-type doping, together with the
available experimental data for comparison.

transport equation, we substitute the conventional ground-
state m∗ from the band structure at T = 0 K of the primitive
cell with the temperature-dependent m∗ to improve the tem-
perature dependence of S = (2kB

2/3eh̄2)md
∗(π/3n)2/3T and

σ = neμ2D for better agreement of ZT with the experimen-
tal data than the traditional treatments [5,62–64], as shown
in Figs. 5(b)–5(d). m∗

d = N2/3
v m∗

s is the DOS effective mass,
Nv represents the valley degeneracy, m∗

s is the single-valley
effective mass, and μ2D = eh̄3C2D/(kBT m∗md Ed

2). It is note-

worthy that the optimal ZT is as high as 2.31 at 700 K
with n-type doping concentration ∼3.5 × 1019 cm−3, which
implies the great potential for practical applications in the TE
field.

IV. CONCLUSIONS

In summary, we focused on the temperature dependence
of thermal transport, electronic structure, and thermoelec-
tric performance by including the temperature-dependent
anharmonic renormalization of phonon and electron energies
arising from an unusually strong quartic anharmonicity in
Mg3Sb2. On the one hand, we showed the anomalous rela-
tionship of the lattice thermal conductivity versus temperature
matches the experimental results better than in other theo-
retical pictures by unveiling the anharmonic acoustic phonon
mode hardening. On the other hand, we revealed an anoma-
lous increase in the band gap with temperature from the point
of view of the temperature-strengthened electron-acoustic-
phonon coupling instead of the lattice thermal expansion,
which actually favors a decrease in the band gap. Finally, in
comparison with conventional treatments of the Boltzmann
transport equation, we improved the temperature dependence
of the Seebeck coefficient and electrical conductivity to bet-
ter describe the thermoelectric performance by including the
temperature-dependent carrier effective masses, which are
calculated from the effective band structures of the one-
shot configurations. We expect that such temperature-induced
effects are also crucial in other strongly anharmonic semi-
conductors, highlighting the growing need to account for
temperature in the theoretical characterizations of thermal,
electronic, and thermoelectric properties.
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