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Hawking radiation on the lattice from Floquet and local Hamiltonian quench dynamics
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We construct two free fermion lattice models exhibiting Hawking pair creation. Specifically, we consider the
simplest case of a d = 1 + 1 massless Dirac fermion, for which the Hawking effect can be understood in terms
of a quench of the uniform vacuum state with a nonuniform Hamiltonian that interfaces modes with opposite
chirality. For both our models, we find that additional modes arising from the lattice discretization play a crucial
role, as they provide the bulk reservoir for the Hawking radiation: the Hawking pairs emerge from fermions
deep inside the Fermi sea scattering off the effective black hole horizon. Our first model combines local hopping
dynamics with a translation over one lattice site, and we find the resulting Floquet dynamics to realize a causal
horizon, with fermions scattering from the region outside the horizon. For our second model, which relies on a
purely local hopping Hamiltonian, we find the fermions to scatter from the inside. In both cases, for Hawking
temperatures up to the inverse lattice spacing, we numerically find the resulting Hawking spectrum to be in
perfect agreement with the Fermi-Dirac quantum field theory prediction.
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I. INTRODUCTION

In 1974, Hawking showed in a seminal paper that quantum
effects cause black holes to emit thermal radiation [1]. This
surprising and intriguing result was originally derived [2],
and has since then mostly been discussed, in the framework
of quantum field theory (QFT) in classical curved space-
time [3–5]. Following Hawking’s result, Unruh showed that
a sonic horizon in a fluid will similarly emit thermal radi-
ation [6]. This groundbreaking insight gave rise to the field
of analog gravity [7,8], and since then different experimental
platforms for observing analog Hawking radiation have been
put forward, including classical water waves [9], superfluid
Helium [10], ion traps [11], and Bose-Einstein condensates
[12], for which Steinhauer recently reported the actual de-
tection of spontaneously emitted Hawking radiation [13].
Moreover, on the theoretical front there has been the realiza-
tion that the analog gravity models bypass the trans-Planckian
problem [14–17]: where for the strictly relativistic QFT case,
the Hawking radiation suspiciously relies on an infinite reser-
voir of arbitrary short distance near-horizon modes, it was
shown that this is no longer the case for the Lorentz-violating
analog gravity models [15,17–24].

In this work, we approach the phenomenon of Hawking
radiation from a purely quantum many-body point of view. In
contrast to previous works on Hawking radiation in analog
gravity, we consider lattice models with fermionic degrees
of freedom (see also Refs. [25–30]). We also do not try
to construct models that exactly emulate the behavior of a
quantum field in a black hole space-time. Instead, we aim to
explain the Hawking effect entirely in terms of simple phys-
ical concepts associated with quantum many-body systems.
In particular, we argue that to understand Hawking radiation,
no knowledge of general relativity is required—it can be
understood as a universal quantum dynamics phenomenon

in many-body systems with gapless, linearly dispersing
excitations.

To motivate our setup and terminology let us briefly discuss
the Hamiltonian picture of the original Hawking process on
curved space-times. The Hawking radiation results from time
evolution with a time-dependent Hamiltonian H (t ). The time-
dependent Hamiltonian is taken to represent the following
process. In the infinite past, we assume that there is no black
hole, and hence no horizon. There is only an extremely thinly
spread mass density. Note that we consider this mass to be
classical: the mass density profile acts—through its effect on
the space-time as dictated by the Einstein equations—as a
background in which the quantum degrees of freedom are
living. As such the Hamiltonian evolution at early times, cor-
responds to a good approximation to that of empty Minkowski
space-time. Next, as time progresses, the mass density pro-
file starts to collapse under its own gravitational force. At
some finite time tc, the collapse produces a black hole. The
Hamiltonian H (t > tc) thus evolves the quantum degrees of
freedom forward in time in the presence of a horizon. A quan-
tum Hamiltonian in the background of a realistic model of
gravitational collapse will of course be very complicated. For
example, even before the horizon is formed, the concentrated
mass density profile will curve space-time which already leads
to nontrivial dynamics for the quantum degrees of freedom.
Also, right after the horizon is formed it takes some time for
transients to die out and the black hole to reach the station-
ary Schwarzschild (or Kerr) solution. This will also produce
nontrivial dynamics for the quantum degrees of freedom.
However, one of the most remarkable features of Hawking
radiation is that it does not depend on all these details. It also
does not depend on the rate at which the gravitational collapse
occurs. Hawking radiation solely results from the fact that in
the infinite past there is no horizon [and that at t = −∞ we
start in the ground state of H (−∞)], and that for some finite
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FIG. 1. The black hole horizon as a boundary between chirality-
changing modes, with the inside of the (effective) black hole on the
left. In all cases, the right-mover outside becomes a left-mover on
the inside (upper arrows). (a) For a massless Dirac fermion (QFT)
the extra left-mover decouples and is unaltered across the horizon;
(b) for the Floquet model, we have two additional left-moving modes
(“doublers”) on the outside; (c) for the local hopping model, we have
a right-moving ‘doubler’ on the inside and a left-moving “doubler”
on the outside. The + (−) symbols give the occupation of the
positive- (negative-) energy states, for the initial “Minkowski ground
state” (see text), with grey (red) denoting empty (filled) modes.

tc, the Hamiltonian H (t > tc) evolves the quantum degrees
of freedom in the presence of a horizon. In this paper, we
will therefore consider the most crude approximation to the
time-dependent Hamiltonian:

H (t ) =
{

H0 if t < 0
Hh if t > 0 , (1)

where H0 describes time evolution in the absence of a horizon,
and Hh describes time evolution in the presence of a horizon.
Our time-dependent Hamiltonian thus describes a “quench”
process where the Hamiltonian is suddenly switched from H0

to Hh at t = 0. Note that as we start out in the ground state of
H0(the “Minkowski ground state”), the time evolution at t < 0
is trivial, and we only have to focus on the time evolution
at t > 0.

The final remaining question to understand Hawking radi-
ation is what it means for a quantum Hamiltonian to “have a
horizon.” In its most stripped down version, a (static) causal
horizon for a free massless Dirac fermion is a boundary be-
tween a region with both left- and right-moving modes (right
of the horizon) and a region with two left-moving modes (left
of the horizon). This is illustrated in Fig. 1(a). The region
“behind” the horizon corresponds to the chiral region with
two left movers. Particles behind the horizon can clearly never
cross the horizon. Note that for concreteness, we have made
a particular choice of horizon here—we could equally well
have the horizon separate two right-movers from a left- and
right-mover.

In both cases, the Hawking effect is entirely due to the
mode which changes its chirality upon crossing the horizon.
In particular, as we discuss in more detail below, Hawking
radiation occurs when the ground state of the Hamiltonian
Ĥ0, which has a left- and right-mover everywhere, is evolved
in time with a Hamiltonian which has a chirality-changing
mode at the horizon. In Appendix A, we show that for a
continuum Dirac fermion this quench process indeed pro-
duces thermal Hawking radiation with a temperature TH =
(2πkB)−1h̄∂xv(x)|x=0, where kB is Boltzmann’s constant, x =

0 is the location of the horizon, and v(x) is the spatially
varying velocity of the chirality-changing mode.

The chiral nature of the region behind the horizon is a
problem for lattice models, as the Nielsen-Ninomiya theorem
states that every local lattice Hamiltonian has a zero net chiral-
ity [31]. To circumvent this problem, we adopt two different
approaches. In the first, we discretize the time evolution—
turning the dynamics into a Floquet problem. In this case
we are able to realize an exact causal horizon on the lattice,
albeit at the price of going beyond the framework of local
Hamiltonian time evolution. In the second approach, we study
continuous time evolution with a local lattice Hamiltonian
which does not have a strict causal horizon, but does have
a special point where both the left- and right-moving modes
simultaneously change chirality (such that the net chirality
is zero everywhere). For both models, we find the Hawking
effect in excellent agreement with the QFT results.

II. FLOQUET DYNAMICS

This section explains the first of our two approaches to
realize Hawking radiation in a lattice model, where the chiral
dynamics in the region behind the horizon is implemented via
a Floquet time-evolution operator. Note that in the remainder
of the manuscript, we will take h̄ = 1.

A. The model

As explained in the introduction, we would like to approx-
imate the time-dependent Hamiltonian H (t ) which generates
Hawking radiation with a pair of static Hamiltonians: H (t ) =
�(−t )H0 + �(t )Hh, where �(t ) is the Heaviside step func-
tion and H0 (Hh) evolves the quantum degrees of freedom in
the absence (presence) of a horizon. However, as was also
mentioned in the introduction, the Nielsen-Ninomiya theorem
precludes a lattice discretization of Hh. To circumvent this
issue, in this section, we discretize the time evolution in steps
of �t , and define the time-evolution operator which evolves
the state at time n�t to the state at time (n + 1)�t (n ∈ Z) as

U ((n + 1)�t ; n�t ) =
{

e−i�tH0 if n < 0
UF (�t ) if n � 0

, (2)

where UF (�t ) is the Floquet time-evolution operator de-
fined below. So in this section, we replace the pair of static
Hamiltonians with a static Hamiltonian H0 and a Floquet time-
evolution operator UF (�t ). As explained in the introduction,
the initial state at t = −∞ is the ground state of H0. So the
time evolution for t < 0 is trivial, and the sole purpose of H0

is to obtain a corresponding ground state which serves as the
initial state for the time evolution.

We start by defining the Hamiltonian H0, which is trans-
lationally invariant. It is given by a simple free fermion
Hamiltonian describing electrons hopping on a 1D spatial
lattice:

H0 =
N∑

j=1

γ

2
(ic†

j+1c j − ic†
j c j+1), (3)

where c†
j , c j satisfy the canonical fermion anticommuta-

tion relations {c†
j , c j′ } = δ j, j′ , {c†

j , c†
j′ } = {c j, c j′ } = 0 and
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we take periodic boundary conditions c0 = cN . This
Hamiltonian is readily diagonalized in momentum space,
Ĥ0 = ∑

k ω0(k)c̃†
k c̃k , with c̃k = 1√

N

∑
j e−ik jac j and ω0(k) =

γ sin(ka). Note that as we are working on a finite system, the
allowed momenta are discrete: km = 2πm/(Na), where m ∈
{−N/2,−N/2 + 1, . . . , N/2 − 1} (we take N to be even). For
simplicity of notation, we will drop the subscript m, and the
momenta will always be discrete unless explicitly mentioned
otherwise. We fix the chemical potential to zero, such that all
single-particle states with negative ω0(k) are occupied in the
ground state (with zero chemical potential, the lowest-energy
state lies in the Fock space sector with N/2 particles). The
occupied states thus correspond to the single-particle states
with negative momenta contained in the interval [−π/a, 0].
The ground state can therefore be written as

|ψ0〉 =
∏

−π/a<k<0

c̃†
k |0〉, (4)

with c j |0〉 = 0. |ψ0〉 is the initial state for the time evolution.
Note our somewhat unconventional choice of the fermion

hopping terms in Eq. (3), with the ±i factors. With this
choice we can identify the right-mover of the Minkowski
QFT, with dispersion ω0(k) = ck, with the gapless/massless
modes of the lattice model near k ≈ 0, where we have
ω0(k) = γ sin ka ≈ vk. Here gappless/massless refers to the
fact that their excitation energy can be made arbitrary small.
This means that we can make wave packets on top of the
ground state |ψ0〉 constructed from plane wave states with
arbitrarily (in the thermodynamic limit) small energies and
momenta which will be right-moving under forward time
evolution, i.e., they have a positive group velocity +v. Sim-
ilarly, the other gapless excitation located around k ≈ −π/a,
with ω0(−π/a + k̃) ≈ −vk̃ for small k̃, can be identified
with a QFT left-mover. As mentioned in the introduction, the
Hawking effect is due to a massless excitation whose group
velocity changes sign behind the horizon, ω(k) = +ck →
ω(k) = −c′k, once the horizon is formed. As we will show,
for both our lattice models, it are precisely the modes near
k ≈ 0 that play this role.

Next we define the Floquet time evolution operator UF (�t )
which time evolves the fermions in the presence of a hori-
zon. The Floquet unitary can be written as a product of two
operators:

UF (�t ) = T̂Le−i�tH , (5)

where

H =
N∑

j=1

γ j + γ j+1

4
(ic†

j+1c j − ic†
j c j+1) (6)

is a generalization of H0 which is not translationally invariant,
and TLc†

j T
−1

L = c†
j−1 (with c†

0 = c†
N ) implements a translation

to the left. Before explaining in detail how the γ j in Eq. (6)
are chosen, let us first elaborate on why UF (�t ) represents
a Floquet time-evolution operator. UF (�t ) first time-evolves
the system over one period �t with H , after which it is
instantaneously “kicked” by acting with TL. Experimentally,
TL would be implemented by physically translating the system
over one lattice site, similarly to the rotating ion trap proposal
of Ref. [11]. This sequence is then repeated indefinitely, such

FIG. 2. Example of v(x) with κ�t = 0.1 [Eq. (B1) in
Appendix B with N = L/a = 1000, W/a = 600, b = 3, and κ̃a =
0.1]. The locations of the black hole horizon xb = 200a and white
hole horizon xw = 800a are indicated with dashed lines.

that the time evolution is periodic in time. In this work, we
will limit ourselves to a “stroboscopic” description of the
system, where only states at discrete times n�t are consid-
ered. In this case, it is sufficient to exclusively work with
the time-independent evolution operator UF (�t ). The latter
is in general defined as the Floquet time-evolution operator in
periodically driven systems.

The spatially varying hopping strengths in Eq. (6) are de-
fined as γ j = γ ( ja), where γ (x) is a continuous function of
position. Associated with γ (x), we can define a correspond-
ing velocity function v(x) = aγ (x). Defining the intrinsic
Floquet velocity as vFl = a/�t , the velocity function satisfies
v(x) > vFl for xb < x < xw, and v(x) < vFl for x < xb and
x > xw, where xb and xw respectively denote the location of a
black hole horizon (∂xv(x)|x=xb > 0) and a white hole horizon
(∂xv(x)|x=xw

< 0). Note that we are forced to simultaneously
introduce a black hole and a white hole horizon because
of the periodic boundary conditions. In Fig. 2, we show an
example of v(x) used in our numerics. From the properties
of v(x), it is intuitively clear why the Floquet unitary in
Eq. (5) has a black hole horizon at x = xb. During the first
part of the Floquet time evolution, a particle at position j
can travel a distance v( ja)�t to the right. After this initial
time evolution, the Floquet unitary implements a translation
to the left over one lattice constant a. If v( ja)�t < a, or
equivalently v( ja) < vFl, then every particle necessarily has
a net displacement to the left during one Floquet time step.
This is true for particles behind the black hole horizon, corre-
sponding to the region with ja < xb and ja > xw. Notice that
vFl and v(x) are respectively the analog of the fluid velocity
and sound mode velocity for a sonic black hole [32]. The
white hole horizon at xw corresponds to a point from which
particles can only escape, but not enter, the region behind the
black hole horizon. In this work, we focus on the dynamics
resulting from the black hole horizon, and from now on we
will refer to the black hole horizon simply as the horizon, and
the region xb < ja < xw as the region outside the horizon.
As a final comment, let us note that T̂L cannot be written as
the exponential of a local Hamiltonian [12,33]. This puts our
model outside the well-studied class of 1D dynamics models
consisting of finite-depth unitary circuits. However, our model
can be realized on the edge of a 2D finite-depth quantum
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circuit [34–36], or by having a moving horizon and working in
the co-moving frame, as in Refs. [11,13]. This latter approach
was also considered in the bosonic lattice model of Corley
and Jacobson [19]. See Appendix C for a detailed discussion
of the connection between the Corley-Jacobson model and the
Floquet model used in this work.

B. Dynamics of wave packets far away from the horizon

Before delving into the numerical study of the time evo-
lution with UF (�t ), it is instructive to first examine the
wave-packet dynamics in both the inside and outside regions
of the black hole, far away from the horizons. As the Floquet
time-evolution operator is homogeneous far away from the
horizons, it is sufficient to consider two translationally invari-
ant Floquet unitaries in order to understand the dynamics of
wave packets localized in those regions. One translationally
invariant Floquet unitary describes wave-packet dynamics in
the inside region, and the other one describes dynamics in
the outside region. In conventional Hamiltonian systems de-
scribing free particles, wave-packet dynamics is most easily
understood by obtaining the dispersion relation through di-
agonalization of the single-particle Hamiltonian. Our Floquet
time evolution, however, is not generated by a simple time-
independent Hamiltonian. It is therefore easier to directly
determine the single-particle states which are stationary under
the stroboscopic time evolution. These single-particle states,
with corresponding creation operators

∑
j A j (ω)c†

j , are de-
fined to satisfy following relation:

UF (�t )

⎛
⎝∑

j

A j (ω)c†
j

⎞
⎠UF (�t )† = e−iω�t

⎛
⎝∑

j

A j (ω)c†
j

⎞
⎠.

(7)

To study the dynamics of wave packets in the translationally
invariant regions far away from the horizon, we can take
UF (�t ) to be translationally invariant, in which case one can
obtain a “Floquet dispersion relation,” i.e., ω as a function
of momentum k. The Floquet dispersion relation obtained by
using UF (�t ) as defined in Eq. (5), with H replaced by H0

defined in Eq. (3), is

ω(k) = v sin(ka)/a − kvFl mod 2π/�t, (8)

where we have emphasized that ω defined in Eq. (7) is only
determined modulo 2π/�t . The spectral shift by kvFl in
Eq. (8) is exactly the same as the one which occurs by going
from the background fluid frame to the laboratory frame in
continuum fluid models that exhibit the Hawking effect. In
fact, that such a spectral shift allows for the realization of
sonic horizons was part of Unruh’s original insight that lead
to the field of analog Hawking radiation [6].

The Floquet dispersion relation ω(k) is shown both for the
case where v > vFl [Fig. 3(a)], and the case where v < vFl

[Fig. 3(b)]. The former corresponds to the region outside
the region, and the latter to the region behind the horizon.
Note that because Floquet frequencies are only defined mod
2π/�t , ω(k) is a continuous function of k over the entire
Brillouin zone. We see that in the outside region, wave packets
with small momenta are right-moving (because of the positive
group velocity near k = 0 obtained from ω(k)), whereas the

FIG. 3. [(a) and (b)] Floquet frequencies for spatially uniform
γ j = γ . In (a), v = at = 2vFl. This corresponds to the region outside
the horizon. The vertical dashed lines show k = 0 and k = ±k∗. In
(b), v = vFl/2. This corresponds to the region inside the horizon. The
dots situate the modes involved in the forward scattering process (see
main text).

same wave packets are left-moving on the inside. These wave
packets thus represent the low-energy excitations with chang-
ing chirality, or equivalently, sign-changing group velocity,
upon crossing the horizon which are essential for the realiza-
tion of a horizon, as explained in the introduction. Also note
that outside the horizon [Fig. 3(a)], ω(k) = 0 not only at k =
0, but also at two other nonzero momenta k = ±k∗, mean-
ing that right-moving wave packets constructed from small
momenta will be degenerate with left-moving wave packets
constructed from momenta near ±k∗. We call these degenerate
left-moving wave packets the two ‘doubler’ modes, which
are also shown in Fig. 1(b). The doubler modes will play an
important role in our interpretation of the numerical results
presented below. From now on, we will also refer to ω with
|ω| 
 2π/�t as the ‘energy’ of wave packets.

As a final comment, let us note that obtaining all stationary
single-particle states which satisfy Eq. (7) with the original
definition of UF (�t ) (i.e., using the nontranslation invariant
H) provides a complete solution of the problem, and in par-
ticular for the time evolution that we are interested in here.
In fact, this is exactly how we obtained the numerical results
presented in the next section.

C. Numerical results

Hawking radiation emerges upon quenching the ground
state of Ĥ0 with U (�t ). To measure the Hawking radiation
we define the wave packet creation operators W †

x0,ω
, where x0

is the location of the wave packet in real space, and ω its en-
ergy [see Eq. (B2)]. Importantly, the wave packets W †

x0,ω
only

contain momenta near k = 0 such that they are right-moving
on the outside of the horizon. The time-dependent occupation
number of the wave packets is given by

Nx0,ω(t ) = 〈ψ0(t )|W †
x0,ω

Wx0,ω|ψ0(t )〉, (9)

with t = n�t ,

|ψ0(n�t )〉 = U n(�t )|ψ0〉, (10)

and |ψ0〉 is the ground state of Ĥ0 defined in Eq (4).
The initial wave packet occupation number Nx0,ω(0) for

x0 � xb and x0 
 xw is a step function �(−ω), smeared
over the width of the wave packet in energy space. In full
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FIG. 4. Numerical results obtained using N = 3000, jb = 500,
jw = 2500, and κ�t = 0.1 (for more details, see Appendix B).
(a) wave packet occupation numbers at time t f and position x0.
Blue points correspond to x0/a = jb + 700 and t f = 1000�t . The
blue full line is f (ω). Red points correspond to x0/a = jb − 450
and t f = 1200�t . The red dashed line is f (−ω). (b) Maximal
wave packet correlation |Cω

max(t f )| = max j |Cω
jb− jin, jb+ j (t f )| across the

horizon with jin = 450 and t f = 1000�t . The full blue line is√
f (ω) f (−ω). (c) Entanglement entropy S[ jb−100, jb] of the spatial

interval [ jb − 100, jb] as a function of time.

agreement with the QFT case, our lattice simulations show
that the quench produces outgoing particles near the horizon,
with velocity vout = v(x0) − vFl (considering v(x) to be ap-
proximately constant away from the horizon). In particular,
we find that after a time t∗ ∼ |x0 − xb|/vout the wave-packet
occupation number changes to a distribution that has an ex-
cellent fit to a Fermi-Dirac distribution:

Nx0,ω(t � t∗) = 1

eω/kBTH + 1
=: f (ω), (11)

with Hawking temperature

TH = κ

2πkB
, (12)

where κ = ∂xv(x)|x=xb is the “surface gravity” of the horizon.
In Fig. 4(a), we show the numerically obtained Fermi-Dirac
distribution for the wave packets using κ�t = 0.1 (see Ap-
pendix B for the details of our numerical simulations). At
larger times t � t∗ + |xw − xb|/vout, the white hole horizon
starts to affect the occupation number, and deviations from
the Fermi-Dirac distribution set in.

We also calculated the occupation number of wave packets
on the inside of the horizon, which we now find to go from
an initial smeared out step-function �(+ω) to a Fermi-Dirac
distribution with negative temperature −TH , at times t � t∗ ∼
|x0 − xb|/vin, with vin = vFl − v(x0). In Fig. 4(b), we plot∣∣Cω

max(t f )
∣∣ = max j

∣∣Cω
jb− jin, jb+ j (t f )

∣∣, (13)

where jb = �xb/a� and

Cω
i j (t ) = 〈ψ0(t )|W †

i,ωWj,ω|ψ0(t )〉 (14)

measures correlations between wave packets with equal
energies at different locations. We find that the maxi-
mal wave packet correlation across the horizon occurs for
j = jin(vout/vin ), and can almost perfectly be fitted with
|Cω

max(t f )| = √
f (ω) f (−ω), again in nice agreement with the

QFT result [Eq. (A32)]. In Fig. 4(c), we plot the entanglement
entropy of the spatial interval [ jb − 100, jb]. It shows a linear
increase of entanglement across the horizon.

Our numerical results can be understood via the following
physical picture. On the outside of the black hole horizon, the

FIG. 5. Time evolution of the wave packet W̃ †
x0,ω = ∑

j w̃ jc
†
j

made from momenta near −k∗, with x0/a = jb + 700 and ω�t =
0.014. The dashed line is the black hole horizon, and κ�t = 0.1
was used.

wave packets W̃ †
x0,ω

constructed from momenta near −k∗ are
occupied in the Minkowski ground state and are moving to
the left, i.e., towards the horizon. In Fig. 5, we show the time
evolution of such a wave packet. We see that part of it is trans-
mitted through the horizon, and part of it is reflected back. The
reflected part corresponds to the wave packets W †

x0,ω
whose oc-

cupation number is being measured in Eq. (9). For clarity, we
have marked the parts of the Floquet dispersion corresponding
to the incoming (reflected and transmitted) wave packets in
this scattering process with a blue (orange) dot in Figs. 3(a)
and 3(b). From our numerics, we find that the incoming
left-moving wave packets W̃ †

x0,ω
are transmitted through the

horizon with probability f (−ω), and are reflected back with
probability f (ω). After scattering, the wave packet states thus
add a contribution S = − f (ω) ln f (ω) − f (−ω) ln f (−ω) to
the entanglement entropy across the horizon. This gives rise
to a linear growth of the entanglement entropy, in accor-
dance with the general picture for entanglement growth during
quench dynamics put forward by Calabrese and Cardy [37].

To summarize, we find that Hawking radiation is the result
of electrons deep inside the Fermi sea of the Minkowski
ground state scattering off the horizon. As such, this real-
izes a fermionic lattice version of the subluminal scenario of
[18,21]. Notice also that the scattered single-particle states
(right panel in Fig. 5) can be interpreted as particle/hole
Hawking-pairs, if we consider them as excitations on top of
the initial Minkowski-state |ψ0〉. For example, for ω > 0, we
can write

|ψ0(t )〉 ∼
(√

f (−ω)W †
xin,ω

+
√

f (ω)W †
xout,ω

)
|0〉

∝ (
1 + e−πω/κW †

xout,ω
Wxin,ω

)
W †

xin,ω
|0〉, (15)

where in the last line we have dropped a proportionality
constant

√
f (−ω), and we have used that

√
f (ω)/ f (−ω) =

e−πω/κ .

III. LOCAL HAMILTONIAN DYNAMICS

After having analyzed the Floquet model with a strict
causal horizon in the previous section, we now study a
different type of dynamics which is generated by a local
Hamiltonian, and hence has no strict horizon, but nevertheless
admits Hawking radiation.
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FIG. 6. [(a) and (b)] Dispersion relation of the local quench
Hamiltonian, far away from the horizon for μ = 0.5t . In (a), t j = t ,
corresponding to the outside region. In (b), t j = −t , corresponding to
the inside region. The vertical lines show the gapless k = 0 mode and
doubler modes: k = k∗

out and k = k∗
in. The blue (orange) dots mark

the incoming (reflected/transmitted) modes involved in the forward
scattering process of Fig. 8. (c) The spatially varying velocity pro-
file v(x) = at (x) [Eq. (D1) in Appendix D with L/a = 1000 and
κ̂ = 0.1]. The locations of the two boundaries between the inside
and outside regions at xb = 250a and xw = 750a are indicated with
dashed lines.

A. The model

We consider the following local horizon Hamiltonian:

Ĥ = 1

2

N∑
j=1

iγ jc
†
j+1c j + μc†

j+1c j − μc†
j c j + H.c., (16)

where the site-dependent hopping term γ j = γ ( ja) interpo-
lates smoothly (on the lattice scale) between a constant value
−γ < 0 in the region j � jb and j � jw, which represents the
analog of the region inside the black hole, to a constant value
γ > 0 in the region jb � j � jw representing the analog of
flat space outside the black hole. The specific γ (x) profile that
we have used in our numerics is shown in Fig. 6(c).

When γ j = ±γ is constant the Hamiltonian is readily di-
agonalized in the Fourier basis, resulting in the dispersion
relation:

ω(k) = ±γ sin(ka) + μ cos(ka) − μ. (17)

In Figs. 6(a) and 6(b), we show the dispersion relation for the
quench Hamiltonian using γ j = γ , representing the outside
region, and γ j = −γ , representing the inside region.

Note that, as was already mentioned, there is again a gap-
less mode at k = 0 which is right-moving on the outside and
left-moving on the inside. As we are working with a strictly
local model, there is now also an additional gapless right-
moving mode in the inside region at k = k∗

in < 0 (which is
occupied in the Minkowski ground state), and an additional
left-moving gapless mode at k = k∗

out > 0 in the outside re-
gion (which is unoccupied in the Minkowski ground state).
These additional modes correspond to the “doubler” modes in
Fig. 1(c).

The terms in the Hamiltonian proportional to μ generate a
dispersion −μa2k2/2 at small k, so they do not contribute to
the velocity of the zero momentum mode. Nevertheless, these
terms are crucial because without them, the inside (γ j < 0)
and outside (γ j > 0) regions are only weakly coupled. We find
that for the Hawking effect to occur, the value of μ should
be larger than the surface gravity κ = a∂xγ (x)|x=xb > 0. The
precise value of μ does not matter, and we will take μ = 0.5γ .
We note that our Hamiltonian differs from previously studied
lattice models, obtained by discretizing a Dirac fermion in a

FIG. 7. Numerical results using N = 4000, jb = 1700, jw =
3900, and κ = 0.1γ . (a) Wave-packet occupation numbers at time
t f and position j0 = jb + 900 as calculated from (9). (b) Spectrum
obtained from the transmission coefficient for the time evolution
of right-moving wave packets starting at the inside of the horizon
j0 = jb − 900 (see Fig. 8). The results (a) and (b) are nearly identical
and coincide perfectly with f (ω) (shown by the full line). (c) Wave-
packet correlation |Cω

max(t f )| = |Cω
jb−900, jb+900(t f )| across the horizon

with t f = 1850t−1, the full line shows
√

f (ω) f (−ω).

black hole space-time [29,30], exactly by the terms propor-
tional to μ. Also note that the third term in (16) does not
contribute to the dynamics (on particle-number eigenstates).

For this strictly local model, the doubler modes prevent
the boundary between the in- and outside region from acting
like a true horizon. Instead, the inhomogeneous region can
be viewed as an imperfect filter, letting some modes through
while trapping others. Indeed, if we approximate the hopping
coefficient inside this region by its minimal value γmin = 0
then the dispersion relation there only supports modes with
energy ω ∈ [−2μ, 0]. This prevents modes with ω � 0 (and
ω � −2μ) from propagating through this region. As a result
these modes are effectively trapped inside the homogeneous
regions. By quenching the Minkowski ground state with the
inhomogeneous Hamiltonian we essentially create a meta-
stable state where the trapped modes can tunnel through the
region where γ j becomes zero. It is precisely this “leakage”
that we observe as Hawking radiation. In this regard our setup
is very similar to that of Hawking emission in superfluids [10]
and from photon emission out of an optical cavity [38].

B. Numerical results

To measure the Hawking radiation in our local model, we
first follow the same procedure as in the Floquet case: we
quench the ground state of Ĥ0 with U (t ) = e−it Ĥ , and detect
the Hawking particles by measuring the wave-packet occupa-
tion number as in Eq. (9). The occupation number spectrum
obtained this way shows again excellent agreement with the
thermal Hawking distribution, as can be seen from Figs. 7(a)–
7(c). However, different from the Floquet model, the Hawking
pairs now arise from the filled Dirac-sea of right-moving
modes near k = k∗

in on the inside. These causality-violating
modes now realize a fermionic version of the superluminal
scenario of [18,21]. In Fig. 8, we show the time evolution of
such a right-moving wave packet that starts out in the inside
region at t = 0.

For a wave packet of energy ω, we find that the trans-
mission and reflection coefficients are respectively fitted very
nicely by the Fermi-Dirac expression f (ω) and f (−ω), which
again explains both the thermal nature and the correlations
of the Hawking pairs. Similar to the Floquet case, we limit
ourselves here to times t < |xw − xb − L|/vin, before any
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FIG. 8. Time evolution of a right-moving wave packet W̃ †
x0,ω =∑

j w̃ jc
†
j starting in the inside region at x0/a = jb − 900 with ω =

0.0157, μ = 0.5, and κ = 0.1, expressed in units t = h̄ = 1. The
dashed line shows the boundary between inside and outside regions.

effects of the white hole horizon in superluminal scenarios
(see Ref. [39]) can be measured. Notice that for large values
of ω � γ 2/μ, we do find deviations from the Fermi-Dirac
distribution, see Sec. III D.

C. Analysis in terms of stationary scattering states

Instead of investigating the time evolution of wave packets,
the same results can also be obtained by constructing sta-
tionary scattering states [18–24]. The Hawking temperature
is then contained entirely in these stationary scattering states.
The only information needed about the initial Minkowski
ground state is which momentum modes are occupied.

Consider the quench Hamiltonian (16) in the thermody-
namic limit, i.e., j ∈] − ∞,+∞[. First recall that for constant
γ j = γ the Hamiltonian is readily diagonalized with disper-
sion relation (now taking the momentum k in lattice units,
−π < k � π )

ωγ (k) = γ sin(k) + μ cos(k) − μ, (18)

as shown in Fig. 6(a). Let us now take γ j to interpolate
between a constant value γ−∞ = −γ and γ∞ = γ . More pre-
cisely we take γ j< jL = −γ , γ j> jR = γ , and the interpolating
region to be within [ jL, jR]. For our numerics, we used

γ j/γ = 1 − 2

1 + e2κ̂ j
= tanh κ̂ j. (19)

The operators

c̃†
ω =

∑
j

fω( j)c†
j (20)

correspond to single-particle eigenstate creation operators
with energy ω, provided that the coefficients fω( j) satisfy the
following Schrödinger-like equation:

−iγ j + μ

2
fω( j + 1) + iγ j−1 + μ

2
fω( j − 1) = (ω + μ) fω( j).

(21)

This discrete Schrödinger equation (21) allows us to define a
probability current Jj

Jj = γ j

2
[ f ∗

ω ( j) fω( j + 1) + f ∗
ω ( j + 1) fω( j)]

+ iμ

2
[ f ∗

ω ( j) fω( j + 1) − f ∗
ω ( j + 1) fω( j)], (22)

which is conserved, i.e., does not depend on j: Jj = J .

Equation (21) can be be solved inductively: from fω( j0 +
1) and fω( j0) one can solve for fω( j0 − 1) and subsequently
obtain fω( j) for all j ∈] − ∞,+∞[. As such, this equa-
tion will have a solution for every ω, but only for certain ω

the solution is bounded for j → ±∞. For a general hopping
profile γ (x) interpolating between −γ and γ , we anticipate
plane wave solutions away from the interpolation region j ∈
[ jL, jR]:

fω( j) =
{

ALeik1 j + AReik2 j, j > jR

BLeiq1 j + BReiq2 j, j < jL
(23)

with ω = ωγ (k1) = ωγ (k2) = ω−γ (q1) = ω−γ (q2). Here k2 is
the momentum of the gapless right-moving mode around k =
0 and k1 is the momentum of the left-moving mode around
k∗

out [see Fig. 6(a)]. Similarly at the inside of the horizon q1 is
the momentum of the gapless left-moving mode around q = 0
while q2 is the momentum of the right-moving mode around
q∗

in [see Fig. 6(b)].
Matching the current on both sides via (22) yields

|AR|2 − |AL|2 = |BR|2 − |BL|2, (24)

where we used that k1 = k∗
out − k2, q1 = q∗

in − q2 and k2 =
k∗

out + q2 with k∗
out = −q∗

in = 2 arccos(μ/
√

γ 2 + μ2).
To obtain the scattering state corresponding to the scatter-

ing process in Fig. 8, we take AL = 0 and AR = 1. Indeed,
this situation corresponds to a plane wave in the left region
j < jL scattering of the horizon, resulting in a transmitted
and reflected part. We proceed by solving the Schrödinger-like
equation numerically, starting from the initial values fω( jR +
1) = eik2( jR+1) and fω( jR) = eik2 jR and iteratively solving for
fω( j − 1) until finally arriving at fω( jL − 1). The coefficients
BL and BR can then be calculated with

BL = fω( jL − 1) − e−iq2 fω( jL )

eiq1 jL (e−iq1 − e−iq2 )
, (25)

BR = fω( jL − 1) − e−iq1 fω( jL )

eiq2 jL (e−iq2 − e−iq1 )
. (26)

Note that from the current conservation Eq. (24), we have

1 = |AR|2 = |BR|2 − |BL|2, (27)

which provides a nice numerical cross-check. The transmis-
sion T and reflection coefficient R for the scattering process
in Fig. 8 are given by

T = |AR|2
|BR|2 , R = |BL|2

|BR|2 . (28)

The wave packets used in Sec. III B are in effect appropriate
linear combinations of fω’s such that they are localized in
space at x0 (at t = 0) and in energy around some value ω.

Since the negative momentum modes around q∗
in < 0 are

occupied in the initial Minkowski ground state, we can infer
the asymptotic occupation numbers Nout,ω for right-moving
wave packets on the outside and Nin,ω for left-moving wave
packets on the inside from the transmission and reflection
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coefficients:

Nout,ω = 1 − Nin,ω = |AR|2
|BR|2 = 1

|BR|2 , (29)

which numerically is found to coincide very well with
the Dirac-Fermi spectrum [Eq. (11)], Nout,ω = f (ω), Nin,ω =
f (−ω), with TH = κ/(2πkB) = κ̂γ /(2πkB) in agreement
with the previous sections.

D. Analytical transmission coefficient by continuum
approximation

By mapping the lattice problem from the previous sec-
tion onto a continuous scattering problem we can derive the
observed Fermi-Dirac form of the transmission coefficient.
The goal is to solve Eq. (21) and find the coefficient BR defined
in Eq. (23), from which the transmission coefficient readily
follows. For this, we first perform a unitary transformation
cn → eiαn cn, which changes the hopping coefficients of the
Hamiltonian in Eq. (16): μ + iγn → τn ∈ R. The recursion
relation to solve is then

τn fω(n + 1) + τn−1 fω(n − 1) + (μ + ω) fω(n) = 0, (30)

with τn = 1
2

√
μ2 + γ 2 tanh2(κ̂n). As before, we are inter-

ested in solutions with the asymptotic form of Eq. (23), with
boundary conditions AR = 1 and AL = 0. Using a discrete
Wentzel-Kramers-Brillouin (WKB) approximation [40–42],
the solutions of Eq. (30) can be written as exponentials with
slowly varying phases. The quantity

B(n) = μ + ω

2
√

τnτn−1
≈ μ + ω

2τn
= μ + ω√

μ2 + γ 2 tanh2 κ̂x
, (31)

defines the turning points ±nt via B(nt ) = 1 and determines
whether the phases in the WKB ansatz are real or com-
plex. For |n| > |nt | the solutions are complex exponentials
which asymptotically reduce to the plane waves in Eq. (23).
A crucial observation is, as explained in Appendix E, that
in the vicinity of the turning points, we can write fω(n) =
(−1)nPω(n)/

√
4τnτn−1, where Pω(n) is slowly varying and

can be identified as the (WKB) solution of the following
continuous Schrödinger equation:

P′′
ω (x) + k(x)2Pω(x) = 0, (32)

with k(x) = 1
a

√
2(1 − B(x)). The calculation of BR and BL,

which determine Nout,ω, then amounts to finding the trans-
mission coefficient Tcont for a continuous scattering problem
where a particle with mass m = (μ + ω)/(γ a)2 and energy
E = γ 2

μ+ω
scatters off a potential of the form

V (x) = γ 2√
μ2 + γ 2 tanh2 κ̂x/a

. (33)

For a quadratic potential barrier V (x) = U0 − c2x2, Tcont is
given by [43,44]

Tcont = 1

1 + eK
, (34)

where K = π
√

2m(U0−E
c ). Approximating the potential by a

parabola V (x) ≈ γ 2( 1
μ

− κ2

2a2μ3 x2), and using the expressions

FIG. 9. Comparison between the exponential factor ln(1/T − 1)
of the transmission coefficient T from the numerical solution of
(E1) (dots) and the analytical prediction (37) (line) for κ̂ = 0.1 and
μ = 0.5γ . The leading order contribution K = 2πω

κ
is shown with

the dashed line.

for m and E , we obtain

K = 2πμ

κ

(
1 − 1

1 + ω
μ

)√
1 + ω

μ
≈ 2πω

κ

(
1 + O

(
ω

μ

))
.

(35)

We thus conclude that for small ω, we do indeed find a Fermi-
Dirac distribution:

Nout,ω = 1

1 + e2πω/κ
, (36)

which explains the numerical results of Secs. III B and III C.
In Appendix E, we perform a more detailed calculation

which uses the exact form of the potential and which also
takes corrections to the continuum approximation into ac-
count. Here we simply give the result, which is

K = 2π

κ̂

(
atan

μ + ω√
γ 2 + μ2 − (μ + ω)2

− atan
μ

γ

)
. (37)

The remarkable agreement between this analytical expression
and the numerical solution is shown in Fig. 9. For small ω, we
can write

κ

2πω
K ≈ 1 + μ

2γ

(
ω

γ

)
+ O

(
ω2

γ 2

)
, (38)

which shows that the leading order correction to the exponent
in the Fermi-Dirac distribution is proportional to μ/2γ . No-
tice that for the small temperatures κ/(2πkB) that we consider,
this correction only appears at the tails of the Fermi-Dirac
distribution.

IV. CONCLUSIONS

We have presented two elementary free fermion lattice
models which display the Hawking effect in quench dynam-
ics: one Floquet model with a causal horizon, and one local
Hamiltonian model without a causal horizon. We find that,
for energies well below the lattice cutoff, both these models
reproduce the thermal Hawking distribution found in contin-
uum calculations. The main feature of the free fermion models
is that they allow for a straightforward identification of the
origin of the Hawking particles.
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These results now pave the way for exploring the Hawking
effect in other quantum many-body systems, such as for ex-
ample interacting spin chains (both analytically in integrable
models, and numerically using, e.g., matrix product state
simulations), 2D materials with tilted Dirac cones [45–47],
and cold-atom or trapped ion experiments. Furthermore, the
approach to Hawking radiation adopted in this work is closely
related to previous studies of quantum quenches correspond-
ing to moving defects [48–50]. It would be interesting to apply
the analytical techniques developed for the moving defect
problem, which also rely on solving a scattering problem in
the comoving frame, to the Hawking quench protocol. Sim-
ilarly, our work has a natural connection to the superluminal
moving mass front which can be used to prepare ground states
of gapless systems with emergent Lorentz invariance [51,52].
Our reformulation of the Hawking radiation phenomenon thus
shows that it has many connections to previously studied top-
ics in the field of many-body quantum dynamics, and we hope
that it will inspire future work where techniques developed
in the quantum dynamics community will be applied to study
Hawking radiation in interacting systems.
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APPENDIX A: DERIVATION OF HAWKING RADIATION
IN THE CONTINUUM

In this Appendix, we review the derivation of Hawking
radiation for a continuum Dirac fermion in one spatial dimen-
sion. We start by first defining the “Minkowski” Hamiltonian,
which is given by (working in units h̄ = 1)

Ĥ0 =
∫

dx ψ†(x)(−iv∂x )ψ (x). (A1)

Here, v is a velocity, and ψ†(x), ψ (x) are creation and
annihilation operators satisfying the canonical fermionic an-
ticommutation relations:

{ψ†(x), ψ (x′)} = δ(x − x′), (A2)

{ψ†(x), ψ†(x′)} = {ψ (x), ψ (x′)} = 0. (A3)

The Minkowski Hamiltonian Ĥ0 describes the right-moving
part of a massless Dirac fermion in one spatial dimension. We
ignore the left-moving part of the Dirac fermion because it
does not play any role in the Hawking effect. The ground state
|ψ0〉 of H0 is obtained by occupying all plane wave state with
negative energy E (k) = vk, and thus satisfies

〈ψ0|ψ†
k ψk′ |ψ0〉 = �(−k)δ(k − k′), (A4)

with ψ
†
k = (2π )−1/2

∫
dx eikxψ†(x).

Besides the Minkowski Hamiltonian, we also need a
horizon Hamiltonian Ĥh, which is given by

Ĥh =
∫

dx ψ†(x)

(
−iv(x)∂x − i

2
∂xv(x)

)
ψ (x)

:=
∫

dx ψ†(x)ĥhψ (x). (A5)

In the horizon Hamiltonian, the velocity v(x)1 is a contin-
uous function of x which satisfies v(x) > 0 for x > 0, and
v(x) < 0 for x < 0. The horizon is located at x = 0, where
v(0) = 0. The region x > 0 is called the ‘outside’ region of
the horizon, and x < 0 is the “inside” region. In the presence
of an additional mode which is everywhere left-moving (recall
that we ignoring this mode here), it is possible to move both
left and right for x > 0, whereas for x < 0 one is forced to
move to the left which means that it is impossible to cross
the horizon (one is trapped behind the horizon). The term
−i∂xv(x)ψ†(x)ψ (x)/2 is necessary to ensure that the horizon
Hamiltonian is Hermitian.

In this Appendix, we will be interested in two different
velocity profiles:

v(x) = κx (Unruh case), (A6)

v(x) = v tanh(xκ/v) (Hawking case). (A7)

Here, κ , which has dimensions of inverse time (or energy
since h̄ = 1), is the “surface gravity.” The first velocity profile
v(x) = κx corresponds to a Rindler observer, which has a
constant acceleration. This case was analysed by Unruh, and
we will therefore call this the Unruh case. The second velocity
profile v(x) = v tanh(κx/v) goes to ±v as x → ±∞. So in
this case, the horizon Hamiltonian is a “black hole” Hamilto-
nian which matches the Minkowski Hamiltonian far away on
the right hand side of the horizon (this is the ‘outside’ of the
black hole). The black hole case was analysed by Hawking,
and so we refer to it as the Hawking case. Below, we discuss
the Unruh and Hawking cases separately.

1. Unruh/Rindler case

We start by finding the eigenstates of the single-particle
Hamiltonian ĥh in Eq. (A5) with the Unruh velocity profile
v(x) = κx. For this, we use the ansatz ϕ(x) = exp(iS(x)).
This state is an eigenstate with energy ω if

ω = v(x)∂xS(x) − i

2
∂xv(x). (A8)

The solutions to this equation are

S±(x) = lim
ε→0±

∫ x

dx′ ω + i∂x′v(x′)/2

v(x′) + iε
(A9)

= P
∫ x

dx′ ω

v(x′)
∓ i

πω

κ
�(x) (A10)

1Note that here we use v(x) for the full velocity of the right-
moving field. For instance, for an acoustic metric of the form ds2 =
(c(x)2 − vF (x)2)dt2 − 2vF (x)dxdt − dx2, we would have v(x) =
c(x) − vF (x).
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+ i

2
P

∫ x

dx′ ∂x′ ln(v(x′)) ± π

2
�(x)

(A11)

= P
∫ x

dx′ ω

v(x′)
∓ i

πω

κ
�(x)

+ i

2
ln(|v(x)|) ± π

2
�(x), (A12)

where P denotes the Cauchy principal value and �(x) is the
Heaviside step function. A similar iε prescription was also
previously used in Refs. [53–55]. Plugging these solutions
for S(x) back in the ansatz ϕ(x) = exp(iS(x)), we find two
solutions for the Rindler eigenstates with energy ω:

ϕR+
ω (x) = �(−x)

1√−κx
eiω ln(−κx)/κ

+�(x)
eiπ/2eπω/κ

√
κx

eiω ln(κx)/κ , (A13)

ϕR−
ω (x) = �(−x)

1√−κx
eiω ln(−κx)/κ

+�(x)
e−iπ/2e−πω/κ

√
κx

eiω ln(κx)/κ . (A14)

Using∫ ∞

0
dx

1

κx
ei(ω−ω′ ) ln(κx)/κ =

∫ ∞

−∞
d (ln(κx)/κ )ei(ω−ω′ ) ln(κx)/κ

(A15)

= 2πδ(ω − ω′), (A16)

we see that the Rindler wave functions in Eqs. (A13) and
(A14) satisfy∫

dx
[
ϕRs

ω (x)
]∗

ϕRs′
ω′ (x) = 2π (1 + es2πω/κ )δs,s′δ(ω − ω′),

(A17)
where s, s′ = ±.

A crucial observation is that the Rindler eigenfunctions can
be written as

ϕR+
ω (x) =

∫ ∞

0
dk eikxϕ̃R+

ω (k), (A18)

ϕR−
ω (x) =

∫ ∞

0
dk e−ikxϕ̃R−

ω (k). (A19)

As pointed out by Unruh [56], this follows from the fact
that any function which only has positive (negative) Fourier
modes is analytic in the upper (lower) half of the complex
plane. The branch cuts of the logarithm and the square root
in ϕR+

ω (x) (ϕR−
ω (x)) both lie in the lower (upper) half-plane,

which means that ϕR+
ω (x) (ϕR−

ω (x)) is analytic in the up-
per (lower) half plane. From this observation, we learn that
ϕR+

ω (x) is made entirely from states which are unoccupied in
the Minkowski vacuum, whereas ϕR−

ω (x) made entirely from
states which are occupied in the Minkowski vacuum. Because
the set of occupied (unoccupied) plane wave states in the
Minkowski vacuum and the Rindler wave functions ϕR−

ω (x)
(ϕR+

ω (x)) are related via an invertible linear transformation, we

conclude that

〈ψ0|ψ†
R,s(ω)ψR,s′ (ω′)|ψ0〉 =

{
δ(ω − ω′) if s = s′ = −
0 otherwise ,

(A20)

where

ψ
†
R−(ω) = 1√

1 + e−2πω/κ

1√
2π

∫
dx ϕR−

ω (x)ψ†(x), (A21)

ψ
†
R+(ω) = 1√

1 + e2πω/κ

1√
2π

∫
dx ϕR+

ω (x)ψ†(x) (A22)

are fermion creation operators satisfying

{ψ†
Rs(ω), ψRs′ (ω′)} = δs,s′δ(ω − ω′), (A23)

{ψ†
Rs(ω), ψ†

Rs′ (ω′)} = {ψRs(ω), ψRs′ (ω′)} = 0. (A24)

Finally, we define the “single-sided” eigenstate creation oper-
ators as follows:

ψ
†
R,out (ω) = 1√

2π

∫ ∞

0
dx

1√
κx

eiω ln(κx))/κψ†(x), (A25)

ψ
†
R,in(ω) = 1√

2π

∫ 0

−∞
dx

1√−κx
eiω ln(−κx)/κψ†(x). (A26)

These creation operators again satisfy the canonical fermionic
anticommutation relations:

{ψ†
R,l (ω), ψR,l ′ (ω

′)} = δl,l ′δ(ω − ω′), (A27)

{ψ†
R,l (ω), ψ†

R,l ′ (ω
′)} = {ψR,l (ω), ψR,l ′ (ω

′)} = 0, (A28)

where l, l ′ = in/out. From their definition, it is clear that the
single-sided eigenmodes can be obtained as linear combina-
tions of the degenerate wave functions ϕR+

ω (x) and ϕR−
ω (x). In

particular, it holds that

ψ
†
R,in(ω) = 1√

1 + e2πω/κ
ψ

†
R,+(ω) + 1√

1+ e−2πω/κ
ψ

†
R,−(ω),

ψ
†
R,out (ω) = −i

eπω/κ

√
1 + e2πω/κ

ψ
†
R,+(ω)

+ i
e−πω/κ

√
1 + e−2πω/κ

ψ
†
R,−(ω). (A29)

From these relations, and Eq. (A20), we find that

〈ψ0|ψ†
R,out (ω)ψR,out (ω

′)|ψ0〉

= 1

e2πω/κ + 1
δ(ω − ω′) := f (ω)δ(ω − ω′). (A30)

This is the famous Unruh result [56]: after tracing out the
region behind the horizon of an accelerating Rindler observer,
the density matrix of the outer region is a thermal state with
temperature T = κ/2πkB of the Rindler modes which only
have support on the outside of the horizon. The Bogoliubov
transformations (A29) can also be used to compute the oc-
cupation numbers for the inside (left-moving) modes and the
correlation between the inside and outside modes:

〈ψ0|ψ†
R,in(ω)ψR,in(ω′)|ψ0〉

= 1

e−2πω/κ + 1
δ(ω − ω′) = f (−ω)δ(ω − ω′), (A31)
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〈ψ0|ψ†
R,in(ω)ψR,out (ω

′)|ψ0〉 = −i
e−πω/κ

e−2πω/κ + 1
δ(ω − ω′)

= −i
√

f (ω) f (−ω)δ(ω − ω′).

(A32)

Note that we have also found that the Minkowski
ground state is an eigenstate of the Rindler Hamiltonian:
Hh = ∫

dω ω (ψ†
R+(ω)ψR+(ω) + ψ

†
R−(ω)ψR−(ω)). So if we

were to quench the Minkowski ground state with the
Rindler Hamiltonian, this would not generate any nontrivial
dynamics.

2. Hawking/black hole case

Let us now consider the horizon Hamiltonian in Eq. (A5)
with the black hole velocity profile v(x) = v tanh(κx/v). We
want to show that Hawking radiation emerges upon quenching
the Minkowski ground state with this Hamiltonian.

For large positive x, the black hole velocity profile ap-
proaches a constant velocity v. So far outside the black hole,
the Minkowski ground state looks like the ground state of
the black hole Hamiltonian, and no nontrivial dynamics will
originate from this region. For large negative x, the black
hole velocity profile approaches the constant velocity −v. In
this region, the Minkowski ground state is again an eigen-
state of the black hole Hamiltonian, but it is no longer the
ground state. Instead, |ψ0〉 locally looks like the highest
energy eigenstate of Ĥh. Nevertheless, the region far away
on the inside of the black hole will again not generate any
nontrivial dynamics. Close to the horizon, we can approxi-
mate the black hole velocity profile as v(x) ∼ κx, which is
exactly the Rindler velocity profile. From our previous anal-
ysis of the Unruh/Rindler case, we conclude that close to
the horizon, the Minkowski ground state looks like a finite-
temperature state with temperature T = κ/2πkB for the black
hole Hamiltonian. Again we expect that the region close to
the horizon where v(x) ∼ κx will not generate any nontrivial
dynamics, because in the previous section, we found that
the Minkowski ground state is an eigenstate of the Rindler
Hamiltonian.

The previous discussion suggests the following physi-
cal picture: for the black hole Hamiltonian, the Minkowski
ground state looks like a state with a temperature profile
T (x) ∝ ∂x|v(x)|. Far on the outside, the temperature is T (x �
vκ−1) ∼ 0+ and the Minkowski ground state is effectively the
black hole ground state. Far on the inside, T (x 
 −vκ−1) ∼
0−, and the Minkowski ground state looks like the highest
energy state. Close to the horizon on the outside, T (0 < x 

vκ−1) = κ/2πkB. And close to the horizon on the inside,
T (0 > x � −vκ−1) ∼ −κ/2πkB [see Eq. (A31)]. Gradients
in the temperature occur in regions where the velocity has
a nonzero curvature: ∂xT (x) ∝ ∂2

x v(x). The Hawking effect
corresponds to the emission of particles from the “hot” to the
“cold” regions in the Minkowski ground state under a quench
with the black hole Hamiltonian. These particles originate
from the regions where ∂2

x v(x) �= 0, which is roughly at a
distance vκ−1 away from the horizon.

To make this physical picture more concrete, we will
first calculate the occupation number of wave packets on the

outside of the horizon. We define the wave packet creation
operator as

W †
x0,k0

=
∫

dx wx0,k0 (x)ψ†(x), (A33)

with

wx0,k0 (x) = 1

(2πσ 2)1/4

∫ +∞

−∞
dk e− (k−k0 )2

4σ2
1√
2π

eik(x−x0 ),

(A34)

a Gaussian wave packet, with the momentum centered around
k0 and the position centered around x0. The occupation num-
ber Nx0,k0 (t ) of this packet can be found as

Nx0,k0 (t ) = 〈ψ0(t )|W †
x0,k0

Wx0,k0 |ψ0(t )〉
= 〈ψ0|eitHhW †

x0,k0
Wx0,k0 e−itHh |ψ0〉

= 〈ψ0|W †
x0,k0

(−t )Wx0,k0 (−t )|ψ0〉, (A35)

with

W †
x0,k0

(−t ) :=
∫

dx wx0,k0 eitHhψ†(x)e−itHh

=
∫

dx wx0,k0 (x)e+ith∗
h ψ†(x)

=
∫

dx
(
e+ithhwx0,k0 (x)

)
ψ†(x)

=
∫

dx wx0,k0 (x,−t )ψ†(x), (A36)

where in the last line the wave packet wx0,k0 (x,−t ) =
e+ithhwx0,k0 (x) is propagated back(!) in time with the single-
particle Hamiltonian hh [cf. Eq. (A5)]. To obtain wx0,k0 (x,−t ),
it is useful to look at the expressions for the eigen out-modes,
which from a generalization of the Unruh/Rindler case, are
readily found as

ϕout
ω (x) = �(x)

1√
2πv(x)

eiω
∫ x dx′ 1

v(x′ )

= �(x)
1√

2πv tanh(κx/v)
eiω ln(sinh(κx/v))/κ . (A37)

Far away from the horizon, x � v/κ , we effectively have
Minkowski space-time and ϕout

ω reduces to a plane wave; on
the other hand, close to the horizon, x 
 v/κ , we have effec-
tively the Rindler case and ϕout

ω reduces to ϕR, out
ω , explicitly

ϕout
ω (x)

x�v/κ= 1√
2πv

ei ω
v

(x− v
κ

ln(2)),

ϕout
ω (x)

x
v/κ= 1√
2πκx

eiω ln(κx/v)/κ = e−iω ln(v)/κϕR,out
ω (x).

(A38)

Taking the initial wave packet wx0,k0 [Eq. (A34)] far from the
horizon, x0 � v/κ , we can now effectively write

wx0,k0 (x) = 1

(2πσ 2v2)1/4

∫ +∞

−∞
dω

× e− (ω−vk0 )2

4σ2v2 ei ω
v

( v
κ

ln(2)−x0 )ϕout
ω (x), (A39)
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FIG. 10. Backwards-in-time evolution of the wave packet wx0,k0 (x, −t ) (Eq. (A40)) with x0 = 15, k0 = 5, σ = 0.25, v = 1, and κ = 1/5.
Notice the alteration in the wave packet behavior upon entering the quantum atmosphere at x ≈ v/κ = 5.

which in turn allows to find the time-evolved wave packet:

wx0,k0 (x,−t ) = 1

(2πσ 2v2)1/4

∫ +∞

−∞
dωe− (ω−vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)−x0+vt )ϕout
ω (x), (A40)

= 1√
v(x)

1

(2πσ 2v2)1/4

∫ +∞

−∞
dωe− (ω−vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)−x0+vt+y(x)), (A41)

where on the last line we have introduced the “tortoise” co-
ordinate y(x) = ∫ x dx′v/v(x′) = v/κ ln(sinh(κx/v)). Notice
that

y(x)
x�v/κ= x − v

κ
ln(2) y(x)

x
v/κ= v

κ
ln(κx/v), (A42)

in particular we have that y(x) → −∞ when x → 0+. We see
that up to the prefactor v(x)−1/2 the wave packet wx0,k0 (x,−t )
consists of plane waves in y-space and therefore find that the
wave packet moves with constant width �y ∼ 1/σ and con-
stant velocity −v in y-space: yc(t ) = x0 − v

κ
ln(2) − vt , where

yc(t ) denotes the center-position of the packet. In x-space,
this translates to a wave-packet propagating with constant
width and constant velocity −v, as long as xc(t ) � v/κ . This
behavior changes when the wave-packet enters the ‘quantum-
atmosphere’ |x| � v/κ , around t = t∗ ∼ x0/v − 1/κ . Inside
the quantum atmosphere, the wave packet will start to con-
tract, �x ∼ �y/y′(xc) ∼ v(xc)/(vσ ) and slow down, ẋc ∼
ẏc/y′(xc) = v(xc), asymptotically (t → ∞) “freezing” on the
horizon x = 0. We illustrate this behavior in Fig. 10.

Summarising, the wave-packet evolution has essentially
two regimes: for t � t∗ it has only nontrivial support outside
the quantum atmosphere, x > v/κ , while for t � t∗ it will end
up lying completely inside the quantum atmosphere 0 < x <

v/κ . From (A38) and (A40), we see that this implies, that for
t � t∗, the wave packet remains a superposition of Minkowski

plane waves, while for t � t∗, it reduces to a superposition of
Rindler eigenmodes, explicitly

W †
x0,k0

(−t )
t
t∗= 1

(2πσ 2v2)1/4

∫ +∞

−∞
dω e− (ω−vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)−x0+vt )ψ
†
M (ω), (A43)

W †
x0,k0

(−t )
t�t∗= 1

(2πσ 2v2)1/4

∫ +∞

−∞
dω e− (ω−vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)−x0+vt )ψ
†
R,out (ω). (A44)

Finally, evaluating Nx0,k0 (t ) = 〈ψ0|W †
x0,k0

(−t )Wx0,k0 (−t )|ψ0〉
we find that this gives a smeared out step-function �(−ω)
(with ω = k0v) at initial times t 
 t∗; going over into the
Fermi-Dirac distribution f (ω) at later times t � t∗ [see
(A30)], provided that vσ 
 kBTH = κ

2π
. This is also precisely

what we find in our lattice simulations as discussed in the
main text.

In a completely similar fashion, one can consider the time
evolution of a wave packet, initially deep inside the black hole
(x0 
 −v/κ), resulting in (with now t∗ = −x0/v − 1/κ):

W †
x0,k0

(−t )
t
t∗= 1

(2πσ 2v2)1/4

∫ +∞

−∞
dω e− (ω+vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)+x0+vt )ψ
†
M (−ω), (A45)

W †
x0,k0

(−t )
t�t∗= 1

(2πσ 2v2)1/4

∫ +∞

−∞
dω e− (ω+vk0 )2

4σ2v2

× ei ω
v

( v
κ

ln(2)+x0+vt )ψ
†
R,in(ω). (A46)

This then gives Nx0,k0 (t ) going from the smeared out step-
function �(ω) (with now ω = −k0v) at t 
 t∗ to f (−ω)
at times t � t∗, again in agreement with our lattice results.
Finally, for the wave-packet correlation function (for t �
−xin/v − 1/κ, xout/v − 1/κ and with kin = −ω0/v, kout =
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+ω0/v), we get [from (A32)]:

〈ψ0|W †
xin,kin

(−t )Wxout,kout (−t )|ψ0〉

= − i

(2πσ 2v2)1/2

∫ +∞

−∞
dωe− (ω−ω0 )2

2σ2v2

× ei ω
v

(xin+xout )
√

f (ω) f (−ω) (A47)

≈ −i
√

f (ω0) f (−ω0)ei ω0
v

(xin+xout )e− σ2 (xin+xout )2

2 , (A48)

where on the last line we again assumed vσ 
 kBTH . This is
the continuum version of our lattice results on the particle cor-
relations [see, e.g., Fig. 4(b) and the corresponding discussion
in the main text].

The region inside the quantum atmosphere −κ/v � x �
+κ/v is not altered during the evolution, yet it acts like an
infinite reservoir for the outgoing radiation, with arbitrary
short (“transPlanckian”) wavelength modes, that upon leaving
the horizon get redshifted to their asymptotic value (see, e.g.,
Fig. 10). This is very different for the lattice models that we
discuss in the main text, where the outgoing radiation finds
it origin in a bulk reservoir of ingoing doubler modes on

the outside (for the Floquet model) or in a bulk reservoir of
outgoing doubler modes on the inside of the boundary (for the
local model).

APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS
FOR THE FLOQUET MODEL

For our numerical calculations, we use the following ex-
plicit expression for γ (x):

γ (x) = γ

(
4

πb
arctan

[
cosh(κ̃πW/4)

cosh(πκ̃ (x − L/2)/2)

]
+ b − 1

b

)b

,

(B1)

where L = Na is the length of the system, and κ̃ and b
are free parameters. We take the overall energy scale to be
γ = (�t )−1, such that aγ (x) = a/�t = vFl at the location of
the black hole horizon xb = L/2 − W/2, and at the location of
the white hole horizon xw = L/2 + W/2. The surface gravity
is given by κ = aγ κ̃ tanh(κ̃πW/4). For a sufficiently large
width W of the region outside the horizon (we always take
W to be a couple of hundred lattice sites), we effectively have
κ = κ̃vFl.

The wave-packet operators W †
x0,ω

are defined as follows:

W †
x0,ω

= N
π/a∑

k=−π/a

e−(k−ω/vout )2/4σ 2
e−ikx0 c†

k for xb < x0 < xw, (B2)

W †
x0,ω

= N
π/a∑

k=−π/a

e−(k+ω/vin )2/4σ 2
e−ikx0 c†

k for x0 < xb, (B3)

where N is a normalization factor, and c†
k = 1√

N

∑N
j=1 eika jc†

j .
As mentioned in the main text, we always take |ω�t | 
 1.
The quantities vout = v(x � xb) − vFl and vin = vFl − v(x 

xb) are (the absolute values of) the velocities of the wave
packets on respectively the outside and inside of the black hole
horizon. The velocity profile v(x) is approximately constant
for |x − xb|, |x − xw| � κ̃−1.

We calculate the time-dependent wave packet occupation
number Nx0,ω(n�t ) in practice by writing it as Nx0,ω(n�t ) =
〈ψ0|W †

x0,ω
(−n�t )Wx0,ω(−n�t )|ψ0〉, where W †

x0,ω
(−n�t ) =

U −n(�t )W †
x0,ω

U n(�t ) is the wave packet operator evolved
backwards in time; and where in analogy with the con-
tinuum case we define W †

x0,ω
(t ) := ∑

i wi(x0, ω, t )c†
i , with

wi(x0, ω, t ) obtained from evolving with the single-particle
Schrödinger equation. In Fig. 11, we show an example of
such a backwards-in-time evolved wave packet on the out-
side of the black hole horizon. Note that because we evolve
backwards in time, the right-moving wave packet moves to
the left, i.e., it moves closer to the black hole horizon. From
Fig. 11, we see that during the time evolution the wave packet
does not cross the horizon, but instead develops very short-
wavelength oscillations and subsequently bounces back to the
outside region. In Ref. [19], this was interpreted as a Bloch
oscillation.

In Fig. 12, we show the Floquet dispersion relation ω(k) =
v sin(ka)/a − vFlk in the outside region, i.e., where vFl < v.

The initial positive-energy wave packet at t = 0 contains
eigenstates of the Floquet unitary which lie in the vicinity of
the blue dot in Fig. 12. After scattering off the horizon, the
reflected wave packet consists of both positive and negative
momentum states, corresponding to the parts of the Floquet
dispersion relation in the vicinity of the two orange dots in
Fig. 12. In the Minkowski vacuum, the negative momentum
states are occupied, while the positive momentum states are
empty. So after scattering off the horizon, the wave packet
contains both a positive and negative Minkowski energy part.
The negative energy part is responsible for the nonzero wave
packet occupation number after scattering.

For the calculation of the wave packet occupation num-
bers in Fig. 4, the width of the wave packets in momentum
space was σ = 2(2π/L). For the calculation of the wave
packet correlations across the horizon in Fig. 4, we used
σ = 2(2π/L) for the wave packets behind the horizon, and
σ = 2(2π/L) × (vin/vout ) for the wave packets on the outside
of the horizon. This relation between the widths of the wave
packets is important for the maximal wave packet correlations
to be given by

√
f (ω) f (−ω).

Finally, the left-moving wave packet operators W̃ †
x0,ω

used
to obtain the results shown in Fig. 5 are defined as

W̃ †
x0,ω

= N
π/a∑

k=−π/a

e−(k+k∗+ω/v∗ )2/4σ 2
e−ikx0 c†

k , (B4)
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FIG. 11. Backwards-in-time evolution of the wave packet W †
x0,ω = ∑

j w jc
†
j with x0 = xb + 700a and ω = 0.057t . The width of the wave

packet in momentum space is σ = 2(2π/L). The system size is N = 3000, xb = 500a, and xw = 2500a. The function t (x) in Eq. (B1) was
used with κ̃a = 0.1 and b = 3.

where v∗ = |∂kω(k)|k=−k∗ | (with v = v(x � xb)) is the veloc-
ity of the wave packets. The width used in Fig. 5 was again
σ = 2(2π/L).

APPENDIX C: CONNECTION BETWEEN THE
CORLEY-JACOBSON FALLING LATTICE AND STATIC

HORIZONS IN FLOQUET SYSTEMS

In Ref. [19], Corley and Jacobson discretized a scalar field
on a spatial lattice which is falling into a black hole. As a result
of this choice of discretization, the location of the horizon

FIG. 12. Floquet dispersion on the outside of the black hole
horizon. The wave packet in the outside region which is moving
towards the horizon during the backwards time evolution consists
of plane wave states which lie on the part of the Floquet dispersion
near the blue dot. After scattering off the horizon, the reflected wave
packet which moves away from the horizon during the backwards
time evolution consists of states near the two orange dots.

relative to the lattice chances in time. The Corley-Jacobson
falling lattice analog of our fermion hopping model used in
the main text would therefore correspond to the following
time-dependent Hamiltonian:

ĤCJ (t ) =
N∑

j=1

γ j (t ) + γ j+1(t )

4
(ic†

j+1c j − ic†
j c j+1), (C1)

where γ j (t ) = γ ( ja − vFlt ), with γ (x) the same continuous
function as used in the main text. In the Corley-Jacobson
model, the location of the horizon is moving to the right with
a velocity vFl = a/�t . Particles in the region to the left of the
black hole horizon move slower than vFl, so they can never
catch up with the horizon. Particles to the right of the black
hole horizon travel faster than vFl.

In the Corley-Jacobson model, the time-evolution operator
is given by

UCJ (t ) = T e−i
∫ t

0 dt ′ ĤCJ (t ′ ), (C2)

where T is the time-ordering operator. At discrete times t =
n�t , we can write this time-evolution operator as

UCJ (n�t ) = T e−i
∫ n�t

(n−1)�t dt ′ ĤCJ (t ′ ) · · · T e−i
∫ 2�t
�t dt ′ ĤCJ (t ′ )

× T e−i
∫ �t

0 dt ′ ĤCJ (t ′ ). (C3)

Using the following property of the Corely-Jacobson
Hamiltonian:

ĤCJ (t + �t ) = T̂ −1
L ĤCJ (t )T̂L, (C4)
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FIG. 13. Backwards-in-time evolution of the wave packet W †
x0,ω = ∑

j w jc
†
j with x0 = xb + 900a and ω = 0.00298t . The width of the wave

packet in momentum space is σ = 0.0025a−1. The system size is N = 4000, xb = 1700a, and xw = 3900a. The hopping t j in Eq. (D1) was
used with κ̂ = 0.1, together with μ = 0.5t .

we can rewrite UCJ (n�t ) as

UCJ (n�t ) = T̂ −n
L

(
T̂LT e−i

∫ �t
0 dt ′ ĤCJ (t ′ )

)n
(C5)

:= T̂ −n
L Ũ (�t )n (C6)

≈ T̂ −n
L U (�t )n, (C7)

where U (�t ) is the Floquet unitary with a static causal
horizon that we used in the main text [Eq. (5)]. So we see
that there is a close connection between the Corley-Jacobson
approach and the Floquet approach. We have checked that
quenching |ψ0〉 with either Ũ (�t ) or U (�t ) produces iden-
tical results for the Hawking radiation. The additional unitary
T̂ −n

L in the Corley-Jacobson time-evolution operator simply
implements a transformation from the co-moving frame where
the horizon is static to the laboratory frame where the horizon
is moving to the right.

APPENDIX D: DETAILS OF NUMERICAL SIMULATIONS
FOR THE LOCAL HAMILTONIAN MODEL

The site-dependent hopping term γ j = γ ( ja) used in the
local Hamiltonian Ĥ is given by

γ j/γ = 1 − 2S(2κ̂ ( j − jb)) − 2S(−2κ̂ ( j − jw )), (D1)

where S(x) = 1
1+ex . jb ( jw) is the location of the black hole

(white hole) horizon and κ̂ determines the slope of the inter-
polation between γ j = −γ and γ j = γ , such that the surface
gravity is given by κ = a∂xγ (x)|x=xb = κ̂γ . The wave packet
creation operator W †

x0,ω
is constructed from the momentum

modes of the Minkowski Hamiltonian and is defined as

W †
x0,ω

= N
k=π/a∑

k=−π/a

e−(k−k0 )2/4σ 2
e−ikx0 c†

k , (D2)

with k0 a free parameters that determines the momen-
tum mode around which the wave packet is centered (and
consequently whether it is left- or right-moving), and σ de-
termines the width of the Gaussian. Here c†

k is the (discrete)
fourier transform of the on-site creation operators, i.e., c̃†

k =
1√
N

∑N
j=1 eika jc†

j . For all numerical calculations, the width σ

was taken to be 0.0025a−1 for L = 4000a, so that the wave
packet is as narrow as possible in momentum space, while
still able to fit in the inside region in real space. For μ, we
used a value of 0.5γ .

Similar to the Floquet case, the time-dependent wave
packet occupation number Nx0,ω(t ) is calculated numerically
by transferring the time evolution to the wave packet creation
operators W †

x0,ω
via Nx0,ω(t ) = 〈ψ0|W †

x0,ω
(−t )Wx0,ω(−t )|ψ0〉,

where W †
x0,ω

(−t ) = U †(t )W †
x0,ω

U (t ) is the wave packet opera-
tor evolved backwards in time. An example of a backwards-
in-time evolved wave packet is shown in Fig. 13. Note that
because of the backwards time evolution, the right-moving
wave packet actually moves to the left. We see that as time
proceeds, the wave packet scatters off the boundary between
the inside (γ j < 0) and outside (γ j > 0) regions, and that only
part of it goes through this boundary while the other part is
reflected back. Here the reflected wave packet only contains
positive momentum modes which lie around the orange dot in
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FIG. 14. Dispersions for the local model on the outside (a) and
inside (b) of the black hole horizon. The right-moving positive-
energy wave [blue dot in (a)] packet initially starts outside the
horizon and under backwards time evolution scatters of the horizon.
The reflected wave packet contains only positive momentum states
[orange dot in (a)] while the transmitted part only has negative mo-
mentum states [orange dot in (b)]. Their corresponding Minkowski
energies are shown on the Minkowski dispersion ω0/t = sin(ka) in
(c), with a negative energy for the transmitted part, and positive
energies for the incoming and reflected part.

Fig. 14(a), while the transmitted part solely consists of nega-
tive momentum modes near the orange dot in Fig. 14(b). The
momentum of the incoming wave packet lies in the vicinity
of the blue dot in Fig. 14(a). The corresponding Minkowski
energy modes are shown in Fig. 14(c). Since in the Minkowski
ground state, only negative energy modes are occupied it is
clear that it is exactly the transmitted wave packet that gives
rise to the nonzero occupation number observed.

APPENDIX E: DETAILS OF THE ANALYTICAL
DERIVATION OF THE TRANSMISSION COEFFICIENT

The recurrence equation

τn fω(n + 1) + τn−1 fω(n − 1) + (μ + ω) fω(n) = 0, (E1)

can be solved by a discrete version of the well-
known Wentzel-Kramers-Brillouin (WKB) approximation
(see Refs. [40–42]). Similar to the continuous WKB approxi-
mation one finds that the solutions are either complex or real
exponentials, depending on the value of

B(n) = μ + ω

2
√

τnτn−1
≈ μ + ω√

μ2 + γ 2 tanh2 κ̂n
. (E2)

Denoting the turning points for which B(n) = 1 as ±nt we
have that the discrete WKB ansatz is given by

fω(n) = 1
4
√

4τnτn−1

{
C1PI,+

ω (n) + C2PI,−
ω (n), |n| � nt

C̃1PR,+
ω (n) + C̃2PR,−

ω (n), |n| � nt

(E3)

with

PI,±
ω (n) = 1

4
√

1 − B(n)2
exp

(
±i

∫ n

acos(−B(y))dy

)
(E4)

and

PR,±
ω (n) = 1

4
√

B(n)2 − 1
exp

(
±

∫ n

acoshB(y)dy

)
. (E5)

For |n| � nt , we have that fω(n) reduces to the plane waves
solution (23) up to some irrelevant factors. A comparison
between the numerical solution of Eq. (E1) and the WKB

FIG. 15. Comparison between the numerical solution of (E1)
(blue) and the discrete WKB approximation (E4) (green) for n >

nt ≈ 3.5, κ̂ = 0.1, ω = 0.1γ , and μ = 0.5γ .

approximation (E4) is shown in Fig. 15. Just like in the con-
tinuous WKB approximation the solutions break down near
the turning points ±nt . This prevents the direct matching
of the asymptotic solutions for n 
 −nt and n � nt which
determines the transmission coefficient. To circumvent this
problem, we notice that near the turning points B(n) ≈ 1 so
that we can approximate acos(−B(n)) ≈ π + √

2(1 − B(n)
and 1 − B(n)2 ≈ 2(1 − B(n)). Then

PI,±
ω (|n| � nt ) ≈ (−1)n

√
a

�±(x), (E6)

with

�±(x) = 1√
k(x)

exp

(
±i

∫ x

k(y)dy

)
, (E7)

where k(y) = 1
a

√
2(1 − B(y)) has the dimension of 1/length.

Here �±(x) is readily recognized as a WKB ansatz for a con-
tinuous Schrodinger equation with k(x) = √

2m(E − V (x)).
Given that near the turning points k(x) is indeed slowly vary-
ing on the lattice scale, this allows us to map the discrete
problem around the turning points to a continuous scatter-
ing problem with identifications m = μ+ω

γ 2a2 , E = γ 2

μ+ω
and a

potential

V (x) = γ 2√
μ2 + γ 2 tanh2 κ̃x

, (E8)

where we have used the shorthand κ̃ = κ̂
a = κ

γ a . We can now

relate the solution for �±(n), and thus also PI,±
ω (n), at n � nt

and n � nt using the transmission coefficient for the continu-
ous problem. Starting from n � nt we have that the discrete
solution is given by

fω(n � nt ) = AReikn = 1
4
√

4τnτn−1
D1PI,+

ω (n), (E9)

with D1 = √
2τ∞eiθ AR and θ a phase such that e±iθ PI,±

ω (n �
nt ) = e±ikn. For n � nt , PI,+

ω (n) coincides with (−1)n�+(n)
so that

fω(n � nt ) = 1
4
√

4τnτn−1
D1PI,+

ω (n) ≈ (−1)n

a 4
√

4τnτn−1
D1�

+(n).

(E10)
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The solution of the continuous scattering problem tells us that

D1�
+(n � nt ) = C1�

+(n � −nt ) + C2�
−(n � −nt ),

(E11)

with |D1|2
|C1|2 = Tcont. Then for n � −nt ,

fω(n � nt ) = (−1)n

a 4
√

4τnτn−1
(C1�

+(n) + C2�
−(n))

≈ 1
4
√

4τnτn−1
(C1PI,+

ω (n) + C2PI,−
ω (n)), (E12)

where we used that (−1)n�±(n) and PI,±
ω coincide near

the turning point −nt . For n 
 −nt , the discrete solution
reduces to

fω(n 
 −nt ) = 1√
2τ∞

(C1e−iθ eikn + C2eiθ e−ikn), (E13)

which gives BR = 1√
2τ∞

C1e−iθ and BL = 1√
2τ∞

C2eiθ . The
transmission coefficient for the discrete problem is then

Tlat = |AR|2
|BR|2 = |D1|2

|C1|2 = Tcont. (E14)

For a general rounded potential hill that is approximately
parabolic Kemble [44] has shown that the transmission co-
efficient Tcont is given by

Tcont =
{

1
1+eK , E < Vmax

1
1+e−K ′ , E > Vmax

(E15)

with

K = 2
∫ x2

x1

√
2m(V (x) − E )dx (E16)

and

K ′ = 2
∫ x̂2

x̂1

√
2m(E − V (ix)dx.

Here the integration limits x1, x2 (x̂1, x̂2) are the
real (complex) zeros of V (x) − E , given by ±κ̃xt =
±atanh 1

γ

√
(μ + ω)2 − μ2 and ±κ̃ x̂t = ±atan 1

γ√
μ2 − (μ + ω)2. It is easy to show that K ′ = −K due

to the particular form of V (x). Using the identifications made
earlier E < Vmax (E > Vmax) corresponds to ω > 0 (ω < 0)
and it follows that

Tcont = 1

1 + eK
, ∀ω. (E17)

For ω 
 μ, the integration range in K will be small and
most of the contribution to the integral will come from x ≈ 0
where the potential V (x) can safely be approximated as a
parabola. In order to get the leading contribution, we ap-
proximate xt to the lowest order in ω, κ̃γ xt ≈ √

2μω1/2, and

V (x) ≈ γ 2( 1
μ

− κ̃2γ 2

2μ3 x2). Since the integration limits depend
on ω we have that an expansion in terms of x is in effect one
in x ∼ √

ω. Neglecting terms of the order O(ωx2) = O(ω2),
we arrive at

K ≈ 2
√

2

κ

∫ √
2μω

−√
2μω

√
ω

μ
− x2

2μ2
dx

= 4ω

κ

∫ 1

−1

√
1 − y2dy = 2πω

κ
, (E18)

The leading order of the transmission coefficient is thus
given by

Tcont = 1

1 + e
2πω
κ

. (E19)

Higher order corrections to (E18) can be computed by includ-
ing higher order terms in the ω expansions for xt and V (x).
For example, up to order ω3 we have

K ≈ 2πω

κ

(
1 +

(
γ

16μ
+ μ

2γ

)
ω

γ

)
, (E20)

We observe that the above correction does not agree with the
transmission coefficient calculated from the numerical solu-
tion of (E1). Inspired by the form of the discrete solutions for
|n| < |nt |, and the result of Kemble [44] for the continuous
case, we propose that

K = 2

a

∫ x2

x1

acoshB(x)dx, (E21)

i.e., replacing
√

2(1 − B(x)) by acoshB(x), will provide a
more accurate result for the observed transmission coefficient
compared to the continuum approximation (E16). Using dif-
ferentiation under the integral sign, we find for (E21) that

dK

dω
= 2π

κ̂

1√
γ 2 + μ2 − (μ + ω)2

, (E22)

which already indicates that K ≈ 2π
κ

ω + O(ω2), reproducing
the leading order term in (E18). Integrating the above expres-
sion gives

K = 2π

κ̂

(
atan

μ + ω√
γ 2 + μ2 − (μ + ω)2

− atan
μ

γ

)
, (E23)

where we set the integration constant to −atanμ/γ since the
original integral for K is trivially zero for ω = 0. For small ω,
Eq. (E23) becomes

K = 2π

κ̂

(
ω

γ
+ μ

2γ

ω2

γ 2

)
= 2πω

κ

(
1 + μ

2γ

ω

γ

)
, (E24)

highlighting the difference with (E20).
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edited by J. Bičák and T. Ledvinka (Springer International
Publishing, Cham, 2014), pp. 91–110.

[9] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh,
and G. A. Lawrence, Measurement of stimulated Hawking
emission in an analogue system, Phys. Rev. Lett. 106, 021302
(2011).

[10] T. A. Jacobson and G. E. Volovik, Event horizons and ergore-
gions in 3He, Phys. Rev. D 58, 064021 (1998).

[11] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Hawk-
ing radiation from an acoustic black hole on an ion ring, Phys.
Rev. Lett. 104, 250403 (2010).

[12] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic black
holes in dilute Bose-Einstein condensates, Phys. Rev. A 63,
023611 (2001).

[13] J. Steinhauer, Observation of quantum Hawking radiation and
its entanglement in an analogue black hole, Nat. Phys. 12, 959
(2016).

[14] T. Jacobson, Black-hole evaporation and ultrashort distances,
Phys. Rev. D 44, 1731 (1991).

[15] W. G. Unruh, Sonic analogue of black holes and the effects of
high frequencies on black hole evaporation, Phys. Rev. D 51,
2827 (1995).

[16] R. Brout, S. Massar, R. Parentani, and P. Spindel, Hawking
radiation without trans-Planckian frequencies, Phys. Rev. D 52,
4559 (1995).

[17] T. Jacobson, On the origin of the outgoing black hole modes,
Phys. Rev. D 53, 7082 (1996).

[18] S. Corley, Computing the spectrum of black hole radiation in
the presence of high frequency dispersion: An analytical ap-
proach, Phys. Rev. D 57, 6280 (1998).

[19] S. Corley and T. Jacobson, Lattice black holes, Phys. Rev. D 57,
6269 (1998).

[20] T. Jacobson and D. Mattingly, Hawking radiation on a falling
lattice, Phys. Rev. D 61, 024017 (1999).

[21] W. G. Unruh and R. Schützhold, Universality of the Hawking
effect, Phys. Rev. D 71, 024028 (2005).

[22] R. Schützhold and W. G. Unruh, Origin of the particles in black
hole evaporation, Phys. Rev. D 78, 041504(R) (2008).

[23] J. Macher and R. Parentani, Black-hole radiation in Bose-
Einstein condensates, Phys. Rev. A 80, 043601 (2009).

[24] A. Coutant, R. Parentani, and S. Finazzi, Black hole radiation
with short distance dispersion, an analytical s-matrix approach,
Phys. Rev. D 85, 024021 (2012).
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