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Oscillating edge states in polariton topological insulators
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We show that slow time-periodic variation of the external magnetic field applied to a polariton topological
insulator based on a honeycomb array of microcavity pillars with pronounced TE-TM splitting results in
oscillations of the edge states along the boundary of the insulator accompanied by slow transverse drift of the
center of mass of the edge state along the boundary. The oscillations and drift are due to time-periodic variation
of the sign of the instantaneous group velocity of the edge state with selected central Bloch momentum triggered
by the variation of the Zeeman splitting in the external magnetic field. These oscillations are also accompanied
by periodic exchange of norm between two polarization components of the edge state. Oscillating edge states
survive despite the fact that the magnetic field periodically vanishes resulting in closure of the topological gap
in the instantaneous spectrum of the system. The direction of the drift and amplitude of oscillations of the edge
state strongly and nonmonotonically depend on its initial central Bloch momentum.
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I. INTRODUCTION

Topological insulators are novel physical materials demon-
strating properties sharply contrasting with properties of
conventional insulators. While in their bulk topological in-
sulators are characterized by the presence of the forbidden
gap, at the same time they support at their edges’ local-
ized states protected by the very topology of the system
that cannot be destroyed without closing the topological gap
that makes them highly robust. Such unique properties of
topological insulators have attracted huge interest in diverse
areas of physics and particularly in photonics (see recent re-
views [1–3], and references therein). Unidirectional photonic
edge states in systems with broken time-reversal symmetry
were observed in gyromagnetic photonic crystals [4]; arrays
of coupled resonators [5]; in Floquet topological insulators,
where nontrivial topological phases emerge due to modula-
tion of system parameters in time [6,7]; and in many other
systems. They were also predicted theoretically [8–12] and re-
alized experimentally [13] in structured microcavities, where
strong photon-exciton coupling leads to the formation of
part-light part-matter polariton quasiparticles. Due to their
excitonic component, such quasiparticles are sensitive to an
external magnetic field. In this system a nontrivial topolog-
ical phase in specially patterned microcavity emerges in the
presence of TE-TM splitting of cavity modes (emulating spin-
orbit coupling) and constant external magnetic field, whose
sign determines the circulation direction of the unidirectional
topological edge states. Rich inherent nonlinear interactions
between polaritons with different polarizations allow the use
of resonant pumping to induce antichiral topological currents
in these systems [14]. Such currents can also be created by
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applying sublattice-dependent Zeeman splitting to polariton
condensates with spin-orbit coupling [15]. In general, the
combination of the effects of TE-TM splitting and external
magnetic fields allows one to implement interesting topolog-
ical spin-filtering schemes with polaritons [16]. More details
on implementation of topological insulators in polariton mi-
crocavity systems can be found in a recent review [17].

Additional opportunities for control of the evolution dy-
namics of excitations in topological systems arise when
underlying topological potential landscapes are additionally
modulated in evolution variables (such as time in polari-
tonic systems or propagation distance in photonic ones). Such
modulations bring a host of nontrivial dynamical phenomena
even in trivial lattices, among which one can mention dy-
namic localization, inhibition of tunneling, rectification, and
controllable reshaping of the wave packets [18]. In polari-
tonic systems temporal modulations of the potential energy
landscape in a microcavity can be used to control the group
velocity of the edge states [19]; they induce resonant edge
state switching [20] or Rabi-like oscillations [21]. In ad-
dition, inclusion of the transverse potential gradient along
the edge of a polariton topological insulator induces anoma-
lous Bloch oscillations upon which the wave packet can
move in the direction transverse to the gradient [22]. Even
temporal modulations of a nonresonant pump in polariton
systems may allow the excitation of different self-sustained
stationary or dynamically evolving structures in the same
microcavity [23].

Nontrivial topological phases can also be induced by spa-
tially inhomogeneous magnetic fields, as demonstrated in
atomic systems. Such fields may create a new type of Zeeman
lattice, in which potential maxima for one spin component
coincide with potential minima in other component [24].
Under the action of spin-orbit coupling truncated Zeeman
lattices support topological edge states [25] and may allow the
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formation of topological Bragg solitons [26]. Nevertheless,
the behavior of unidirectional topological edge states under
time-periodic variations of the magnetic field was not studied
neither in atomic, nor in polaritonic systems.

In this work, we study an unusual regime of evolution
of the edge states in polariton topological insulators. We
show that periodic variation of the external magnetic field
induces oscillations of the edge states that are accompanied
by unexpected linear drift of the center of mass of the state
along the edge, whose rate is determined by the initial Bloch
momentum. In the course of such oscillations, the edge states
remain bound to one edge and survive despite the fact that the
magnetic field periodically vanishes. Notice that in contrast
to topological Floquet systems with sufficiently fast temporal
variations of parameters—where edge states emerge, namely,
due to such temporal variations [27]—here we consider very
slow, adiabatic variation of the Zeeman splitting under the ac-
tion of a time-dependent magnetic field, so edge states in our
case follow adiabatic variations of parameters of the system.

II. MODEL

We describe the evolution of polaritons in a structured
microcavity using normalized coupled Schrödinger equations
for spin-positive (ψ+) and spin-negative (ψ−) components of
the polariton wave function written in a circular polarization
basis [11]:

i
∂ψ±
∂t

= −1

2
�ψ± +β(∂x ∓ i∂y)2ψ∓ ± �(t )ψ±

+ R(x, y)ψ±, (1)

where � = ∂2
x + ∂2

y , x, y are scaled to x0 = 1 µm transverse
coordinates, t is the scaled evolution time, the parameter β

characterizes spin-orbit coupling strength, and Zeeman split-
ting in a time-periodic external magnetic field is described by
�(t ) = �0 cos(ωt ) with amplitude �0 and frequency ω. The
potential energy landscape describing a honeycomb ribbon
with zigzag-zigzag edges in a structured microcavity is set by
R(x, y) = −p

∑
m,n e−[(x−xm )2+(y−yn )2]/d2

, where p is the po-
tential depth and d = 0.4 is the width of pillars located in the
nodes (xm, yn) of the honeycomb grid with spacing a = 1.4
between nodes [see Fig. 1(a) for the −R profile]. All en-
ergy parameters (such as the potential depth and the Zeeman
splitting amplitude) are scaled to ε0 = h̄2/mx2

0 ≈ 0.35 meV,
where m ∼ 10−34 kg is the effective polariton mass; evolution
time is scaled to t0 = h̄ε−1

0 ≈ 1.9 ps. Potential depth p = 8
corresponds to ∼2.8 meV. The frequency ω ∼ 10−3 − 10−2

is selected to guarantee adiabatic evolution. Furthermore we
set β = 0.3 and �0 = 0.8.

We do not take into account in model (1) the intrinsic losses
in the polariton microcavity because the very existence of the
edge states in such systems is not connected with losses, and
because such losses can be compensated by a suitable external
pump [28,29]. Although in experiments such a pump may act
differently on edge and bulk states, leading to potential differ-
ences in absorption/gain for different parts of the wave packet
that may slightly impact its evolution dynamics, in modern

FIG. 1. Energy-momentum diagram under constant Zeeman
splitting � = +�0 (a) and � = −�0 (b). Green (red) lines corre-
spond to unidirectional topological edge states localized at the left
(right) boundary of the potential. Examples of modulus distributions
of component ψ+ (ψ−) denoted by green spheres in (a,b) at k = 0.4K
are displayed in top (bottom) row of each right panel. In all cases
β = 0.3.

samples with sufficiently long polariton lifetimes [17] one
should be able to observe at least one period of oscillations
described below.

III. RESULTS AND DISCUSSION

In the case when an external magnetic field is constant and
does not change with time, the Bloch eigenmodes of Eq. (1)
can be obtained as ψ±(x, y) = ϕ±(x, y)eiky−iε(k)t , where ε(k)
is the energy; k is the Bloch momentum along the y axis in
the first Brillouin zone of width K = 2π/Y , where Y = 31/2a
is the y period of structure; and ϕ±(x, y) = ϕ±(x, y + Y ), i.e.,
zero (periodic) boundary conditions are applied here in the x
(y) direction in the calculation. The dependence of energy ε on
momentum k is presented in Figs. 1(a) and 1(b) for two oppo-
site values of the Zeeman splitting, � = +�0 and � = −�0.
Only the two lowest bands in the spectrum are shown. The
green (red) branches denote the edge states residing at the left
(right) edges of the array. One can see that the inversion of
the sign of the magnetic field does not change the spectrum
qualitatively except for the fact that the states residing on
a given edge of the structure correspond to branches with
opposite slopes for opposite � values. The profiles of the edge
states from the left edge corresponding to the same value of
the Bloch momentum k are also presented in Figs. 1(a) and
1(b). One can see that edge states from the same edge have
different dominating components: while at positive � the ψ−
component clearly dominates (has larger amplitude and norm)
over the ψ+ one, the situation is reversed for negative �, when
the ψ+ component becomes dominant. Since in the process of
periodic adiabatic variation of � the state remains predomi-
nantly near the same edge (see discussion of dynamics below),
one may assume that the variation of � will be accompanied
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FIG. 2. Top row shows two periods of −R landscape with
zigzag-zigzag edges. The second to the sixth rows show examples of
modulus distributions in |ψ+| (a) and |ψ−| (b) components of edge
states with k = 0.4K formally corresponding to the green stars in
Figs. 3(a)–3(c) and 3(e), 3(f).

by the exchange of norm between the ψ+ and ψ− components
in the edge state.

Due to slow adiabatic variation of the external magnetic
field �(t ) one can assume that instantaneous spectra of the
system calculated in different moments of time t may ex-
plain the main features of the dynamical evolution of the
edge states. The instantaneous eigenmodes of the ribbon with

zigzag-zigzag edges depicted in Fig. 2(a) were calculated for
different values of � corresponding to different characteris-
tic moments of time t . Instantaneous spectra calculated at
different moments of time t within one period T = 2π/ω

of oscillation of the magnetic field are presented in Fig. 3.
Only the two lowest bands are shown. As before, green (red)
branches represent topological edge states localized at the left
(right) edge of the ribbon, blue branches correspond to trivial
edge states, and black curves correspond to bulk modes. When
magnetic field is sufficiently strong the topological gap is
wide that guarantees confinement of the mode near the given
edge. When the magnetic field �(t ) vanishes at t = T/4 and
3T/4 the gap closes and the topological edge states [green
and red stars in Fig. 3(a)] transform into nontopological ones
[blue stars in Figs. 3(c) and 3(i)], accompanied by corre-
sponding transformation of modal shapes, examples of which
at k = 0.4K are shown in Fig. 2. We should mention here
that in sharp contrast to the topological one, the nontopolog-
ical edge states reside simultaneously at two boundaries of
the array (see instantaneous mode at t = T/4 in Fig. 2, for
example). Even though the eigenvalue solver returns nontopo-
logical edge states with both edges being populated (because
at � = 0 time-reversal symmetry of the system is not broken),
this does not mean that upon dynamical evolution polaritons
can couple to the opposite edge—instead, they remain in the
vicinity of the excited edge at all moments of time (see Fig. 4

FIG. 3. Examples of instantaneous spectra ε(k) of the system in different moments of time. Red and green lines correspond to unidirectional
topological edge states; blue lines highlight degenerate nontopological edge states. Colored stars and spheres indicate energies of dynamically
evolving edge states obtained using Eqs. (2) and (3). |ψ±| distributions in stationary edge states formally corresponding to the green stars in
(a)–(c) and (e), (f) are displayed in Fig. 1. Here ω = 0.006.
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FIG. 4. |ψ−| distributions in different moments of time indicated
on the plots. Input states in (a)–(c) are edge states corresponding
to the green star (k = 0.4K), the green sphere (k = 0.5K), and the
red star (k = 0.6K) in Fig. 3(a) with a wide Gaussian envelope.
Yellow dashed line highlights linear drift calculated using edge state
positions at t = nT/2.

with dynamics below). Variation of the magnetic field leads to
time-periodic variation of magnitude and sign of the group
velocity ∂ε/∂k of the edge states at a given edge (red and
green branches reverse their order in the moments t = T/4
and 3T/4); thus one can expect that the propagation direction
of such states will change with time. Spectra at two specific
moments of time, when edge states at k = 0.4K and k = 0.6K
change their propagation direction—since at these moments
and for these momentum values ∂ε/∂k becomes zero—are
shown in Figs. 3(d) and 3(h). It should be also mentioned
that while spectra in time moments symmetric with respect to
t = T/4 or 3T/4 look qualitatively similar (compare spectra
at t = T/8 and t = 3T/8) the relative strengths of ψ+ and ψ−

spin components in edge state residing at a given boundary
notably change (thus, ψ− component dominates at t < T/4,
while ψ+ component dominates at t > T/4), indicating on
the fact that variation of the magnetic field also causes pe-
riodic exchange of norm between spin components, as was
suggested upon discussion of Fig. 1.

To study the dynamics of the edge states under a
time-periodic magnetic field we now launch into the sys-
tem the states calculated at t = 0 with a wide envelope,
ψ±(x, y)|t=0 = A(y)ϕ±(x, y)eiky, where A(y) = e−y2/w2

d and
wd = 30. Figure 4 shows the evolution dynamics for three
different Bloch momenta. The dynamics depicted in Fig. 4 re-
veals steady oscillations of the edge states in accordance with
dynamically varying group velocity ∂ε/∂k in a time-periodic
magnetic field that is, however, accompanied by unexpected
linear drift of the center of mass of the edge state, when it
is calculated in time moments t = nT/2 (see dashed yellow
lines indicating the direction of the drift). Notice that the rate
of this drift is substantially smaller than the group velocity
that this edge state would have in the presence of a constant
magnetic field � ≡ �0. In all cases, the edge state remains in
the vicinity of the left edge, where it was launched, and does
not transform into nontopological edge states or diffract into
the bulk, even in the time moments when the magnetic field
vanishes. For example, the state at k = 0.4K initially moves
in the positive direction of the y axis, since its group velocity
∂ε/∂k > 0. Beyond t = T/4, when group velocity becomes
negative the state starts moving in the negative direction of
the y axis. The next reversal of propagation direction occurs
around t = 3T/4, when the magnetic field again changes its
sign. Remarkably, the direction of the average drift of the edge
state depends on the initial Bloch momentum: it is opposite
for k = 0.4K and k = 0.6K , while for k = 0.5K the drift is
absent. The edge state also slowly diffracts along the y axis
(compare |ψ−| distributions at t = 0 and t = 2T ), with the
diffraction rate determined by the average dispersion ∂2ε/∂k2.
Notice that while simulations presented here are based on a
sufficiently narrow ribbon with four honeycomb cells in the x
direction (see Fig. 2), we checked that persistent oscillations
can also be observed in much wider structures containing up
to 24 cells in the x direction.

To characterize oscillations in Fig. 4 we calculate the center
of mass position yc for the edge state and its instantaneous
energy εt ,

yc = N−1
∫∫

y�†
t �t dxdy,

(2)

εt = (i/dt ) ln

[∫∫
�†

t �t+dt dxdy

]
,

where we introduced the spinor wave function �t =
(ψ+, ψ−)T at time moment t , N = ∫∫

�
†
t �t dxdy is the total

norm normalized to 1 for �t=0, and dt is the time step in the
modeling of the evolution. Calculation of projections,

Pk′ =
∫∫

�†
t �t=0,k′dxdy, (3)

of the evolving polariton wave function �t corresponding to
the input edge state with momentum k on all eigenmodes
�t=0,k′ of the system with various momenta k′ clearly shows
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FIG. 5. Center of mass of the wave packet yc (a), norms of two polarization components (b), and instantaneous energy (c) versus time for
k = 0.4K , 0.5K , and 0.6K . Colored symbols in (a), (b) correspond to the time moments t = nT/2, n = 0, . . . , 6.

that the central momentum of the state is conserved upon
evolution in a time-periodic magnetic field. Taking into ac-
count this fact, calculated instantaneous energy εt allows us
to trace the location of the evolving wave packet �t in the
instantaneous energy spectrum ε(k) depicted in Fig. 3 (see,
for example, the green and red stars showing the spectral
positions of the evolving wave packets from Figs. 4(a) and
4(c)]. The dependencies yc(t ) and εt (t ) are presented in Fig. 5.
Their inspection in conjunction with the spectrum in Fig. 3
reveals that the wave packet at k = 0.4K acquires zero group
velocity ∂ε/∂k slightly after t = T/4 and before t = 3T/4
[see the blue stars on the left in Figs. 3(c) and 2(i)]; therefore
∂ε/∂k remains positive over a larger time interval on one
period T . The opposite happens for the wave packet with
k = 0.6K that has negative velocity during a larger time inter-
val. Namely, this is the reason for the opposite drift directions
of these edge states because they move with positive and
negative group velocities on slightly different time intervals
within one period. In contrast, for a state with k = 0.5K the
group velocity becomes zero exactly in the time moments
t = T/4 or 3T/4, so that its velocity acquires positive and
negative values on exactly equal time intervals, and no net
drift is observed. Figure 5(b) reveals exactly periodic evo-
lution of energy of the edge states; it also shows that there
is a periodic exchange of norm between two polarization
components. Figure 5(a) allows us to calculate the amplitude
of oscillations Ay = max(yc) − min(yc) of the edge state and
its shift Sy over one period T . They both monotonically de-
crease with increase of modulation frequency ω [Figs. 6(a)
and 6(b)]. At the same time, Sy is a nonmonotonic function of
momentum k [Fig. 6(c)] reaching maximal values sufficiently
far from k = 0.5K . Instead, the amplitude of oscillations is
maximal at k = 0.5K and it decreases away from this point
[Fig. 6(d)].

As one can see from Fig. 5, for small frequencies ω ∼
0.006 of variation of the magnetic field, the amplitude of
wave packet oscillations practically does not change with time
(i.e., it is the same for subsequent oscillation periods). In
this regime, no radiation is visible from the wave packet—
its oscillations are persistent and it only broadens slowly
in space due to dispersion. Nevertheless, radiation becomes

FIG. 6. (a), (b) Shift and amplitude of y oscillations of the edge
states as a function of ω for k = 0.4K . (c), (d) Shift and amplitude
of oscillations as a function of momentum k for fixed frequency
ω = 0.006.
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visible for frequencies ω > 0.02 where it starts affecting yc(t )
dependencies.

IV. CONCLUSIONS

In conclusion, we have reported on unusual oscillations
of the topological edge states arising from a time-periodic
magnetic field; the oscillations are accompanied by linear drift
of the edge state along the edge that can be controlled by
its momentum, which significantly affects the direction and
the magnitude of the drift. These oscillations survive even
though the magnetic field periodically vanishes. The scheme
suggested here offers intriguing opportunities for control of

excitation dynamics in topological systems with variable pa-
rameters that are slowly varying in evolution, and it can be
potentially extended also to spinor atomic systems.
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