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Quantum signal processing (QSP) has emerged as a promising framework to manipulate and determine
properties of quantum systems. QSP not only unifies most existing quantum algorithms but also provides tools
to discover new ones. Quantum signal processing is applicable to single-qubit or multiqubit systems that can be
“qubitized” so one can exploit the SU(2) structure of system evolution within special invariant two-dimensional
subspaces. In the context of quantum algorithms, this SU(2) structure is artificially imposed on the system
through highly nonlocal evolution operators that are difficult to implement on near-term quantum devices. In
this work, we propose QSP protocols for the infinite-dimensional Onsager Lie algebra, which is relevant to the
physical dynamics of quantum devices that can simulate the transverse-field Ising model. To this end, we consider
QSP sequences in the Heisenberg picture, allowing us to exploit the emergent SU(2) structure in momentum
space and “synthesize” QSP sequences for the Onsager algebra. Our results demonstrate a concrete connection
between QSP techniques and noisy intermediate scale quantum protocols. We provide examples and applications
of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation to
quantum control.
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I. INTRODUCTION

Originally inspired by composite pulse sequences in nu-
clear magnetic resonance (NMR), quantum signal processing
(QSP) has emerged as a framework to unify existing quantum
algorithms and discover new ones using well-developed tools
from functional analysis [1–4]. QSP is a successful framework
for precisely controlling the evolution of quantum systems
when one is given repeatable access to basic quantum pro-
cesses (unitary evolutions). The iterative structure of QSP
appears in many contexts, and suggests the applicability of
similar ideas to improve understanding of control protocols
in many-body quantum systems. Indeed, most explorations
into the nonequilibrium behavior of condensed matter systems
[5,6], including those studying quantum annealing [7–13],
discrete time crystals [14–17], and space-time dual quantum
circuits [18–22], rely on the fact that the dynamics depend
on iterated processes. If this structural similarity is sufficient
to import QSP techniques and precisely control many-body
quantum systems currently realized in experiments [23], we
can expand both our understanding of nonequilibrium dynam-
ics and our capacity to control and manipulate the quantum
systems.

The application of QSP protocols in current experimental
platforms is difficult as conventional circuit instantiations
of QSP protocols rely on highly nonlocal unitaries that are
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difficult to implement in noisy intermediate scale quantum
(NISQ) devices. QSP and its multiqubit extension, quantum
singular value transformation (QSVT) [24], rely on strong
conditions known as qubitization [2,25], which ensure
that the dynamics of the system can be described as a
direct sum of two-dimensional subspaces whose dynamics
are summarizable in terms of SU(2) operations. The two
conventional methods to impose such a structure rely on the
use of highly nonlocal interactions [26]. In the first method,
qubitization [2,25] can be imposed on the dynamics by
implementing a highly nonlocal partial reflection operation
acting on the whole system. In the second method, one
uses nonlocal interactions between the system and a single
ancilla to condition the dynamics of the system on the
ancilla. Then, the tensor product structure can be used to
endow the overall dynamics with the desired behavior. More
recently, Refs. [23,27] propose more natural implementations
of QSP protocols. However, these restricted protocols still
rely on highly nonlocal interactions between the system and
a single ancillary qubit. Hence, whether the qubitization
conditions can be satisfied for the dynamics of an extended
system evolving under local dynamics will determine the
applicability of QSP to the study of near-term many-body
quantum systems. Moreover, there are mathematical
challenges in trying to use QSP for multiqubit systems that are
not qubitized and for other Lie groups beyond SU(2). Recent
efforts in this direction are the development QSP algorithms
for continuous variables described by the SU(1,1) Lie group
[28], QSP over SU(n) [29], and hybrid qubit-oscillator
algebras [30]. Most importantly, QSP is a framework built in
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the context of finite-dimensional vector spaces. Consequently,
the validity of applying similar techniques to the analysis
of infinite-dimensional systems is not obvious. We show
below that this condition requires us to either simplify
how we represent these systems (by identifying underlying
symmetries) or substantially alter the basic structure of QSP.

In this paper we apply QSP-inspired techniques to the one-
dimensional quantum transverse-field Ising model (TFIM), a
condensed matter system which is of general theoretical in-
terest from quantum annealing [7] to space-time dual circuits
[18,21], and one that is routinely realized experimentally in
diverse NISQ platforms [31,32]. We define QSP sequences for
the Onsager algebra [33–36]. This is an infinite-dimensional
Lie algebra underlying the solution of the Ising model that
shares some basic traits with the su(2) algebra undergird-
ing conventional QSP. We further determine the conditions
under which repeated access to unitary evolutions induced
by Hamiltonian terms of the TFIM allows one to implement
generic QSP protocols. Lastly, we highlight the power of the
proposed QSP sequences by applying them to a wide range
of scenarios of current interest, ranging from space-time dual
quantum circuits and Hamiltonian engineering to composite
pulse sequences in spin systems.

To achieve these results, we rely on two core ingredients.
First, we use a Jordan-Wigner mapping [37] between the
TFIM and a noninteracting fermionic model [38]. Because
TFIM is integrable, the associated fermionic Hamiltonian is
a quadratic form in terms of fermionic ladder operators in
each momentum sector. Second, unlike the conventional QSP
approach that is interested in state evolution, we consider the
action of the Hamiltonian evolution operator on the fermionic
ladder operators in the Heisenberg picture. The terms in the
TFIM Hamiltonian generate SU(2)-like transformations of
fermionic operators. These transformations are then cascaded
into QSP-like iterative protocols, defined by a set of param-
eters each assigned for one iteration. We then identify the
special points in the parameter space for which the evolution
is as expressible as standard QSP acting on the space of
fermionic operators.

QSP and its related algorithms are far more flexible than
initially considered. Under specially tuned conditions, the
evolution of many complex condensed matter systems is suc-
cinctly described and controlled by methods that are quite
similar to QSP, even when they are evolving under local
dynamics. The QSP methodology brings unique insights into
our understanding of the dynamics of quantum systems and
allows us to design control sequences to improve the per-
formance of near-term quantum devices. We discuss the
application of QSP methods to dual quantum circuits [18–22],
which could be used to define QSP sequences in hybrid
quantum circuits composed of unitary operations and mea-
surements[21]. Moreover, we show that the proposed QSP
sequences can be used to control the dynamics of single-
particle fermionic excitations by engineering their dispersion
relation. Similarly, we can use this ability to engineer the
single-particle dispersion relation to simulate various spin
Hamiltonians which correspond to noninteracting fermionic
Hamiltonians.

Our results point towards further challenges for QSP to
subsume, as well as avenues toward the utility of QSP

protocols in describing locally interacting multiqubit systems.
Unlike in the standard case, QSP in the Heisenberg picture
can be easily extended to the nonunitary evolution of the
fermionic operators by using the space-time duality [18–22].
Additionally, QSP-like sequences of SU(2) transformations
will allow us to design control sequences for a wider range of
experimental scenarios and to strengthen our understanding of
iteratively evolved quantum mechanical systems.

The structure of our paper is as follows. In Sec. II we
provide a brief summary of conventional QSP using SU(2)
operations. In Sec. III we introduce the Onsager Lie algebra
and Kramers-Wannier duality, and define the QSP sequences
terms of the “seed operators” of this Lie algebra. In Sec. IV
we discuss the intimate relation between Onsager algebra and
the Ising model and discuss the physical implementation of
QSP in terms of single- and two-qubit operations. In Sec. V
we demonstrate that after a Jordan-Wigner transformation, we
can obtain simple QSP sequences for fermionic operators in
the Heisenberg picture when we work in momentum space.
We also discuss the expressivity of QSP in the Heisenberg
picture. In addition, in Sec. VI we provide specific examples
of QSP sequences using Onsager algebra in the context of
space-time dual quantum systems, Hamiltonian engineering,
and composite pulse sequences in spin chains. Lastly, we
provide concluding remarks and an outlook in Sec. VII.

II. QUANTUM SIGNAL PROCESSING (QSP) REVISITED

In nuclear magnetic resonance (NMR) there exist many
composite pulse techniques designed to achieve specific goals,
such as the precise control of the dynamics of quantum sys-
tems [39–43] and the reduction of noise. One can think of
a sequence of parametrized unitary operations, in analogy to
how they are used in NMR, as a means to calculate a response
function. Recently, quantum signal processing (QSP) has
emerged as general theory of composite pulse sequences, and
has proven itself as a versatile approach to design quantum
circuits, ultimately permitting the unification and simplifi-
cation of most of the known quantum algorithms [1,2]. In
the language of QSP, a sequence of unitaries allows one to
process an unknown signal encoded in said unitaries, such
that measurement results can depend on said signal in highly
nonlinear, near-arbitrary ways [2].

We briefly summarize the major takeaways of QSP in terms
of the su(2) algebra by first defining the signal operator [2]

Ŵ (x) = ei δ
2 X =

[
x i

√
1 − x2

i
√

1 − x2 x

]
, (1)

where δ = −2 cos−1 x with x ∈ [−1, 1] while X,Y, Z are
Pauli matrices generating the su(2) Lie algebra. The signal
δ is processed through a sequence of rotations that do not
commute with the signal operator, defined by

Ŝ(φl ) = eiφl Z . (2)

If the sequence contains d + 1 rotations used to process the
signal, it is convenient to organize the angles into a vec-
tor �φ = (φ0, φ1, . . . , φd ). A theorem of QSP establishes that
given QSP sequence parametrization Û �φ induces a polynomial
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transformation of x as follows:

Û �φ = eiφ0Z
d∏

r=1

Ŵ (x)eiφr Z

=
[

P(x) iQ(x)
√

1 − x2

iQ∗(x)
√

1 − x2 P∗(x)

]
. (3)

Further, there is a sequence of rotations �φ for any polynomials
P(x) and Q(x) satisfying mild requirements [2] on parity and
norm. The cornerstone of this result is that, given function one
wishes to apply to x, there exists an efficiently computable
sequence of angles �φ encoding a polynomial approximation
of it [43].

In its original form [2], this theorem was defined consider-
ing the structure of the su(2) algebra [X,Y ] = 2iZ, [Y, Z] =
2iX, and [Z, X ] = 2iY which is finite dimensional and gener-
ates both the signal and signal-processing operators belonging
to the compact group SU(2). The simple form of the QSP
operation sequence Û �φ is possible due to well-known proper-

ties of the Pauli matrices, e.g., X 2 = Y 2 = Z2 = 1̂. Previous
works mostly use qubitization to obtain QSP sequences in a
many-qubit system by exploiting the SU(2) dynamics within
two-dimensional invariant subspaces [2,25]. However, this
procedure either requires controlled versions of n-qubit uni-
taries (requiring extra ancillas) or evolutions generated by
n-qubit reflection operators (which have to be highly nonlo-
cal). Hence, it is desirable to find QSP-like schemes that are
easy to implement with local interactions.

The question we want to answer in this work is whether
QSP sequences can be defined in infinite-dimensional Lie
algebras [44] such as the Kac-Moody [45,46] or the Virasoro
algebra in conformal field theory [47,48]. These algebras play
an important role in diverse fields ranging from low-energy
regimes (low temperatures and long-wavelength excitations)
in condensed matter physics [49,50] to high-energy physics
[51] and string theory [52].

For concreteness, in this work, we focus on the Onsager
algebra appearing in the Ising model, which is an infinite-
dimensional algebra of importance in statistical physics and
the study of critical phenomena [33–36]. For instance, this
algebra has representations as transfer matrices of the classical
two-dimensional (2D) Ising model [33]. In the next section,
we briefly summarize the basic aspects of the Onsager algebra
and provide its representation in terms of the quantum Ising
model [38].

III. QSP WITH THE ONSAGER LIE ALGEBRA

In the previous section, we discussed how QSP de-
pends on the su(2) algebra. In this section, we explore an
infinite-dimensional algebra known as the Onsager algebra
[33,35,36], widely used in statistical physics and theory of
integrability [35,36]. The Onsager algebra is defined in terms
of operators Ân and Ĝn, which are recursively generated from
“seed” operators Â0 and Â1 via the following relations:

[Ân, Â0] = 4Gn,

[Ĝ1, Ân] = 2(Ân+1 − Ân−1). (4)

From these relations it is possible to build the complete struc-
ture of the algebra as follows:

[Ân, Âm] = 4Ĝn−m,

[Ĝn, Âm] = 2(Âm+n − Âm−n),

[Ĝn, Ĝm] = 0, (5)

where Ĝ−n = −Ĝn. An important aspect of this algebra is that
the “seed” operators should satisfy the so-called Dolan-Grady
conditions [36]

[Â0, [Â0, [Â0, Â1]]] = 16[Â0, Â1],

[Â1, [Â1, [Â1, Â0]]] = 16[Â1, Â0]. (6)

These relations reveal a fundamental symmetry of statistical
mechanics known as the Kramers-Wannier duality [53–55],
which is related to the theory of the two-dimensional Ising
model and the one-dimensional quantum Ising model in a
transverse field. More specifically, the duality means that we
can get an equivalent theory by exchanging the “seeds” of the
algebra as follows: Â0 → Â1 and Â1 → Â0.

Before discussing any particular representation of the On-
sager algebra, let us explore the feasibility of defining a QSP
sequence using the generators Ân, as they are the fundamental
units used to build the full algebra. As the algebra is con-
structed in a recursive fashion, it is reasonable to define a
QSP using the exponential map exp : G→ G, allowing one
to map a Lie algebra G to a corresponding Lie group [56].
From now on, we will assume the existence of an infinite-
dimensional unitary representation of the group G associated
to the Onsager algebra.

Inspired by the definition of QSP in the case of a single
qubit, we define here the signal operator

Ŵ O(θ ) = exp(iθ Â1). (7)

Correspondingly, let us also define the signal-processing uni-
tary operator

ŜO(φr ) = exp(iφrÂ0). (8)

Considering the combined action of these two operators, we
can define a QSP variant in terms of Onsager generators:

Û O
�φ (θ ) = ŜO(φ0)

d∏
r=1

Ŵ O(θ )ŜO(φr ). (9)

Furthermore, in contrast to previous works in QSP, the
Dolan-Grady conditions [34–36] allow us to build a “dual
Onsager QSP” sequence

Û DO
�φ (θ ) = ŜDO(φ0)

d∏
r=1

Ŵ DO(θ )ŜDO(φr ) (10)

by exchanging Â0 → Â1 and Â1 → Â0 in Eq. (9). Here,
Ŵ DO(θ ) and ŜDO(φr ) are the dual signal and signal-processing
operators.

Although the nature of the Onsanger algebra is fundamen-
tally different from that of su(2) in standard QSP, this modified
QSP sequence still exploits the noncommuting character of
the “seed” operators to build up a nontrivial set of physi-
cal operations. We can consider a spin representation of the
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Onsager algebra [36] with “seed” operators Â0 = ∑N
j=1 Zj

and Â1 = ∑N
j=1 XjXj+1 where Xj,Yj, Zj are Pauli matrices

at a given site j with periodic boundary conditions XN+1 =
X1,YN+1 = Y1, and ZN+1 = Z1. In this case, we can explicitly
see the nontrivial character of the duality that maps product
states (eigenstates of

∑N
j=1 Zj) to maximally entangled states

(eigenstates of Â1 = ∑N
j=1 XjXj+1).

IV. THE ONSAGER LIE ALGEBRA AND THE
ONE-DIMENSIONAL QUANTUM ISING

MODEL IN A TRANSVERSE FIELD

To implement a many-body version of quantum signal pro-
cessing, one needs to build a discrete sequence of physical
operations that can be interpreted as a program to calculate
a desired function. As such to build a discrete sequence of
operations in a many-body system, we focus here on a time-
dependent one-dimensional quantum Ising model [38]

Ĥ (t ) = −h̄g(t )
N∑

j=1

Zj − h̄J (t )
N∑

j=1

XjXj+1, (11)

where g(t ) is a global time-dependent transverse field while
J (t ) is a time-dependent interaction strength. At this stage it
is important to emphasize that our approach requires some
knowledge of g(t ) and J (t ) and in terms of a particular im-
plementation, it requires controllability of these parameters.
Recent experiments [31,32] demonstrate the high degree of
control of the parameters g(t ) and J (t ) using arrays of super-
conducting qubits. In this way, we can build discrete single-
and two-qubit operations by modulating the parameters gj (t )
and J (t ), respectively.

The crucial point of the theory of the quantum Ising model
is that the Hamiltonian (11) is an integrable model built in
terms of generators of the Onsager algebra [36].

With these elements at hand, we can define a many-body
QSP sequence as follows:

Û �φ (θ ) = eiφ0
∑N

j=1 Z j

d∏
r=1

eiθ
∑N

j=1 Xj Xj+1 eiφr
∑N

j=1 Z j . (12)

Now that we have established the relation between the Ising
model and the Onsager algebra, we can explore the physical
meaning of the duality and understand its nontrivial char-
acter. To do this, let us consider the time-independent case
g(t ) = g0 and J (t ) = J0. When the transverse-field strength is
much stronger than the spin interaction, the system is in the
paramagnetic phase. In the opposite regime, the system is in
the ferromagnetic phase, which is characterized by long-range
correlations between the spins. What the Kramers-Wannier
duality does is to exchange the role of the terms giving us
the dual Hamiltonian [55,57]

ĤD(t ) = −h̄g(t )
N∑

j=1

X̃ j X̃ j+1 − h̄J (t )
N∑

j=1

Z̃ j, (13)

where X̃ j, Ỹj, Z̃ j are Pauli matrices in the dual lattice.
Geometrically, this duality can be understood as replacing
links by nodes and nodes by links in the chain [55]. At the crit-
ical point g0 = J0, the system is self-dual, as the Hamiltonian

FIG. 1. QSP with the Ising chain and Kramers-Wannier duality.
Here (a) and (b) illustrate the Ising chain and its dual. Moreover,
(c) and (d) depict the corresponding quantum circuit to implement
the QSP sequence dependent on the Onsager algebra. Under the
duality transformation, lattice sites map to links in the dual lattice and
vice versa. The dashed lines in (a) and (b) show the links and sites
of the dual and original lattice, respectively. In terms of a practical
implementation of our ideas in NISQ devices, the lattice sites and
bonds in (a) and (b) represent the single- and two-qubit gates in
(c) and (d), respectively.

looks the same both in the original and dual representations.
This is not only a mathematical curiosity. In fact, as stated
before, the duality can be interpreted as symmetry in statistical
mechanics where the self-dual point is a quantum critical point
of the model [38]. Further, the quantum Ising chain can be
mapped to the two-dimensional classical Ising model. The
quantum critical point naturally maps to the critical temper-
ature at which the classical phase transition occurs in the
classical 2D Ising model [33,38,53].

Next, by using the Kramers-Wannier duality, we can define
the dual QSP sequence that exchanges the role of signal and
signal-processing operators

Û D
�φ (θ ) = eiφ0

∑N
j=1 X̃ j X̃ j+1

d∏
r=1

eiθ
∑N

j=1 Z̃ j eiφr
∑N

j=1 X̃ j X̃ j+1 . (14)

Although this expression looks fairly simple, it is highly non-
trivial, due to the noncommuting character of the signal and
signal-processing operators. Moreover, there is an operational
relation between the original and dual quantum circuits de-
picted in Figs. 1(c) and 1(d), which is given by

Û D
�φ (θ ) = Û †

− �φ (−θ ). (15)

Next, it is important to discuss the experimental feasibility of
our proposal. A recent experiment [31] implemented a spin-
spin interaction of the form θ

∑
j Z jZ j term and the transverse

field φ
∑

j Xj . In their experiment, they chose values of the
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parameters such that θ ∈ [0.5π, 1.5π ] and φ ∈ [−π, π ]. Our
model can be exactly mapped to the model realized experi-
mentally by using spin rotations.

Another important point that we want to emphasize is that
so far, as the Onsager algebra is infinite dimensional, the
algebraic structure of the problem is not related to the su(2)
algebra used in the case of the single-qubit QSP. In the next
section, we extend the notion of QSP sequence at the level
of the operators and then map the system to a fermionic
representation. This allows us to simplify the complexity of
the problem.

V. JORDAN-WIGNER TRANSFORMATION
AND QSP IN THE HEISENBERG PICTURE

In this section, we briefly summarize how to use tools from
the theory of the TFIM to effectively reduce the dynamics of
the model to a pseudospin representation in the Heisenberg
picture. This will enable us to work using the su(2) algebra.

One of the most interesting aspects of the one-dimensional
quantum Ising model is that it can be mapped to a system of
noninteracting fermions described by a quadratic Hamiltonian
[37,38]. The transformation that allows us to do this is a
nonlocal mapping known as the Jordan-Wigner (JW) trans-
formation [37]. By working in momentum space, one can see
that the Hamiltonian creates pairs of excitations with oppo-
site momenta, which is known as a P-wave superconductor
[58]. This effectively allows us to decompose the dynamics
in terms of independent two-level systems in the particle-hole
basis [38].

A. Bogoliubov–de Gennes Hamiltonian
and pseudospin representation

After applying the JW transformation and the discrete

Fourier transformation f̂ j = e−i π
4√

N

∑
k F̂keik j to the Ising model

in Eq. (11), we obtain a fermionic Hamiltonian [38,59]

Ĥ (t ) =
∑
k�0

�̂
†
kHk�̂k, (16)

where �̂
†
k = (F̂ †

k , F̂−k ). In Appendix A we provide a detailed
derivation of Eq. (16). The matrix representation

Hk = 2h̄[g(t ) − J (t ) cos k]σz + 2h̄J (t ) sin k σx (17)

of the fermionic quadratic form is known as the Bogoliubov–
de Gennes Hamiltonian and describes a one-dimensional
P-wave superconductor [58]. Here σx, σy, and σz are Pauli
matrices in the particle-hole basis. Importantly, as the
Hamiltonian is quadratic, the Heisenberg equations of motion
are linear and can be written in terms of the entries of the
Bogoliubov–de Gennes Hamiltonian as follows:

i
d

dt

[
F̂k

F̂ †
−k

]

=
[

2[g(t ) − J (t ) cos k] 2J (t ) sin k
2J (t ) sin k −2[g(t ) − J (t ) cos k]

]
.

[
F̂k

F̂ †
−k

]
,

(18)

which has a general solution �̂k (t ) = U k (t ) · �̂k (0), where

U k (t ) =
[
Uk (t ) V∗

k (t )
Vk (t ) U∗

k (t )

]
(19)

is a propagator for the operators in the Heisenberg picture
[59]. In Appendix B we provide a detailed explanation of the
relation between the evolution of the fermionic operators in
the Heisenberg picture and the explicit mapping to spin states
in the Schrödinger picture.

B. QSP for fermionic operators in the Heisenberg picture

At the formal level, now we can use the propagator
of the fermionic operators in Eq. (19) to do QSP in the
Heisenberg picture. The advantage that we have of working
in this framework is that we effectively reduce the problem of
the infinite-dimensional Onsager algebra to an effective su(2)
algebra in the Heisenberg picture. In fact, from the general
QSP protocol defined in Eq. (12), we can construct a QSP
protocol in the Heisenberg picture by using the Bologiubov–
de Gennes Hamiltonian in Eq. (A3) as follows:

U k, �φ (θ ) = e−2iφ0σz

d∏
r=1

e2iθ (σz cos k−σx sin k)e−2iφrσz . (20)

This iterative gate sequence resembles the conventional QSP
protocol. However, in order to use the conventional QSP
methods to design and analyze the action of the gate sequence
in the fermionic mode space, we need to identify the signal
and processing unitaries [1] associated with the proposed gate
sequence.

It is worth mentioning that the Kramers-Wannier duality
also has a representation in terms of Bologiubov–de Gennes
Hamiltonian in Eq. (A3). We can show that the dual QSP in
Eq. (14) is obtained by exchanging the order of the operations
and roles of the parameters φr and θ in Eq. (20) as follows:

UD
k, �φ (θ ) = e2iφ0(σz cos k−σx sin k)

d∏
r=1

e−2iθσz e2iφr (σz cos k−σx sin k).

(21)

The Kramers-Wannier duality becomes extremely simple in
the Heisenberg picture when we use the particle-hole basis. In
fact, the QSP protocols in Eqs. (21) and (20) are related by
the combined action of a rotation and complex conjugation as
follows:

UD
k, �φ (θ ) = e−i k

2 σyU∗
−k, �φ (θ )ei k

2 σy . (22)

This relation resembles Eq. (15) for the quantum circuits
shown in Fig. 1.

C. Expressivity of QSP in the Heisenberg picture

The main difference between the gate sequence in Eq. (20)
and the usual qubitization/QSP setup is that in the proposed
scheme, the rotation axes of the two single-qubit rotations in
each iteration are not orthogonal to one another. Moreover, the
angle between the two rotation axes depends on the momen-
tum k of the fermionic mode. Consequently, the identification
of the signal and processing unitaries is not immediate. How-
ever, this problem can be resolved by noticing the following
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identity for the k-dependent generator SU(2) rotations:

e2iθ (σz cos k−σx sin k) = ei π
4 σz e−i k

2 σx ei2θσz ei k
2 σx e−i π

4 σz . (23)

From this identity we obtain the QSP sequence

U k, �φ (θ ) = ei(π/4−2φ0 )σz

(
d∏

r=1

e−i k
2 σx ei2θσz ei k

2 σx e−2iφrσz

)
e−i π

4 σz .

(24)

The sequence in parentheses is identical to the QSVT scheme
in Ref. [24], except that the phase sequence is constrained by
θ . The data processed with QSP are encoded in the projected
unitary

|0〉k〈0|kei k
2 σx |0〉k〈0|k = cos (k/2)|0〉k〈0|k . (25)

The achievable set of polynomial functions of cos (k) using
the constrained phase sequence is smaller than that of standard
QSVT. First, it is clear that only even-parity functions of the
signal can be implemented. Otherwise, the constraints seem
to be not very strong.

We first show that when θ = π/4, the evolution of the
fermionic creation and annihilation operators for each mo-
mentum sector can be simplified. To obtain the desired
simplification, first consider taking σz as the generator of
the processing unitary. Then the block-encoded signal is
cos (2θ ) + i cos (k) sin (2θ ) because

e2iθ (σz cos k−σx sin k) = cos(2θ )1̂ + i(σz cos k − σx sin k) sin(2θ ).

(26)

Crucially, the block-encoded signal is cos (k) when θ = π/4.
Physically, this value allows to create maximally entangled
states in arrays of qubits via the Ising interaction [60]. In
terms of experimental implementations, this value of θ is
within reach in currently available arrays of superconducting
qubits [31].

Next, we discuss in more detail the special case mentioned
above. By inspecting Eq. (24), we see that if we set θ = π/4
in Eq. (24) we obtain the QSP sequence in the canonical form

V k, �� = ei(π/4−2φ0 )σz

(
d∏

r=1

e−ikσx ei(π/2−2φr )σz

)
e−i π

4 σz

= ei�0σz

d∏
r=1

e−ikσx ei�rσz , (27)

where the signal operator is a rotation along the x axis with an
angle proportional to the quasimomentum k. The signal pro-
cessing can be accomplished through a sequence of rotations
along the z axis by new angles defined as

�� = (�0,�1,�2, . . . , �d−1,�d ), (28)

where this sequence is obtained by defining the end-point
phases �0 = π/4 − 2φ0 and �d = π/4 − 2φd and �r =
π/2 − 2φr for r = 1, . . . , d − 1, where φr are the phases of
the original sequence �φ = (φ0, φ1, . . . , φd ).

For convenience, from now on in our paper we use the
notation V k, �� = U k, ��(π/4) to distinguish this special unitary.
We will also use V̂ O

�φ = Û �φ (π/4) to denote the corresponding

QSP sequence in terms of the Onsager algebra. Later on, we
will provide examples to highlight the importance of V k, �� for
applications.

As the signal and signal-processing operator are rotations
along the orthogonal axis, we can use standard techniques and
exploit Eq. (3) to obtain QSP sequence for ��:

V k, �� =
⎡⎣ P(xk ) iQ(xk )

√
1 − x2

k

iQ∗(xk )
√

1 − x2
k P∗(xk )

⎤⎦. (29)

From this it follows that any (bounded, definite parity) poly-
nomial of xk = cos (k) can be implemented. In turn, for θ =
π/4, the QSP protocol achieves an optimal expressivity for
all the values of k because the axes for the signal and signal-
processing rotations are orthogonal. Moreover, as the QSP
sequence (27) and its dual in Eq. (21) are related via Eq. (22),
the dual QSP sequence also exhibits a high expressivity for
θ = π/4. This follows from Eq. (22) because the Y rotations
can be further decomposed into Z-conjugated X rotations
according to k and this means that the dual protocols have the
same form as the original protocols, with the addition of one
additional iterate (signal oracle). This asymmetry is due to the
fact that the general QSP protocol has d signal operators and
d + 1 controllable phases.

Remark. QSP is mainly a statement about the mathematical
form of a product of parametrized SU(2) operations. Usually
we denote the signal by θ , and consider it an unknown [1,2],
but whenever an unknown appears and parametrizes such a
product, it can be treated in place of θ . In the QSP sequence
U k, �φ (θ ) of Eq. (24), a new variable (the momentum k) appears
given our problem statement. As we have multiple choices
for the signal, in some situations it makes sense to tune the
(known, and thus controllable) θ dependence, effectively re-
moving it by setting θ = π/4, and leaving the momentum
to be processed within each subspace labeled by k. In the
general case, one can still use Eq. (24) when θ is unknown,
but one has to determine the expressivity a two-variable QSP
sequence with not orthogonal axis. In Appendix C we discuss
a modified QSP sequence for arbitrary θ and k in such a way
that the signal and signal-processing operations are rotations
along the orthogonal axis. In contrast to the usual QSP, the
axis of the signal operator is defined by k and θ in a nonlinear
fashion. This is of course an interesting problem by itself, but
it is beyond the scope of our current work. On the other hand,
it is important to emphasize that our approach relies on the
fact that the Ising model can be mapped to a problem of free
fermions. For more general spin models, interactions between
the fermions are present. In some cases, as we discuss in
Appendix E, interacting fermionic models can be mapped to
free bosons and similar methods to the ones presented here
can be applied.

VI. APPLICATIONS AND EXAMPLES OF QSP
WITH THE ONSAGER ALGEBRA

The dynamics of many-body systems exhibit exotic effects,
especially under the effect of an external control [61,62]. A
periodic drive, for example, can induce ergodic behavior and
thermalization [20]. The periodic drive can also be used to
engineer Hamiltonians both in the high-frequency [62,63] as
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well as in the low-frequency regimes [12,64], which is known
as Floquet engineering. Recently, there is an increasing in-
terest on control with quasiperiodic behavior in time known
as Fibonacci drives [65]. Similarly, in the field of quantum
simulation, one can efficiently simulate any Hamiltonian by
using a procedure known as Trotterization [66] that can be
interpreted as a sequence of operations in time using the
terms appearing in the target Hamiltonian that one wants to
simulate. The common theme of the previous examples is the
application of a control sequence that can be either periodic
or quasiperiodic to a many-body system. In some cases, such
a control sequence does not exhibit any periodicity at all. In
others, to obtain the exact operations can be a challenge and
require optimization [12], which naturally restricts the size of
the system under study.

One of the advantages of QSP techniques is that one can
map the problem of controlling or simulating a desired quan-
tum system to a problem of functional analysis. That is, one
can efficiently simulate the response of the system by using
polynomials of degree d , which determines the number of
steps in the QSP sequence. One interesting aspect of QSP
is that it allows to process a signal, which can be known or
unknown depending on the context of the problem. In quan-
tum information, QSP allows to unify quantum algorithms [2].
Similarly, our aim in this section is to provide examples to
show that QSP is a general framework to control quantum sys-
tems. In particular, QSP methods include periodic control as
in the case of Floquet systems [62,63] and recently developed
quasiperiodic drives [65].

We consider some particular examples to see how QSP
works in the Heisenberg picture by using the QSP sequence
V k, �� of Eq. (27) in momentum space with angles ��. As we
discussed above, in some cases, it is useful to fix θ = π/4
to treat the momentum k as the signal to be processed. This
particular value of θ is extremely important for applications
as it allows the maximum expressivity for QSP sequences
in momentum space. We will start with an example where
we discuss the trivial QSP sequence. In the second example,
we discuss QSP sequences for the Onsager algebra and the
relation to space-time dual quantum circuits, which are rele-
vant in quantum information processing and in the study of
quantum signatures of many-body chaos [18–22]. The next
two examples are related to the use of our scheme for quantum
simulation of Hamiltonians. The last example reframes a well-
known protocol in NMR to synthesize a BB1 sequence [39]
for the Onsager algebra [33,36].

A. Trivial QSP sequence in momentum space

The simplest example of a QSP sequence can be obtained
by considering �� = (0, 0, 0) in Eq. (27). This gives us the
trivial QSP sequence in momentum space

V k, �� = e−i2kσx . (30)

From this, we obtain the associated polynomial transfor-
mation of the input P(xk ) = 2x2

k − 1. Similarly, for �� =
(0, 0, 0, 0) we obtain P(xk ) = 4x3

k − 3xk . For a trivial protocol
with length d , one can show that the resulting polynomial
transformation is given by the Chebyshev polynomials of
the first kind P(xk ) = Td (xk ) as in Ref. [2]. The purpose of

this example is to show the versatility of Eq. (27). As this
has the canonical form of the QSP known in the literature,
we can use it to analyze QSP sequences with rotations ��
in momentum space. Then, we can translate those back into
angles �φ defining the corresponding QSP sequence for the
Onsager algebra. For example, in the case of �� = (0, 0, 0, 0),
the original angles are given by

�φ = (π/8, π/4, π/4, π/8), (31)

and define the QSP sequence V̂ O
�φ for the Onsager algebra [see

Eq. (12)].

B. Space-time rotation and dual quantum circuits

Now let us consider a more involved example related to
the theory of space-time dual quantum circuits. Motivated by
a recent work [21], we consider dual quantum circuit in the
absence of disorder. Recently, space-time duality has attracted
much attention, with connections to topics ranging from quan-
tum signatures of many-body chaos [18,22] to dynamical
quantum phase transitions [67]. One of the most appealing
aspects of this theory is that it allows one to obtain analytical
results even when dynamics are ergodic [20].

To make the connection between the theory space-
time dual quantum circuits and QSP for the Onsager
algebra, we can consider the sequence of operations in
Eq. (12) for fixed θ = π/4 and �φ = [0, π

2 (1 − 2ε), π
2 (1 −

2ε), . . . , π
2 (1 − 2ε)], where ε is an error in the rotation angle

[see Eq. (28)]. The QSP sequence with d time steps for a
lattice with N sites reads as

V̂ O
�φ =

d∏
r=1

ei π
4

∑N
j=1 Xj Xj+1 eiφr

∑N
j=1 Z j (32)

with φr = π
2 (1 − 2ε).

To build a space-time dual QSP, we change the roles of
space and time. In other words, the dual QSP sequence cor-
responds to N iterations in time of a Hamiltonian acting on d
sites in space, as follows:

V̂ DST
�̃φ =

N∏
r=1

eiφ̃r
∑d

j=1 Z̃ j eĩθ
∑d

j=1 X̃ j X̃ j+1 , (33)

where φ̃r = −π/4 and θ̃ = −π/4 + i/2 log{tan[π/2(1 −
2ε)]} [21]. We note that this has the same form as dual On-
sager QSP sequence in Eq. (14). The main difference is that
the Kramers-Wannier duality exchanges the roles of signal
and signal-processing sequence, while keeping the evolution
unitary [55]. Under the space-time duality, however, the QSP
sequence is not unitary. In terms of the parameter ε, there is
a special value ε = 1

4 for which the dual quantum circuit is
unitary and θ̃ = −π/4.

Next, let us explore some properties of the QSP sequence
in Eq. (32) by working in quasimomentum space

V k, �� =
d∏

r=1

ei π
2 (σz cos k−σx sin k)e−2iπ (1−2ε)σz . (34)

As the QSP protocols involve constant phases, at each time
step the evolution is given as a product of two unitaries.
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(a)

(b)

µ
k

k

k

FIG. 2. Spectral properties of a QSP sequence and its space-time
dual. (a) Depicts the Floquet exponent μk of the iterator as a function
of the error and the quasimomentum k. There are both 0 and π

gaps and the Floquet exponents are independent on the error for
k = π/2, as we predicted using QSP methods. The critical point
at ε = 1

4 is ensured by space-time duality (see main text). (b) De-
picts the phase diagram determining the features of the spectrum
of the space-time dual QSP sequence. For parameters within the
white region the eigenvalues satisfy the condition |λDST

k | = 1 and the
evolution is unitary. For the self-dual point ε = 1

4 of the space-time
dual quantum circuit there is a singularity at momenta k = 0 and
|k| = π in correspondence with the gapless excitation spectrum in
shown in (a).

Thus, by using Floquet theory, we can extract most relevant
information from the evolution operator in one period of the
sequence, defining the Floquet operator

Fk = ei π
2 (σz cos k−σx sin k)e−iπ (1−2ε)σz . (35)

The eigenvalues of the Floquet operator are λk = exp(−iμk )
and μk are the Floquet exponents. For example when k =
0, π , the Floquet exponents are μ0 = π − 2π |ε − 1/4| and
μπ = 2π |ε − 1/4|. When εc = 1

4 , there is a π -energy gap for
k = 0 and a zero-energy gap for the mode k = ±π indicating
a quantum critical point at εc that is the self-dual point under
space-time duality [21]. For quasimomentum k = π/2 the
Floquet exponent is independent of the error and is given by
μπ/2 = π/2. In Appendix D we discuss the QSP sequence in
for k = π/2. Figure 2(a) shows the Floquet exponents μk as
a function of the quasimomentum and the error. From this we
can see the 0 and π gaps indicating the self-dual point.

To obtain more information about the space-time dual
QSP sequence in Eq. (33), we consider the momentum
representation

V DST

k, �̃φ =
N∏

r=1

e
iπ
2 σz e2ĩθ (σz cos k−σx sin k). (36)

Similarly to the QSP sequence in Eq. (D1) discussed above,
due to the periodicity, it is enough to study spectral properties
of the nonunitary version of the Floquet operator

F DST
k = e

iπ
2 σz e2ĩθ (σz cos k−σx sin k). (37)

In contrast to its unitary version, the eigenvalues λDST
k of

the Floquet operator F DST
k are not restricted to lie along

the unit circle. In fact, depending on the momentum k and
the error ε, they may satisfy |λDST

k | < 1 or |λDST
k | > 1. Fig-

ure 2(b) depicts a region plot in the k-ε parameter space
where the white region is determined by the condition of
unitarity |λDST

k | = 1. Interestingly, and as we discussed below,
the momentum |k| = π/2 lies in the white region for all values
of the error and there is correspondence between the 0 and π

gaps in Fig. 2(a) and the behavior of the line ε = 1
4 . In fact,

in the shaded region, each eigenvalue satisfying |λDST
k | < 1

has an exact partner such as |λDST
k | > 1. That being said,

some modes are amplified [68] and others are suppressed for
parameters within the shaded region in Fig. 2(b). These spec-
tral properties have important consequences. For example, due
to long-lived quasiparticle pairs with purely real energy, the
dual quantum circuit reaches a steady state with volume-law
entanglement [21].

C. Design of pulse sequences to simulate the response
under a target spin Hamiltonian

In the previous sections, we have been focusing on de-
scribing the general formalism for QSP in terms of the spin
representation of the Onsager algebra and in the Heisenberg
picture. In this subsection, we will provide an example of
a possible application of QSP to simulate a Hamiltonian by
designing a pulse sequence. With this aim, let us consider the
a simple target Hamiltonian of the form

Ĥtarget(t ) = − h̄g0

N∑
j=1

Zj − h̄Jx

N∑
j=1

XjZ j+1Zj+2Zj+3Xj+4

− h̄Jy

N∑
j=1

YjZ j+1Zj+2Zj+3Yj+4. (38)

It is convenient to introduce the notation Jx = J (1 + γ )/2
and Jy = J (1 − γ )/2, where γ is a dimensionless parameter
characterizing the anisotropy of the interaction. Certainly, it
is a nontrivial task to find a sequence of rotations �φ in such a
way that the resulting unitary Û �φ (θ ) from the QSP sequence
in the spin representation of Eq. (12) is close to our desired
target Hamiltonian for arbitrary θ . As the algebra is infinite
dimensional in the limit N → ∞, the number of commutators
required makes the procedure impractical. However, as we
will show below, one can obtain an enormous simplification
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of the problem in the Heisenberg picture in the fermionic
representation when we set θ = π/4 and work with the QSP
sequences in Eqs. (27) and (29).

By applying the Jordan-Wigner transformation and the
discrete Fourier transformation of the fermionic operators as
we did in the case of the Ising chain, we can obtain the
Bogoliubov–de Gennes Hamiltonian

H target
k = 2h̄[g0 − J cos 4k]σz + 2h̄Jγ sin 4kσx (39)

corresponding to Eq. (38). We can rewrite this in the form
H target

k = h̄�knk · σ, where σ = (σx, σy, σz ) and

�k = 2
√

[g0 − J cos 4k]2 + (Jγ )2 sin2 4k,

nk = 2[g0 − J cos 4k]

�k
σz + 2Jγ sin 4k

�k
σx. (40)

This defines nx(k) = 2Jγ sin 4k/�k and nz(k) = 2[g0 −
J cos 4k]/�k . After an evolution time T , the quantum evo-
lution under H target

k is given by the unitary operator

U k =
[

cos(�kT ) − inz(k) sin(�kT ) −inx(k) sin(�kT )
−inx(k) sin(�kT ) cos(�kT ) + inz(k) sin(�kT )

]
. (41)

From this we can see that the matrix elements are functions
that could be approximated using QSP in the Heisenberg
picture. That is, there is a sequence �� that acts as a polynomial
transformation of the input

〈0|kU k|0〉k = cos(�kT ) − inx(k) sin(�kT )

≈ 〈0|kV k, ��|0〉k, (42)

where V k, �� was defined in Eqs. (27) and (29). In the previ-
ous discussion we faced a restriction when the signal xk =
cos(k) = ±1 or, equivalently, when k = 0, π . In this case the
signal is proportional to the identity and the QSP sequence
turns out to be a single Z rotation. Keeping this in mind,
in terms of the numerical implementation we can accurately
approximate the function

〈+|kU k|+〉k = cos(�kT ) ≈ 〈+|kV k, ��|+〉k, (43)

where |+〉k = (|0〉k + |1〉k )/
√

2. Figure 3 shows the behavior
of this response function for different values of k. The expres-
sivity of the QSP sequence in the standard form of Eq. (29)
has been widely investigated. Therefore, there are efficient
ways to obtain a sequence of phases �� that gives us a good
polynomial approximation to a desired function. In turn, this
sequence of operations can be used to design a QSP sequence
V̂ O

�φ in terms of the original Pauli operators to simulate the

action of the evolution operator (41) that is generated by the
Hamiltonian (39).

FIG. 3. Probability |〈+|kU k |+〉k |2 = cos2(EkT ) corresponding
to the cluster Hamiltonian (38) in momentum space. We set parame-
ters g = J and γ = 0.

D. Reverse engineering of spin Hamiltonians from response
functions in momentum space

In this subsection let us present another example based
on the idea of reverse-engineering spin Hamiltonians from
a given polynomial transformation in momentum space. For
simplicity, we consider a phase sequence that has a simple
limiting behavior in momentum space and then show that
there is a preimage spin Hamiltonian in real space which
would induce this evolution.

As a starting point to construct our example, we assume a
simple form for the unitary evolution

U k = e−i�k T σx =
[

cos(�kT ) −i sin(�kT )
−i sin(�kT ) cos(�kT )

]
. (44)

Clearly, the response function associated to this evolution is
given by 〈0|kU k|0〉k = cos(�kT ). We can think of defining a
“reversed-engineered” Hamiltonian HRE

k = h̄�kσx. For con-
creteness, we will focus here on an example provided in the
Appendix D of Ref. [2] of a phase sequence as a polynomial
approximation for phase estimation function

cos(�kT ) = 2�(3xk/2) − 1, (45)

where �(z) denotes the box distribution (also known as
the Heaviside Pi function). It follows that the angular
frequency dispersion �k = π/T − π�(3xk/2)/T . We now
employ Fourier analysis to obtain the expression

�

(
3xk

2

)
= 3

4π

∫ ∞

−∞

sin(3ω/4)

3ω/4
eiωxk dω

= 3

4π

∞∑
n=−∞

ineinkGn, (46)

where Gn = ∫ ∞
−∞ sin(3ω/4)/(3ω/4)Jn(ω)dω with Jn(ω)

being a Bessel function of the first kind [69]. From
these relations, we can obtain a closed form for the
Hamiltonian

HRE
k = h̄

T

[
π − 3

2

( ∞∑
n=0

(−1)n cos(2nk)G2n

)]
σx, (47)

where we have exploited the symmetry G2n = G−2n and the
fact that G2n+1 = 0. With all these elements at hand, we can

obtain the fermionic Hamiltonian ĤRE = ∑
k� �̂

†
kHRE

k �̂k , as
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follows:

ĤRE = − 3h̄

2T

∑
k�0

∞∑
n=0

(−1)nG2n(cos(2nk)F̂−kF̂k + H.c)

= −3h̄i

4T

∑
j

∞∑
n=0

(−1)nG2n( f̂ j−2n f̂ j + f̂ j+2n f̂ j ) + H.c.

(48)

We will not show the derivation here, but the fermionic terms
can be rewritten in terms of Pauli matrices, giving rise to
nonlocal spin Hamiltonians of the form∑

j

(i f̂ j−2n f̂ j + H.c) =
∑

j

(
Xj−2nM̂z

j Xj − Yj−2nM̂z
jYj

)
. (49)

Here M̂z
j = Zj−2n+1 . . . Zj−1 arises from the Jordan-Wigner

string connecting the sites j − 2n and j. We refer the
interested reader to Ref. [2], that provides the explicit
phase sequence required to approximate the phase estimation
function.

The example presented above shows there is always some
preimage of a QSP transformation in momentum space in the
form of a time-independent spin Hamiltonian in real space that
matches the evolution we achieve. However, in general, the
preimage spin Hamiltonian is highly nonlocal, as we can see
from our example. Nevertheless, the QSP sequence in terms
of the Onsager algebra V̂ O

�φ is given as a sequence of single-

and two-qubit gates.

E. BB1 protocol for the quantum Ising chain

In this final subsection our main focus will be to use a
paradigmatic composite sequence from the NMR community
in the context of our QSP sequence in the momentum space.
In turn, our result allows us to define a BB1 protocol for the
Onsager algebra applicable to quantum Ising chains.

To start, let us consider the QSP sequence V k, �� in Eq. (27)
for a fixed angle θ = π/4. Notably, if we forget the physical
meaning of the quasimomentum k, we can interpret it as a
signal and the QSP sequence has the same structure as the
canonical form of QSP sequence for SU(2) in Eq. (3). Naively,
we can use known QSP sequences for su(2) in the literature
to “synthesize” QSP sequences for the Onsager algebra.

For concreteness, let us consider a paradigmatic composite
pulse sequence in NMR known as the “BB1” sequence [2,39].
In the context of our QSP sequence in momentum space, we
can do some signal processing of the quasimomentum k, by
considering a sequence of rotations

��BB1 = (π/2,−χ, 2χ, 0,−2χ, χ ), (50)

where χ = 1/2 cos−1(− 1
4 ). This has exactly the same form

as the BB1 “composite-pulse” sequence used in NMR. From
Eqs. (28) and (50) we can retrieve the original phases

�φBB1 =
(
−π

8
,
χ

2
+ π

4
,−χ + π

4
,
π

4
, χ + π

4
,−χ

2
+ π

8

)
(51)

which allows us to define the BB1 sequence for the Onsager
algebra V̂ O

�φBB1
= Û �φBB1

(π/4) in Eq. (12). In momentum space,

FIG. 4. BB1 QSP sequence in momentum space and its effect
on the transition probability. The green curve depicts the transition
probability Rk in Eq. (52) without signal processing. The blue curve
shows the transition probability RBB1

k in Eq. (53) after applying the
BB1 sequence.

the signal to be processed is the momentum k and we can
define a QSP sequence V k, ��BB1

as in Eq. (27). To understand
the effect of the BB1 sequence, it is illustrative to obtain
the probability in the absence of any processing, i.e., for
�� = (0, 0) and a given momentum k

Rk = |〈0|kV k,(0,0)|0〉k|2 = x2
k . (52)

Now, if we apply the BB1 sequence, we obtain the modified
transition probability

RBB1
k = |〈0|kV k, ��BB1

|0〉k|2

= 1
8 x2

k

[
3x8

k − 15x6
k + 35x4

k − 45x2
k + 30

]
, (53)

where xk = cos(k). In NMR, the BB1 sequence is known for
allowing the two-level system to remain unflipped for a wide
range of signals: in our case, in a region around k = 0 and
π . This sequence shows a sharp transition for |k| ≈ π/3 and
|k| ≈ 2π/3 as we depict in Fig. 4. As a consequence, when
applying the BB1 sequence, we obtain a high sensitivity to
specific values of the momentum k. Here it is important to
remark that this step function can be made arbitrarily sharp
[2,39]. The main benefit of BB1, aside from its historical
status, is that the protocol is relatively short, and its achieved
polynomial transform is easy to write.

But what are the consequences of this sensitivity? Well,
the QSP sequence keeps both long-wavelength (k ≈ 0)
and short-wavelength excitations (k ≈ π ) frozen, while
it flips excitations with momentum close to k ≈ π/2.
That is, if we prepare an initial spin state |�(0)〉 =∏π

k=−π |0〉k = |↑,↑, . . . ,↑,↑〉, we can calculate the
probability

R = |〈�(0)|V̂�φBB1
|�(0)〉|2 =

π∏
k=−π

RBB1
k = 0. (54)

This turns out to be exactly zero because PBB1
±π/2 = 0.

VII. CONCLUSIONS

In summary, we have investigated QSP protocols for the
Onsager algebra, an infinite-dimensional Lie algebra that nat-
urally appears in the theory of the Ising model. We have
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shown that by mapping the Ising model to a system of
noninteracting fermions, we can define QSP protocols for
the fermionic operators in the Heisenberg picture respect-
ing the su(2) algebra. This naturally allows one to exploit
the tools of standard QSP with SU(2) operations. We then
applied such sequences to illustrate various examples and
applications in diverse fields ranging from space-time dual
quantum circuits, quantum engineering of spin Hamiltonians,
and composite pulse sequences in spin chains. These exam-
ples highlight the wide utility of our approach and how one
can translate QSP sequences in momentum space based on
su(2) algebra in the Heisenberg picture to well-defined pro-
tocols dependent on the Onsager algebra in the Schrödinger
picture.

There are of course some remaining open questions that
are worth exploring. For example, when we start with the
Onsager algebra in the Schrödinger picture, after a set of trans-
formations, the evolution of the operators in the Heisenberg
picture can be entirely described by the standard theory of
QSP. For tuned values of the system, we reach the optimal
expressivity for QSP sequences in momentum space. How-
ever, it remains unclear how generalizable this approach is
to other systems defined by other algebras and at other tuned
points. It would be worthwhile to determine which classes of
physical models permit QSP-like control. This could allow
one to make statements about the robustness of QSP in the
context of condensed matter systems and quantum simulation.
For example, it would be interesting to explore QSP sequences
in spin chains such as the XXZ model, which cannot be
mapped to systems of noninteracting fermions [50,70]. As
we briefly discuss in Appendix E, to deal with this problem,
one can use bosonization to map problems of interacting
fermions at half-filling to squeezed collective bosonic modes
[71]. This will of course require one to use recently developed
QSP sequences based on the su(1,1) algebra for continuous
variables [28]. It would be interesting to explore the use
of QSP methods to treat nonintegrable models such as a
high-dimensional version of the TFIM. For example, a two-
dimensional lattice can be represented as a family of coupled
one-dimensional TFIMs. In certain regimes, our approach for
the one-dimensional TFIM can provide a good approximation
for a two-dimensional problem. Another possible extension
of our work is to investigate QSP sequences in two-band
topological insulators and topological superconductors which
can be described using a pseudospin approach in momentum
space [72].
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APPENDIX A: JORDAN-WIGNER TRANSFORMATION
AND P-WAVE SUPERCONDUCTIVITY

The Jordan-Wigner transformation allows one to represent
the Pauli matrices in terms of fermionic operators. This highly
nonlocal mapping is given by

Xj = ( f̂ †
j + f̂ j )

j−1∏
m=1

(1 − 2 f̂ †
m f̂m),

Yj = −i( f̂ †
j − f̂ j )

j−1∏
m=1

(1 − 2 f̂ †
m f̂m),

Zj = 1 − 2 f̂ †
j f̂ j . (A1)

Here the operators f̂ †
j and f̂ j are the fermionic creation and

annihilation operators in real space satisfying the anticommu-
tation relations { f̂i, f̂ †

j } = δi, j and { f̂i, f̂ j} = { f̂ †
i , f̂ †

j } = 0.
After applying the JW transformation to the Ising model in

Eq. (11), we obtain the fermionic quadratic Hamiltonian

Ĥ (t ) = − h̄g(t )
N∑

j=1

(1 − 2 f̂ †
j f̂ j ) − h̄J (t )

N−1∑
j=1

( f̂ †
j − f̂ j )

× ( f̂ †
j+1 + f̂ j+1)

= 2h̄
∑
k�

(g(t ) − J (t ) cos k)(F̂ †
k F̂k − F̂−kF̂ †

−k )

+ 2h̄J (t )
∑
k�

sin k(F̂ †
k F̂ †

−k + F̂−kF̂k )

=
∑
k�

�̂
†
kHk�̂k, (A2)

where �̂
†
k = (F̂ †

k , F̂−k ). Here F̂ †
k and F̂k are fermionic creation

and annihilation operators in momentum space. The matrix
representation of the fermionic quadratic form is known as
the Bogoliubov–de Gennes Hamiltonian

Hk =
[

2h̄[g(t ) − J (t ) cos k] 2h̄J (t ) sin k
2h̄J (t ) sin k −2h̄[g(t ) − J (t ) cos k]

]
(A3)

and describes a P-wave superconductor. Here the supercon-
ducting term describes the creation of pairs of fermions with
opposite momenta [58].

APPENDIX B: MAPPING QSP IN THE HEISENBERG
PICTURE TO THE SCHRÖDINGER PICTURE:

THE BCS ANSATZ

In the main text, we show that after applying
Jordan-Wigner transformation and the discrete Fourier
transform, we were able to reduce problem to a QSP
sequence in the Heisenberg picture using SU(2) group. This
was possible due to the pseudospin structure in momentum
space. The natural question is how to map the QSP in terms
of spins in real space.

A solution to this problem is to exploit the structure of
the fermionic Hamiltonian (16) in the reciprocal space. This
Hamiltonian breaks the conservation of particles and allows
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the creation of pairs of spinless fermions moving in opposite
directions. The creation of pairs characterized by a time-
dependent pairing potential �k (t ) = 2h̄J (t ) sin k is odd under
motion-reversal symmetry k → −k, which is a signature of a
p-wave superconductor. As the excitations are created in pairs,
one can show that any state of the system in the Schrödinger
picture can be written using the well-known BCS ansatz from
the theory of superconductivity [59]

|�(t )〉 =
∏
k>0

[vk (t ) + uk (t )F̂ †
k F̂ †

−k]|0〉k, (B1)

where |0〉k is the vacuum for the kth fermionic mode. The key
point of this approach is that the time-dependent coefficients
appearing in the ansatz can be obtained by using the relation
and has a general solution[

uk (t )

vk (t )

]
=

[
Uk (t ) V∗

k (t )

Vk (t ) U∗
k (t )

][
uk (0)

vk (0)

]
. (B2)

The propagator in this equation is the same as the propagator
U k (t ) in Eq. (19) for the operators F̂k (t ) and F̂ †

k (t ) in the
Heisenberg picture. One can think of this approach in terms
of a pseudospin approach, where the state of the two-level
system is described by a spinor ψT

k (t ) = [uk (t ), vk (t )].
To have an intuitive understanding of this it is instructive

to consider a simple example. Next we focus on the Ising
Hamiltonian (11) in the case of a constant transverse field
g(t ) = g0 and in the absence of interactions J (t ) = 0. In this
case the Bogoliubov–de Gennes Hamiltonian (A3) is diagonal
Hk = 2h̄g0σz and the propagator is U k (t ) = exp (−iHkt/h̄).
Now we can exploit the pseudospin picture to understand the
physics of the problem. For example, when the states ψT

k =
(0, 1) with negative energy E (−)

k = −2h̄g0 are fully populated,
we obtain the ground state of the system |0〉 = ∏

k>0 |0〉k =
| ↑,↑, . . . ,↑〉 with | ↑〉 and | ↓〉 being the eigenstates of Zj .
In the theory of the Ising model this is known as the param-
agnetic ground state. In terms of fermions, this state describes
a system with no pairs of counterpropagating excitations. The
recipe to build up the excited states is to populate states with
positive energies for a given wave vector k0. That is, to create
a pair of excitations with the desired momentum

|1k0 , 1−k0〉 = F̂ †
k0

F̂ †
−k0

|0〉 = i
∑
i, j

eik0(i− j) f̂ †
i f̂ †

j |0〉

= i

2

∑
s,r

eik0r f̂ †
s f̂ †

s+r |↑,↑, . . . ,↑〉

= i

2

∑
s,r

eik0r |↑,↑,↓s,↑↑ . . . ↑↑,↓s+r,↑〉,

(B3)

where f̂ †
s = (Xs + iYs)/2

∏s−1
m=1 Zm and f̂ †

s+r = (
∏s+r−1

m=1 Zm)
(Xs+r + iYs+r )/2. As X 2

m = 1, we obtain the expression
f̂ †
s f̂ †

s+r = 1/4(Xs + iYs)(
∏s+r−1

m=s Zm)(Xs+r + iYs+r ). The oper-
ator

∏s+r−1
m=s Zm is the Pauli string connecting the sites s and

s + r. To obtain this equation, we used the inverse Fourier

transform F̂k = ei π
4√
N

∑
j f̂ je−ik j to write the fermionic opera-

tors F̂ †
k0

in terms of real-space fermionic operators f̂ †
j . We also

inverted the Jordan- Wigner transformation (A1) in order to

write the fermionic operators f̂ †
j in terms of spin operators

in real space. From the perspective of the pseudospin, this is
equivalent to apply a spin flip to the negative-energy state with
momentum k0 to obtain a positive-energy state ψT

k0
= (1, 0).

In terms of the original spins in real space, this corresponds to
the creation of a quantum superposition of localized spin flips.

Alternatively, we can also study wave packets directly
in the momentum representation. For example, for a two-
particle initial state |�(0)〉 = ∑

k G(k)F̂ †
k (0)F̂ †

−k (0)|0〉 with
momentum distribution G(k), the time evolution |�(t )〉 =∑

k G(k)F̂ †
k (t )F̂ †

−k (t )|0〉 can be obtained by considering the
evolution of the operators in the Heisenberg picture

F̂ †
−k (t ) = Vk (t )F̂k +U∗

k (t )F̂ †
−k, (B4)

whereVk (t ) andU∗
k (t ) are matrix elements of the propagator

U k (t ) in Eq. (19) for the operators F̂k (t ) and F̂ †
k (t ) in the

Heisenberg picture. Thus, the time evolution of the wave
packet can be written as

|�(t )〉 =
∑

k

G(k)V−k (t )U∗
k (t )|0〉

+
∑

k

G(k)U∗
k (t )U∗

−k (t )|1k, 1−k〉. (B5)

Importantly, this wave packet can be interpreted as a quantum
superposition of the paramagnetic ground state and a wave
packet of two spin-flip excitations by considering Eq. (B3).

These simple examples capture the essence of our ap-
proach. To design a QSP sequence using the generators of
the Onsager algebra in the Schrödinger picture is a cumber-
some task. However, we can easily design a QSP sequence
in the Heisenberg picture for the operators F̂k and F̂ †

k using
the SU(2) pseudospin representation. In turn, QSP sequences
giving the propagator U k (t ) in the pseudospin representation
can be directly mapped to operations in real space using the
BCS ansatz in Eq. (B1).

APPENDIX C: QSP SEQUENCES FOR GENERAL θ

In this Appendix, we discuss QSP sequences for general
values of k and an unknown θ . As we are processing two
independent variables, the QSP sequence is more complicated
than the one discussed in the main text. In our paper, one of the
restrictions we found is that the signal and signal-processing
operations are rotations along nonorthogonal axes. To over-
come this restriction, we can define a modified QSP sequence
for the Onsager algebra

Û M
�φ (θ ) =

d∏
r=1

eiθ
∑N

j=1 Xj Xj+1 ei π
4

∑N
j=1 Z j e−iθ

∑N
j=1 Xj Xj+1 eiφr

∑N
j=1 Z j .

(C1)

In arrays of superconducting qubits, if the parameter θ is
known, its sign can be controlled using microwave control
lines [31]. When the parameter θ is unkown, its sign can be
effectively changed from positive to negative by applying π/2
rotations along the Z axis to the even or odd sites. Next, let us
explore the form of our modified QSP sequence in momentum
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space, which reads as

UM
k, �φ (θ ) =

d∏
r=1

e2iθ (σz cos k−σx sin k)e−2iθ (σz cos k+σx sin k)

× e−2i(φr+π/4)σz . (C2)

It is worth noting that the rotation ei π
4

∑N
j=1 Z j maps to a pseu-

dospin rotation e−i π
2 σz in momentum space. Also, the first two

terms in the QSP sequence are rotations along an the axis n̂k =
[− sin k, 0, cos k] and its reflection m̂k = [− sin k, 0,− cos k]
along the x axis. By using the fundamental properties of SU(2)
rotations, we obtain the general QSP sequence

UM
k, �φ (θ ) =

d∏
r=1

ei�k (Akσx+Bkσy )e−2i(φr+π/4)σz , (C3)

where cos �k = cos2(2θ ) + cos(2k) sin2(2θ ) and the new
axis is defined by the parameters

Ak = − sin k sin(4θ )

sin �k
,

Bk = sin(2k) sin2(2θ )

sin �k
. (C4)

Even if the parameter θ is unknown, this QSP sequence is
composed by rotations along two orthogonal axis. However, in
contrast to the QSP sequence discussed in the main text, here
the signal parameters k and θ define the rotation axis in the
x-y plane in a nonlinear fashion, while the signal processing
takes place along the z axis.

APPENDIX D: SPACE-TIME DUAL QSP FOR k = π/2

In this Appendix, we discuss the QSP sequence V k, �� for
the space-time dual quantum circuit in the main text. As a first
step, it is useful to consider the QSP sequence in momentum
space

V k, �� = eiπ/4σz

(
d∏

r=1

e−ikσx e−i π
2 (1−4ε)σz

)
e−iπ/4σz , (D1)

where we took φr = π/2(1 − 2ε) in the definition of �� ac-
cording to Eq. (27).

We notice that the evolution e2iθ (σz cos k−σx sin k) in Eq. (26) of
the fermionic operators under the Ising interaction becomes
e∓iπ/2σx = ∓iσx when k = ±π/2 and θ = π/4. Then, we
can write the composite pulse sequence (up to a constant
phase) as

V ∓π/2, �� = (∓i)dσxe−iπ (1−2ε)σzσxe−iπ (1−2ε)σz . . . σxe−iπ (1−2ε)σz

∝
{

I if d ∈ even,

σxe−iπ (1−2ε)σz if d ∈ odd.
(D2)

Hence, the resulting unitary approximates the dynamics up to
an error ε in the phase rotation.

APPENDIX E: INTERACTING ELECTRONS
AND BOSONIZATION

We consider a one-dimensional spin chain with long-range
interactions that is governed by the Hamiltonian [70]

Ĥ (t ) = h̄J

2

N−1∑
j=1

(XjXj+1 + YjYj+1) +
N∑

i< j

h̄Ki, j (t )ZiZ j . (E1)

This model can be realized using superconducting qubit ar-
rays, which allows for a time-dependent controllability of the
parameters [73]. By using the Jordan-Wigner transformation
of Eq. (A1), one can map the spin Hamiltonian to a system of
interacting fermions, as follows:

Ĥ (t ) = − h̄J
N−1∑
j=1

( f̂ †
j f̂ j+1 + f̂ †

j+1 f̂ j )

−
N−1∑
i< j

h̄Ki, j (t )(2 f̂ †
i f̂i − 1)(2 f̂ †

j f̂ j − 1). (E2)

In the fermionic representation, the interaction term can be
interpreted as a density-density coupling and it also pre-
serves the total number of fermions N̂ = ∑

j f̂ †
j f̂ j because

[Ĥ (t ), N̂] = 0. This allows us to classify the Hilbert space in
terms of the filling fraction that tell us how many fermionic
particles occupy the available orbitals of the system. This
in turn defines the Fermi energy of our system. In terms
of spins, bosonization describes fluctuations about the state
| ↑,↓, . . . ,↑,↓〉 that has zero total magnetization Mz =∑

j (2 f̂ †
i f̂i − 1) along z direction.

To start the discussion on bosonization [50,70], it is useful
to consider the kinetic part of the Hamiltonian in the momen-
tum space as follows:

Ĥkin(t ) = −h̄J
N−1∑
j=1

( f̂ †
j f̂ j+1 + f̂ †

j+1 f̂ j

= −2h̄J
∑

k

cos(ka)F̂ †
k F̂k, (E3)

where we have used the discrete Fourier transformation in
f̂ j = e−i π

4√
N

∑
k F̂keika j , with a being the lattice constant.

Now we have all the elements we need to write the kinetic
part of the Hamiltonian in terms of the right- and left-moving
fermionic operators

Ĥkin ≈ ah̄J

π

∫
[ψ†

L (x)i∂xψL(x) − ψ
†
R(x)i∂xψR(x)]dx. (E4)

Next let us consider the effect of the interactions. With this
purpose, it is useful to consider the identity [70]

: f̂ †
j f̂ j : ≈ ρ̂(x) + (−1) jM̂(x), (E5)

where : Ô : denotes the normal ordering in the theory of
bosonization and

ρ̂(x) =: ψ
†
R(x)ψR(x) : + : ψ

†
L (x)ψL(x) :,

M̂(x) =: ψ
†
R(x)ψL(x) : + : ψ

†
L (x)ψR(x) : . (E6)
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This expression is the cornerstone of the bosonization pro-
cedure, as now we can write the interaction Hamiltonian as a
product of the densities in the limit Ki, j < J [71] as follows:

ĤInt(t ) ≈ h̄

(2π )2

∑
η,λ=L/R

∫∫
ρ̂η(x)K (x − y, t )ρ̂λ(y)dx, (E7)

where ρ̂η(x) =: ψ†
η (x)ψη(x) : with η = L, R. The crucial step

is to write the densities as a Fourier series

ρ̂η(x) = 2π√
Na

∑
q>0

i

√
Naq

2π
(b̂q,ηe−iqa j − b̂†

q,ηeiqa j ) (E8)

in terms of bosonic creation b̂†
q,η and annihilation b̂q,η op-

erators [71]. After some algebraic manipulations, one can
show that the total Hamiltonian Ĥ = Ĥkin + ĤInt maps to a set
of decoupled quantum parametric amplifiers (see Ref. [71])
labeled by q,

Ĥ (t ) =
∑

q>0,η

h̄ωq(t )b̂†
q,ηb̂q,η

−
∑
q>0

q
h̄Kq(t )

2π
(b̂†

q,Lb̂†
q,R + b̂q,Rb̂q,L ), (E9)

where Kq(t ) is the Fourier transform of the coupling function
K (x) and ωq(t ) = 2ah̄qJ (1 + Kq(t )/4πaJ ). The bosonic op-
erators are defined explicitly as

b̂q,η = −i

√
2π

Naq

∑
k̄

Ĉ†
k̄−q,η

Ĉk̄,η,

b̂†
q,η = i

√
2π

Naq

∑
k̄

Ĉ†
k̄+q,η

Ĉk̄,η (E10)

for q > 0. This is remarkable, as now the low excitation
dynamics of the system is governed by a set of indepen-
dent copies of the squeezing algebra SU(1,1) labeled by q
satisfying the commutation relations [K̂+

q , K̂−
q ] = −2K̂z

q and
[K̂z

q, K̂±
q ] = ±K̂±

q . In our model, we consider the two-mode

representation of SU(1,1) algebra

K̂+
q = b̂†

q,Lb̂†
q,R,

K̂−
q = b̂q,Lb̂q,R,

K̂z
q = 1

2 (b̂†
q,Rb̂q,R + b̂†

q,Lb̂q,L ). (E11)

Bosonization and quantum signal processing
with SU(1,1) algebra

As we discussed in the last section, bosonization allows us
to map problems of interacting fermions in one dimension to
an effective system of squeezed modes described by SU(1,1)
algebra. This enormously simplifies the problem of finding
QSP sequences for a two-dimensional spin chain.

Recently, a theory of QSP for SU(1,1) has been developed
[28]. Due to the form of the Hamiltonian after bosonization,
we can see that the fundamental element of our protocol will
be the phased boost, which has the explicit form

Vq,φ (βq) ≡
(

cosh βq eiφ sinh βq

e−iφ sinh βq cosh βq

)
, (E12)

where βq ∈ [0,∞) is referred to as the boost parameter and
it has a dependence on the quasimomentum q, and φ is some
rotation angle. This resembles our recent work on QSP with
the Ising model.

This boost can be represented by simple conjugation as
follows:

Vq,φ (β ) = eiφKz
q eiβKx

q e−iφKz
q , (E13)

where Kx
q and Ky

q are linear combinations of the generators of
SU(1,1) algebra K+

q and K−
q in Eq. (E11).

Now we have all the elements we require for QSP. In fact,
we can build a photonic circuit with the repeated application
of phase boost in SU(1,1) [see Eq. (E13)]:

Sq,� =
d∏

k=0

Vq,φk (βq), (E14)

where � ∈ Rd+1 as per usual, and βq ∈ [0,∞). For more
details, we refer the reader to Ref. [28].
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