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The lattice thermal conductivity (LTC) of ZrSe2, a typical layered transition metal disulfide, has been calcu-
lated using a hybrid approach that combines force field molecular dynamics (MD) simulation and Boltzmann
transport equation (BTE). In this approach, the phonon quasiparticle picture of each normal mode can be obtained
directly by the velocity autocorrelation function and its power spectrum projected in q space. By employing the
retarded one phonon Green’s function method, the phonon quasiparticle frequency and lifetime of each indepen-
dent normal mode are effectively determined. On-the-fly machine learning force fields combine the precision of
quantum mechanics and the scale of classical MD to analyze sizable supercells with long-wavelength phonons.
This yields accurate LTC by using sufficient q samples in the Brillouin zone, which cannot be achieved at the
ab initio molecular dynamics scale. The convergent LTC tensor of bulk and monolayer ZrSe2 decays faster with
increasing temperature than the well-known 1

T scale, which is typically observed when considering only three
phonon scattering. The phonon lifetime and mean free path exhibit significant dependence on temperature. MD
simulations encompass all orders of anharmonic effects, thereby enabling an accurate description of anharmonic
interactions between phonons at finite temperatures. Moreover, this approach respects the contribution of each
normal mode to the LTC based on the BTE, which facilitates the quantitative analysis of phonon anharmonic
properties and the role of specific normal modes.
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I. INTRODUCTION

Thermal transport is a fundamental property of condensed
matter, in which heat is transmitted through microscopic col-
lisions of particles such as phonons and electrons [1]. In
nonmetallic solids, phonons are the primary heat carriers, and
anharmonic inelastic collisions between them significantly
impact thermal conductivity at temperatures close to or above
room temperature. The study of phonon anharmonic behav-
ior has always been a challenge in condensed matter theory.
Over time, numerous spectral phonon analysis methods have
emerged and been employed to investigate phonon scattering
[2–10]. However, these theoretical models often incorporate
empirical fitting parameters and lack predictive power, thus
hindering their widespread applicability.

The development of numerical methods based on the
Boltzmann transport equation (BTE) and molecular dynamics
(MD) simulation has improved the scope of application by
predicting lattice thermal conductivity (LTC) from the atomic
structure without relying on empirical fitting parameters. Gen-
erally, the phonon BTE [11–13] is based on the first-principles
approach and requires only the harmonic and anharmonic in-
teratomic force constant matrix as input. However, the cost of
calculation is high, and typically only third-order interactions
are used to handle anharmonic phonon interactions. While
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third-order interactions performed at the ground state can
capture essential phonon anharmonicity features, they may
not fully describe phonon quasiparticles at high temperatures
where higher-order processes can have a significant impact
on heat transfer [14,15]. Furthermore, this method is limited
in dealing with large or complex systems due to the scale of
simulations.

The MD method presents an alternative solution for the
calculation of heat transfer, as it considers all orders of
anharmonic terms and scales better with the system size.
Equilibrium MD based on the Green-Kubo method [16–21]
and nonequilibrium MD [22–24] based on Fourier’s law are
two accessible ways to evaluate LTC. However, its limitation
lies in the irreconcilability of computational accuracy and
simulation scale for a long time. In classical MD, the cal-
culation of particle velocity is dependent on the calculation
of position and potential energy, leading to numerical errors
due to the insufficient accuracy of interatomic potentials. Al-
though ab initio molecular dynamics (AIMD) simulations can
provide potential with quantum mechanical accuracy, they are
constrained by simulation scale. Fortunately, the regression
technique based on machine learning (ML) has emerged as a
promising tool for building interatomic potentials, which can
combine the accuracy of quantum mechanics with the com-
putational scale and efficiency of classical potentials [25–29].
The success of ML technology is contingent upon the avail-
ability of data that can be used to train and model the force
field of a particular crystal structure. Typically, these training
datasets are derived from AIMD, resulting in the force field
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potential model inheriting the precision of these calculations.
To reduce human intervention, the on-the-fly machine learn-
ing force field (MLFF) has gained more attention [30–32]. It
enables real-time calculation of each step of the MD simula-
tion, eliminating the need for a pretrained force field model
and accelerating the calculation process.

Nevertheless, the MD method is based on thermodynamic
statistical theory, and it cannot evaluate the contribution of
each normal mode to heat transport, limiting quantitative
analysis of phonon anharmonicity and the action of specific
normal modes. Due to the advantages of accuracy and scale
offered by MLFF, it brings more possibilities for us to develop
new methods for calculating LTC. In this paper, we use a
hybrid method that effectively combines the large-scale force
field molecular dynamics (FFMD) and the BTE to calculate
the LTC. The existence of phonon quasiparticles is a prereq-
uisite for performing thermodynamic property calculations. In
this method, phonon quasiparticles can be directly observed
and defined using the velocity autocorrelation function (VAF)
and power spectrum based on the FFMD simulation. The
relationship between the VAF and the phonon quasiparticle
frequency and lifetime is established based on the retarded
phonon Green’s function. By projecting the real-space VAF
onto all individual modes, temperature-dependent phonon fre-
quencies and lifetimes for all normal modes can be obtained,
which are further used to calculate the LTC based on the BTE.
It is worth noting that the mode-projected VAF depicts how
one mode interacts with all the other modes that are sampled
in the MD simulation. Hence, the number of q samples is
directly related to the number of primitive cells in the super-
cell used in the FFMD simulation. By implementing FFMD,
we are capable of analyzing sizable supercells with long-
wavelength phonons, which guarantees adequate q sampling
in the Brillouin zone (BZ) and engenders precise LTC compu-
tations that cannot be achieved through AIMD. We chose the
transition metal disulfide ZrSe2 as the research carrier. ZrSe2

has a moderate band gap of about 1.0–1.2 eV [33,34], which
makes it suitable for optoelectronic semiconductor devices
due to its excellent light absorption properties in the visible to
near-infrared spectral range. It also exhibits excellent electron
transfer rates, making it suitable as an electron transport layer
material in micro- and nanoelectronic devices, as well as a
thermoelectric resistor material in thermoelectric generators.
Therefore, an effective prediction of its LTC at finite tempera-
tures is of great significance in controlling the heat dissipation
and maintaining the performance stability of high-precision
microelectronic devices. We calculated the LTC of bulk phase
and monolayer ZrSe2 at finite temperatures. The temperature-
dependent anharmonic phonon properties, including the
frequency, the phonon lifetime, and the phonon mean free
path (MFP), were also predicted and discussed. This approach
surpasses the limitations of previous BTE methods, and en-
hances the precision of classical MD, presenting a promising
universal method for calculating the LTC of crystals.

II. METHODS AND COMPUTATIONAL DETAILS

A. Anharmonic phonon approach

For a lattice system, the retarded one phonon Green’s func-
tion of normal mode (q, s), denoted as λ for short, can be

defined as [35]

GR(λ, t ) = 1

ih̄
〈[uλ(t ), u†

λ(0)]〉θ (t ), (1)

where uλ = √
h̄/(2ωλ)(aλ + a†

−λ) denotes the normal mode
coordinates, h̄ is the reduced Plank constant, ωλ is the phonon
angular frequency, aλ and a†

−λ are the annihilation and gen-
eration operators, and θ (t ) is the step function, respectively.
Its Fourier transform GR(λ, ω) can be represented in terms of
phonon self-energy �(λ, ω) as

GR(λ, ω) = 1

ω2 − ω2
λ − 2ωλ�(λ, ω)

, (2)

where �(λ, ω) = �1(λ, ω) + i�2(λ, ω). Assuming that the
frequency dependence of �(λ, ω) is weak and |�(λ, ω)| �
ωλ, the real part �1(λ, ω) = �ωλ corresponds to the fre-
quency shift with respect to the harmonic frequency ωλ

and the imaginary part −�2(λ, ω) = �λ corresponds to the
phonon linewidth [35–37]. In this case, Eq. (2) can be simpli-
fied as

GR(λ, ω) ≈ − 1

ω̃λ

[
ω̃λ

ω̃2
λ − (ω + i�λ)2

]
, (3)

where ω̃λ = ωλ + �ωλ is the phonon quasiparticle frequency.
In the classical limit, the one phonon Green’s function can

be connected with the classical correlation function in the
frequency domain by the Kubo transform [18]:

GC (λ, ω) = −β〈v∗
λuλ〉ω = β

iω
〈v∗

λvλ〉ω. (4)

It is noted that the expression in the bracket of Eq. (3)
corresponds to the Fourier transform of the function
sin(ω̃λt )exp(−�λt )θ (t ). By comparing Eqs. (3) and (4), we
can extract the expression of the VAF:

〈v∗
λ(0)vλ(t )〉 = kBT cos(ω̃λt )exp(−�λt ), (5)

which shows the damped harmonic oscillator with an as-
sociated exponential function describing the mode lifetime.
Generally, the VAF for crystalline systems is defined as [38]

〈v∗
λ(0)vλ(t )〉 = lim

t0→∞
1

t0

∫ t0

0
vλ(t ′)vλ(t ′ + t )dt ′. (6)

And the mode-projected velocity, vλ(t ), can be expressed as

vλ(t ) =
N∑

j=1

√
Mjv j (t )exp(−iq · R j ) · êλ, (7)

where v j (t ) ( j = 1, . . . , N) are atomic velocities obtained
from MD with N atoms per supercell. êλ is the polariza-
tion vector of the harmonic phonon mode λ, which can be
routinely obtained by performing phonon calculations with
standard approaches such as the finite displacement method
and the density functional perturbation theory [39–41]. Mj

and R j are the atomic mass and coordinates of the jth atom in
the supercell. This projection assumes that phonon quasipar-
ticles at finite temperature share the same polarization vectors
with the corresponding harmonic phonons, in accordance with
the standard many-body theory that the êλ can be chosen as
an unperturbed basis and each phonon quasiparticle acquires
a self-energy through anharmonic interactions [42,43]. The
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anharmonic effects are taken into account by the frequency
shift �ωλ and the linewidth �λ, corresponding to the real and
imaginary parts of the phonon self-energy respectively.

For a well-defined phonon quasiparticle, the VAF of a
normal mode oscillates and decays in a finite correlation time.
Then the power spectrum of a phonon quasiparticle can be
obtained directly by the Fourier transform of the VAF [44,45]:

Gλ(ω) =
∫ ∞

0
〈v∗(0)v(t )〉λexp(iωt )dt . (8)

The typical power spectrum for a normal mode follows a
Lorentzian-type line shape, from which both the quasiparticle
frequency ω̃λ and the linewidth �λ can be extracted.

B. Lattice thermal conductivity

Phonon heat transport in anisotropic materials can be de-
scribed by Fourier’s equation:

J = −κi j∇T, (9)

where J is the heat flux density, κi j is the thermal conductivity
tensor, and ∇T is the temperature gradient. In the framework
of the quasiparticle gas model, phonons are treated as finite
lifetime harmonics that interact only through instantaneous
collisions. Under this approximation, each phonon normal
mode can be regarded as a quasiparticle with energy h̄ωq,s

and velocity vq,s, thus we can get the expression of

J = 1

Nq


∑
q,s

f h̄ωq,svq,s, (10)

where Nq is the number of q points in the Brillouin zone, 


is the volume of the unit cell, and f is the occupation number
of phonons in an energy level (state), which deviates from the
equilibrium Bose-Einstein distribution function f0 due to the
existence of a temperature gradient. To obtain the specific ex-
pression of f , we introduce the Boltzmann transport equation,
which can describe the transport problems caused by phonons,
electrons, or other particles quantitatively.

When the system reaches a dynamic equilibrium state
driven by temperature, we can obtain the equation [46,47]

∂ f

∂t

∣∣∣∣
temp

+ ∂ f

∂t

∣∣∣∣
scatt

= 0. (11)

The first term represents the deviation from the equilibrium
state caused by temperature and the second term stands for the
scattering of phonons. Introducing the temperature gradient,
Eq. (11) can be further written as

∂ f

∂t

∣∣∣∣
scatt

= −∂ f

∂t

∣∣∣∣
temp

= −vq,s∇T
∂ f

∂T
. (12)

Since the deviation of phonon distribution from the equilib-
rium state f0 is small, Eq. (12) can be solved by introducing a
mean phonon lifetime τq,s to linearize the scattering term:

∂ f

∂t

∣∣∣∣
scatt

= f − f0

τq,s
. (13)

By combining Eqs. (12) and (13), we can obtain the expres-
sion of f as

f = f0 − vq,sτq,s∇T
∂ f

∂T
. (14)

Due to the small deviation introduced by the temperature
gradient, the second term in Eq. (14) can be replaced by
−vq,sτq,s∇T ∂ f0

∂T . By substituting Eq. (14) into Eq. (10), we
can get

J = 1

Nq


∑
q,s

h̄ωq,sv
α
q,s

(
−vβ

q,sτq,s∇T
∂ f0

∂T

)
. (15)

By comparing Eqs. (9) and (15), we can obtain the expression
of lattice thermal conductivity tensor καβ as

καβ =
∑
q,s

Cv (q, s)vα
q,sv

β
q,sτq,s (16)

where v
α(β )
q,s is the group velocity component along the α(β )

direction; τq,s is the phonon lifetime of mode (q, s); Cv (q, s)
is the mode specific capacity of the following expression:

Cv (q, s) = kB

Nq


(
h̄ωq,s

kBT

)2

f0( f0 + 1) (17)

where kB is the Boltzmann constant.

C. DFT calculations

Structure optimization and AIMD simulations were per-
formed using density functional theory with the projected-
augmented-wave method [48], as implemented in the VASP

(version 6.3.0) package [49]. The electron exchange and cor-
relation potential was described using the generalized gradient
approximation with the Perdew-Burke-Ernzerhof form [50].
A vacuum thickness of 20 Å was employed in the normal
direction (z axis) of monolayer ZrSe2 to avoid the spurious
interaction among periodic images. For structure optimization
with the primitive cell, the 9 × 9 × 6 and 9 × 9 × 1 k-point
meshes were used for the BZ integration [51] for bulk and
monolayer ZrSe2 respectively. The plane wave cutoff energy
was set to 350 eV. The harmonic force constant matrix was
computed using the supercell and the finite displacement
method with a displacement amplitude of 0.01 Å. The 4 × 4 ×
2 and 4 × 4 × 1 supercells were employed for bulk and mono-
layer ZrSe2, respectively. The harmonic phonon dispersion
relations and polarization vectors were then obtained using the
PHONOPY [41] postprocessing package. For all AIMD calcula-
tions, 4 × 4 × 2 and 4 × 4 × 1 supercells were used for bulk
and monolayer ZrSe2, respectively. The canonical ensemble
(NV T ) was utilized in all MD simulations, with temperature
oscillations being controlled by the Nosé thermostat [52].

III. RESULTS AND DISCUSSIONS

A. Training procedure

The on-the-fly machine learning approach [31,53] has been
employed to enhance simulation speed. The VASP (version
6.3.0) package provides a comprehensive platform that com-
bines force field potential training and FFMD simulations.
Bayesian linear regression is utilized in the ridge regression
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FIG. 1. The crystal structure of bulk ZrSe2 (a) in the side view
and (b) in the top view. (c) The root-mean-square error of force
(RMSE) and the Bayesian error estimation of force (BEEF) (eV/Å)
change over the last 20 ps of the force field prediction compared to
the AIMD result.

method of machine learning to solve linear equations. The
currently employed cutoff radius for the radial descriptor and
angular descriptor in the MLFF method are 8.0 and 5.0 Å,
respectively. The width of the Gaussian functions used for
broadening the atomic distributions in the radial descrip-
tor and angular descriptor of the MLFF method is set at
0.5 Å. To begin, we generated a 4 × 4 × 2 (96-atom) su-
percell for bulk ZrSe2 and a 4 × 4 × 1 (48-atom) supercell
for monolayer ZrSe2. The training procedure was carried
out in two stages. Initially, annealing was conducted us-
ing AIMD simulations, with a temperature range from 600
to 300 K over 80 000 MD steps with a time step of 2
fs. In the second stage, the temperature range of 800 to
100 K, with temperature decrements of 100 K, was used. At
each temperature, 20 000 MD steps were performed using
a time step of 2 fs, resulting in a total of 160 000 AIMD
steps (320 ps). Actually, in the training process, most of the
AIMD steps were substituted with exceedingly rapid force
field steps.

The in-sample error, represented by the root-mean-square
error (RMSE), denotes the average error within the training
set. Conversely, the out-of-sample error or generalization error
is the average error that arises when analyzing a new random
configuration of the same ensemble. A well-trained force field
should exhibit minimal out-of-sample error. The Bayesian
error provides an evaluation of the out-of-sample error and
tracks the progress of force field training. In Fig. 1(c), RMSE
and Bayesian error estimation of force (BEEF) are displayed
for the last 20 ps of force field predictions, as compared
to AIMD results. Notably, both RMSE and BEEF demon-
strate satisfactory convergence. For both bulk and monolayer
phases, the RMSE of force converges to exceptionally small
values of 0.11 and 0.09 eV/Å, respectively. Correspondingly,

the BEEF oscillates around 0.015 eV/Å for both phases,
demonstrating excellent generalization error convergence. To
assess the accuracy of the trained force field, we conducted
a series of tests comparing it to AIMD results, including
analysis of the pair correlation function g(r) and the proba-
bility distribution of atomic displacements. Figure S1 in the
Supplemental Material [54] illustrates that the g(r) at 300 K
calculated from the FFMD displays excellent agreement with
AIMD results, with negligible errors. Figures S2 and S3 in
the Supplemental Material [54] showcase the probability dis-
tribution of atomic displacements for Zr and Se atoms in the
bulk and monolayer phases. At 300 K, all the Zr and Se
atoms exhibit vibrations around the equilibrium lattice points,
displaying a Gaussian function distribution. This highlights
the stability of the bulk and monolayer phases at finite temper-
ature [55,56]. Furthermore, the distribution functions obtained
from both FFMD and AIMD simulations demonstrated good
agreement with each other, once again establishing the accu-
racy of the force field functions.

B. Phonon quasiparticle

Bulk ZrSe2 crystalizes in the CdI2 structure with the P3̄m1
(164) space group, where the primitive cell contains one Zr
and two Se atoms. The layers consist of a Se-Zr-Se sand-
wichlike atomic sequence, as presented in Figs. 1(a) and 1(b).
Due to the weak van der Waals interactions between layers,
the monolayer ZrSe2 can be directly extracted from the bulk.
The optimized lattice parameters are a = b = 3.79 Å and c =
6.66 Å for the bulk phase, and a = b = 3.80 Å for the mono-
layer ZrSe2, consistent with previous experimental [57,58]
and theoretical [59–61] values. Phonon quasiparticles can be
directly observed and defined using the VAF and the power
spectrum obtained from the FFMD simulation. As such, we
calculated the VAFs for all the normal modes using Eq. (6).
Figure 2 shows the VAFs of two representative normal modes,
namely mode 6 at q = (0, 1

12 , 0) and mode 7 at q = ( 2
12 ,

1
12 , 0), of monolayer ZrSe2 at 300 and 600 K, respectively.
All VAFs exhibit damping oscillations over time, indicating
well-defined phonon quasiparticles. We extract phonon quasi-
particle frequencies and linewidths by fitting these VAFs to an
exponentially decaying cosine function following Eq. (5).

For mode 6 at q = (0, 1
12 , 0), the fitting curve with pa-

rameters (ω̃q,s, �q,s) of (3.88 THz, 0.67 THz) concurs well
with the VAF produced by the FFMD simulation at 300 K, as
presented in Fig. 2(a). Similarly, for mode 7 at q = ( 2

12 , 1
12 , 0),

the corresponding fitting values are (5.01 THz, 0.52 THz). As
temperature rises to 600 K, a significantly greater damping
rate is observed for both modes, implying a shorter phonon
quasiparticle lifetime. The fitted (ω̃q,s, �q,s) values of mode
6 and mode 7 are (3.81 THz, 1.19 THz) and (4.93 THz, 1.08
THz) respectively. Notably, the phonon power spectrum Gq,s

in phase space that is directly obtained by the Fourier trans-
form of the VAF using Eq. (5) can also extract the quasipar-
ticle frequency and linewidth. Figures 2(e) and 2(f) illustrate
the power spectra of these two modes at 300 and 600 K, re-
spectively. For a well-defined phonon quasiparticle, its power
spectrum has a Lorentzian line shape [37,44]. As illustrated
in Figs. 2(e) and 2(f), all power spectra exhibit a single-peak
Lorentzian line shape, indicating the soundness of the phonon
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FIG. 2. (a) The VAFs of mode 6 in q = (0, 1
12 , 0) at 300 K for

monolayer ZrSe2. (b) The VAFs of mode 7 at q = ( 2
12 , 1

12 , 0) at
300 K for monolayer ZrSe2. (c) The same as (a) but for 600 K.
(d) The same as (b) but for 600 K. The black curves are calcu-
lated directly by the mode-projected velocities based on the FFMD
simulations. The cyan/red curves are obtained by fitting the VAFs
according to Eq. (5). (e, f) The power spectrum, Gq,s, of mode 6
and mode 7 at 300 and 600 K. The dashed black line indicates the
harmonic frequency of 4.14 THz for mode 6 and 5.26 THz for mode
7 respectively.

quasiparticle concept. The renormalized phonon frequency
and linewidth correspond to the peak position and the full
width at half maximum (FWHM), respectively. The extracted
(ω̃q,s, �q,s) values of mode 6 are (3.88 THz, 0.67 THz) for
300 K and (3.81 THz, 1.18 THz) for 600 K, in good agree-
ment with the values obtained by the fitting approach, which
corroborates the validity and precision of the fitting approach.
For mode 7, the frequency and linewidth obtained by both
methods are equally consistent. Compared to the harmonic
frequency of 4.14 and 5.26 THz, the frequency of both modes
shows a redshift due to the anharmonic effect. With an in-
crease in temperature, the FWHM of the curve increases,
leading to a decrease in lifetime. As temperature increases
from 300 to 600 K, the lifetime is reduced from 0.75 to 0.42 ps
for mode 6 and from 0.96 to 0.46 ps for mode 7, respectively.
Figures S4 and S5 in the Supplemental Material [54] also
provide the fitting outcomes for other normal modes, namely
all nine normal modes at q = ( 1

4 , 0, 0) in bulk and monolayer
ZrSe2. In this manner, the frequencies and lifetimes of all
normal modes sampled in the BZ can be determined.

C. Lattice thermal conductivity

The MLFF largely enhances the scale of simulations,
which ensures sufficient q points in the BZ to yield accurate
results for LTC calculations. The convergence of LTC with

FIG. 3. (a) The dependence of lattice thermal conductivity κ

(W m−1 K−1) on the number of q points in the BZ of monolayer
ZrSe2 at 300 K. (b) The contribution of acoustic and optical phonon
branches to the total lattice thermal conductivity using a q-point
mesh of 12 × 12 × 12 for bulk phase and 12 × 12 × 1 for monolayer
ZrSe2 respectively.

respect to the supercell size or q-point mesh in the BZ has
been checked. In MD simulations, the monolayer ZrSe2 offers
a lower-dimensional advantage compared to the bulk phase.
Additionally, it provides higher computational efficiency at
the same scale. Therefore, we selected the monolayer ZrSe2

to evaluate the convergence of supercells (q-point mesh). We
constructed a supercell ranging from 4 × 4 × 1 to 15 × 15 ×
1 for the monolayer ZrSe2 to conduct the FFMD simulations.
This corresponds to a q-point range of 42 to 152 in the BZ for
calculating the LTC.

As shown in Fig. 3(a), the LTC curve increases as the
number of q points increases. For a q-point mesh of 42, which
is typically used in AIMD [56,62], the calculated LTC values
are 1.41, 1.25, and 0.73 W m−1 K−1 along the x, y, and xy
directions, respectively. It is important to note that the LTC
value for this q-point mesh has not yet reach convergence. As
the density of q points increases, the LTC value significantly
increases. All the predicted LTC values converge at around a
102 q-point mesh. Further increasing the supercell size, the
change in LTC is minimal along the three crystal directions.
In general, a q-point mesh of 122 can effectively balance
accuracy and computational scale, resulting in LTC values
of 2.46, 1.90, and 1.41 W m−1 K−1 along the x, y, and xy
directions, respectively. Increasing the q-point mesh to 152,
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the differences in LTC are less than 5%. Therefore, for subse-
quent calculations, we selected a 12 × 12 × 1 supercell (432
atoms) to calculate the LTC of the ZrSe2 monolayer. Since
the bulk and monolayer phases have identical atomic structure
environments, we used the same scale as the monolayer for
the bulk phase ZrSe2, namely a 12 × 12 × 12 supercell (5184
atoms).

Compared with the pure MD approach for calculating LTC,
the present method allows us to evaluate the contribution of
each normal mode to LTC based on the BTE. By projecting
the real-space VAF onto all individual modes with (q, s), we
can effectively evaluate the contribution of each normal mode
to LTC. In Fig. 3(b), it is shown that along the x direction the
acoustic branch plays a major contribution to the LTC for both
bulk and monolayer ZrSe2. Specifically, in the bulk phase, the
mode-3 (LA) branch contributes the most to the LTC with a
contribution of 35.2%. In the monolayer ZrSe2, the mode-2
(TA2) branch and mode-3 (LA) branch play a major role in
the LTC with contributions of 25.3 and 21.8% respectively, as
shown in Fig. S6 in the Supplemental Material [54]. Along
the y direction, the contribution of optical branches to LTC
is slightly higher than that of acoustic branches for bulk and
monolayer ZrSe2. The mode-5 (LO) branch becomes signif-
icant in its contribution, contributing 30.6% to the total LTC
in the bulk phase. The LTC along the xy direction is lower
than that in the x and y directions for both phases, where
acoustic and optical branches contribute almost equally to the
LTC. The mode-6 (TO) mode contributes negligibly to LTC
in both bulk and monolayer ZrSe2, mainly due to the flat band
property of its phonon dispersion relation as shown in Fig. S7
in the Supplemental Material [54], resulting in an extremely
low phonon group velocity.

The phonon lifetime and MFP are temperature dependent
in monolayer ZrSe2. Figure 4 illustrates the frequency-
dependent phonon lifetime and MFP at temperatures of 100,
300, and 600 K. As the temperature increases, the phonon
lifetimes decrease due to stronger anharmonic interaction,
particularly for the optical modes. The cutoff frequency of
the acoustic branch is approximately 3.5 THz (Fig. S7 in the
Supplemental Material [54]), consistent with the Debye tem-
perature of 175 K for ZrSe2. This temperature was calculated
using density functional perturbation theory (DFPT) based on
the stress-strain relationship of elastic strain [39,63–66]. In
general, phonon lifetimes decrease with increasing phonon
frequencies following the relation 1/τq,s ∝ ω̃2

q,s. All phonon
lifetimes are distributed below 20 ps. Optical modes are more
sensitive to temperature, with lifetimes concentrated below 3
ps at 100 K and decreasing to within 1 ps at 600 K. This
decrease in lifetimes is accompanied by a decrease in the
MFP of phonons, as shown in Fig. 4(b). The distribution of
phonon group velocity vg indicates that there is no significant
difference in the vg between the acoustic branch and the op-
tical branch (Supplemental Material Fig. S8). Therefore, the
difference in phonon MFPs is primarily caused by the phonon
lifetime. Most MFPs of optical modes are less than 40 Å,
which is within the simulation scale of the FFMD supercell,
approximately 45.6 Å for both bulk and monolayer ZrSe2.

According to Eq. (16), we have calculated the LTC tensor
of both bulk and monolayer ZrSe2 in the temperature range of
100 < T < 600 K. The results of κ as a function of 1

T (inverse

FIG. 4. (a) The predicted phonon lifetime (ps) and (b) MFP (Å)
of monolayer ZrSe2 as a function of frequency (THz) at 100 (cyan
circles), 300 (green circles), and 600 K (red circles) respectively.

temperature) are shown in Fig. 5. Notably, with the increasing
of temperature, the LTC decays faster than the well-known 1

T
scaling, which is typically observed when considering only
three phonon scattering. This behavior is due to the nature of
the FFMD simulation, which effectively captures anharmonic

FIG. 5. (a) The predicted lattice thermal conductivity tensor
(W m−1 K−1) of bulk and monolayer ZrSe2 as a function of inverse
temperature 1

T (10−2 K−1). The temperature ranges from 100 to
600 K. With increasing temperature, κ decays faster with tempera-
ture than the well-known 1

T scale.
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FIG. 6. A comparison of the calculated LTC of bulk and mono-
layer ZrSe2 using different methods: the relaxation-time approxima-
tion (RTA), the linearized phonon Boltzmann equation (LBTE), the
Wigner transport equation (WTE), the Green-Kubo equation, and the
present anharmonic phonon approach (APA).

effects up to infinite orders. Traditionally, the LTC between
planes cannot be predicted using the BTE method based on the
DFPT due to computational limitations. However, by taking
advantage of the scalability offered by FFMD, our current
approach can effectively predict the interlayer LTC of bulk
ZrSe2, as shown in Fig. 5. The interlayer LTC values, ranging
from approximately 0.15 to 0.25 W m−1 K−1 between 100 and
600 K, are consistent with experimental results and general
understanding of layered materials. This ultralow LTC is at-
tributed to the combination of extremely low phonon group
velocity and phonon lifetime along the interlayer direction.

To provide a comprehensive comparison, we have subse-
quently employed several well-established approaches com-
monly used in the research community to calculate the LTC
of bulk and monolayer ZrSe2. These methods include the
relaxation-time approximation (RTA), the linearized phonon
Boltzmann equation (LBTE) [67], and the Wigner transport
equation (WTE) [68,69] based on three phonon processes.
Additionally, the LTC is also calculated via the Green-Kubo
method [16–19] based on the heat flux autocorrelation func-
tion from FFMD. To provide more clarity, we have included
detailed calculation methodologies and intricacies in the Sup-
plemental Material [54]. In Fig. 6, all these results have
been contrasted with our results. We can clearly observe the
contribution of higher-order anharmonic phonon processes
to LTC by comparing the results obtained considering only
three phonon processes with those including higher-order
phonon processes. The LTC obtained by RTA, LBTE, and
WTE methods is significantly higher than that obtained us-
ing the Green-Kubo method and the present anharmonic

phonon approach, especially below the Debye temperature
of 175 K for ZrSe2. Our results agree well with those ob-
tained from the Green-Kubo method, both of which involve
higher-order phonon processes introduced by the FFMD. By
studying the heat flux autocorrelation function (Supplemental
Material Fig. S9 [54]), we observe a clear increase in the
thermal dissipation rate with temperature. The consideration
of higher-order phonon processes significantly enhances the
phonon scattering rate, leading to a reduction in LTC. Addi-
tionally, we demonstrate the effect of phonon anharmonicity
on vibrational entropy [70]. As shown in the Supplemental
Material Fig. S10 [54], our results reveal a significant increase
in the difference between the vibrational entropies obtained
using the anharmonic phonon approach and the harmonic
approximation method as the temperature increases. These
findings highlight the importance of higher-order anharmonic
phonon processes in governing thermal transport.

IV. SUMMARY

In this paper, the LTC of layered transition metal disulfide
ZrSe2 is theoretically calculated in combination with machine
learning FFMD calculations and the Boltzmann transport
equation. The use of FFMD effectively expanded the compu-
tational scale of AIMD calculations and broadened the range
of calculation methods available for lattice thermal conduc-
tivity. Molecular dynamics has methodological advantages
in considering phonon anharmonic effects, encompassing all
order anharmonic interactions between phonons, and thereby
effectively avoiding the explosion of calculation dimension
caused by high-order force constant terms in the potential
function series expansion method. At the same time, this
method can quantify the anharmonicity of each normal mode,
which is of great value in analyzing physical phenomena such
as high-temperature phase transitions and superconductivity
caused by specific normal modes. The phonon lifetime and
mean free path of ZrSe2 exhibit significant dependence on
temperature. The decrease in the LTC tensor with increasing
temperature surpasses the typical 1

T scale, due to the inclu-
sion of higher-order phonon anharmonic interactions, which
is consistent with the results of the Green-Kubo method. The
contribution of each individual normal mode to the LTC of
ZrSe2 is successfully traced based on the BTE, which is
helpful for accurate control of the LTC. This method has
universality in calculating LTC in bulk and low-dimensional
crystals, as well as interlayer LTC of layered materials.
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