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Optimal encoding of two dissipative interacting qubits
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We investigate a system of two coupled qubits interacting with an Ohmic bath as a physical model for the
implementation of one logical qubit. In this model, the interaction with the other qubit represents unitary noise,
while the Ohmic bath is responsible for finite temperature. In the presence of a one-dimensional decoherence-free
subspace (DFS), we show that, while this is not sufficient to protect a qubit from decoherence, it can be exploited
to encode one logical qubit with greater performance than the physical one. We show different possible strategies
for the optimal encoding of a logical qubit through a numerical analysis based on matrix product states. This
method reproduces faithfully the results of perturbative calculations, but it can be extended to cases of crucial
interest for physical implementations, e.g., in the case of strong coupling with the bath. As a result, a logical
qubit encoded in the subspace which is the direct sum of the antiferromagnetic states in the Bell basis, namely
the DFS and the antiferromagnetic state in the triplet, is the optimally robust one, as it takes advantage of both
the anchoring to the DFS and the protection from the antiferromagnetic interaction.
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I. INTRODUCTION

Optimal control of a qubit is of fundamental importance for
the implementation of quantum technologies, the construction
of reliable quantum devices, and quantum information pro-
cessing [1–3].

In the past two decades, there has been a significant in-
crease of interest in the encoding of information in quantum
computing, both from experimental and theoretical perspec-
tives [4,5]. This surge of interest can be attributed to the
ongoing need for improved techniques for optimal control
in quantum systems. Researchers have developed and widely
employed active and passive methods to protect quantum
systems from decoherence and environmental effects. Active
approaches involve the use of quantum error correction codes
(QECCs) [6], while passive approaches are focused on noise-
less quantum codes such as decoherence-free subspace (DFS)
or topological codes [7].

Extensive studies have focused on DFS implementation,
including investigations of quantum registers [8] and the pair-
ing of qubits with ancillas [9]. Experimental demonstrations
conducted during this time have showcased the ability of
quantum computers to execute algorithms such as Shor’s
factorization [10] and Grover’s search [11] by encoding in-
formation in DFS. Moreover, in Ref. [12], universal control
was demonstrated in a DFS-encoded qubit in a system of two
nuclear spins using liquid state nuclear magnetic resonance
techniques.

However, several limitations have been identified regarding
the use of DFS in real experimental implementations [13].
In practice, they depend on the fact that DFSs are based on
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fine-tuned symmetries that are hardly realistic. More realis-
tically, though, the noise model may break most symmetries
and shrink them to a point where they are useless.

In recent years, attempts have been made to generalize
the idea of DFS and combine it with other methods, such
as dynamical decoupling, to achieve better performance in
quantum computation with spin chains [14]. Furthermore,
researchers have explored the application of DFS in various
systems, ranging from solid-state qubit implementations to
waveguide quantum electrodynamics [15–17].

In this paper, we study a model where a single qubit
is interacting unitarily with another qubit and both qubits
are placed in an Ohmic bath. As a result, there is no two-
dimensional DFS and therefore no protected qubit. However,
a one-dimensional DFS survives. One may think of making
a qubit with two such DFSs, but then one should take into
account the coupling between these two degrees of freedom.
Similarly, one can make one qubit by taking the DFS and
another one-dimensional subspace in the space of two qubits.
Both cases model the presence of additional unitary noise.
In this paper, we focus on the latter, more fundamental case,
which includes the fact that once one couples a DFS to another
subspace that is subject to dissipation, the whole qubit is
spoiled.

Yet one is tempted to think that anchoring part of the
qubit to the DFS might increase its protection, as some of
the decaying rates are canceled, as was shown in the pertur-
bative case in Ref. [18]. In this paper, we thoroughly study
the optimal encoding of a logical qubit by exploiting the DFS
and using the matrix product state (MPS) ansatz of tensor
networks [19–22] numerical technique, which allows us to
go beyond the weak-coupling limit and consider system-bath
interactions [23–26] that are more realistic and amenable to
experimentation.
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We find that all the logical encodings that exploit the DFS
perform better than the physical qubits. Moreover, we find that
the optimal encoding results in the qubit made of the DFS
and the other antiferromagnetic state in the triplet. In this way,
both the symmetry of the interaction with the bath and the
symmetry of the spin-spin interaction conspire to achieve the
best performance.

We begin by summarizing the main results of this work
in Sec. II, where we examine the logical subspace of the
encoded qubit for three different strategies and compare it
with the physical one. We demonstrate that the antiferromag-
netic strategy is the optimal choice. In Sec. III, we present
the dissipative model comprising two interacting qubits in an
Ohmic bath, along with the spectrum of the closed-system
Hamiltonian. Additionally, we analyze the effects of the bath
on the free evolution of the open system for the physical qubits
through the fidelity. Next, in Sec. IV, we introduce three en-
coding strategies Secs. IV A 1, IV A 2, and IV A 3) that encode
information from the two physical qubits into one logical
qubit. We proceed to optimize these strategies and compare
their performance in Sec. IV B, using fidelity and leakage (de-
fined in the main text) as measures of the effect of the bath on
the chosen encoding strategy. Then, we analyze what happens
in the new logical subspace to the purity of the best strategies
(Sec. IV C). Finally, in the concluding section, Sec. V, we
summarize and further discuss our findings. In Appendix A,
we compare the Lindblad master equation solutions and the
MPS numerical simulations. Furthermore, in Appendix B we
observe that also the fidelity in the logical subspace of the
best encoded qubit remains very high during the evolution.
Finally, in Appendix C we examine the impact of increasing
system-bath coupling on the best encoding strategy we have
identified.

II. OVERVIEW OF THE KEY FINDINGS

In this paper, we present strategies [antiferromagnetic
(AFM), symmetric (SYMM), and nonsymmetric (NSYMM);
see Sec. IV] for encoding information in a qubit subjected
to both unitary and nonunitary noises. We demonstrate that
by optimizing with respect to the fidelity of free evolution
compared with evolution in the presence of the environment,
these strategies outperform simply encoding information in a
physical qubit. This is evident in Fig. 1, where we operate
within the new logical subspaces chosen to implement these
encoding strategies and average over the pure states located
on the surface of the new logical Bloch sphere. The figure il-
lustrates fidelity [Fig. 1(a)], which measures the effect of the
bath on the encoded qubit’s dynamics, and purity [Fig. 1(b)],
which remains near 1, ensuring us that the new qubit remains
in a quantum state.

Furthermore, from the plots, we can discern that the best
strategy is the AFM strategy, with more details provided in
Sec. IV A 1. In fact, the fidelity consistently oscillates around
a value of 0.98 [see the inset in Fig. 1(a)] throughout our
simulation time, while the purity exhibits a similar trend for
extended time intervals around an asymptotic value of 0.97.
This exceptional performance of the AFM strategy stems from
our utilization of the two antiferromagnetic states in the Bell
basis for the up and down states, harnessing the power of

FIG. 1. Fidelity F (t ) of the free evolution with the open-system
evolution (a) and purity P(t ) (b) for encoded qubits AFM (red cir-
cles), SYMM (blue squares), and NSYMM (green inverted triangles;
more details on the definitions are given in the main text) and one
physical qubit (orange pentagons) as functions of dimensionless
time �t for ν = −5�, α = 0.01, and the initial state |ψL (0)〉 =
cos θ |↑L〉 + eiφ sin θ |↓L〉, where θ and φ sample all the logical qubit
Hilbert space. We average the fidelity and the purity over 18 real-
izations of these angles. The symbols in the plots correspond to the
average value of the fidelity and the purity, while the shaded regions
around them show the range of values covered by the standard
deviation of the fidelity and the purity.

the DFS and the antiferromagnetic interaction (ν = −5�).
Consequently, we establish a quasi-one-dimensional DFS that
exhibits remarkable resilience to bath effects over extended
durations and in the presence of a significantly strong coupling
to the environment.

III. DISSIPATIVE TWO-INTERACTING-QUBIT MODEL

We are considering a system of two interacting qubits im-
mersed in an Ohmic common bath, which is composed of a
set of N harmonic oscillators. The model we are considering
assumes a zero-temperature thermal bath, and we set h̄ = 1.
The Hamiltonian that describes the system is given by

H = Hqub + Hbath + Hqub-bath. (1)

Here, the energy of the qubits, Hqub, is

Hqub = −�

2

(
σ 1

x + σ 2
x

) − ν

2
σ 1

z σ 2
z , (2)

with � being the frequency of the two qubits, labeled with the
superscripts “1” or “2”; ν being the strength of the interaction
between them; and σ

j
i , with i = x, y, z and j = 1, 2, being the

Pauli matrices. The bath Hamiltonian Hbath is

Hbath =
N∑

i=1

ωia
†
i ai, (3)

with ωi being the frequencies of the bath modes and ai (a†
i )

being the annihilation (creation) operators for the N harmonic
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FIG. 2. Energy spectrum (in units of �) of the closed system
consisting of two interacting qubits, as described by the Hamiltonian
Hqub, as a function of the ratio ν/�.

oscillators. The qubits-bath interaction Hamiltonian Hqub-bath

is given by

Hqub-bath = (
σ 1

z + σ 2
z

) N∑
i=1

λi(ai + a†
i ), (4)

with λi being the couplings between each qubit and each bath
mode. We set the coupling in this way because the long-
wavelength limit applies to the case of two qubits [27]. The
coupling to the bath α is defined in such a way that the bath
spectral density J (ω) can be written as follows:

J (ω) =
N∑

i=1

| λi |2 δ(ω − ωi ) = α

2
ω f

(
ω

ωc

)
, (5)

where f ( ω
ωc

) is a function depending on the cutoff frequency
for the bath modes ωc, ruling the behavior of the spectral
density at high frequencies. This function can be f ( ω

ωc
) =

�( ωc
ω

− 1), where �(x) is the Heaviside step function, or
an exponential decay f ( ω

ωc
) = e− ω

ωc . This cutoff frequency is
typically chosen to be of the order of the largest energy scale
in the system.

To gain a deeper understanding of how states affect the
dynamic behavior of the system, we begin by diagonalizing
the closed Hamiltonian H0 = Hqub. The resulting spectrum is
shown in Fig. 2:

E
(

ν
�

)
�

=
{

−
√

1 +
( ν

2�

)2
; − ν

2�
;

ν

2�
;

√
1 +

( ν

2�

)2
}

.

(6)
The corresponding four eigenstates of the closed system can

be written in the Bell basis [28] {|S〉 ≡ |−〉 , |T, AFM〉 ≡
|+〉 , |T, FM+〉 ≡ |�+〉 , |T, FM−〉 ≡ |�−〉}, where
S stands for “singlet,” T stands for “triplet,” and the
specifications AFM and FM stand for “antiferromagnetic”
and “ferromagnetic,” respectively. Hence the Hamiltonian
eigenstates read

|0〉 =a
( ν

�

)
|T, AFM〉 − b

( ν

�

)
|T, FM+〉 , (7)

|1〉 = |T, FM−〉 , (8)

|2〉 = |S〉 , (9)

|3〉 = a

(
ν

�

)
|T, FM+〉 + b

( ν

�

)
|T, AFM〉 , (10)

where 0,1,2,3 go from the ground state (0) to the most excited
one (3). The two coefficients a and b depend only on the
parameters of the Hamiltonian and are defined as

a

(
ν

�

)
= 2√

4 +
(

ν
�

+
√

4 + (
ν
�

)2
)2

, (11)

b

(
ν

�

)
= −

√
4 + (

ν
�

)2 + ν
�√

4 +
(

ν
�

+
√

4 + (
ν
�

)2
)2

. (12)

To thoroughly explore the entire Hilbert space and iden-
tify the optimal encoding strategy that remains independent
of the initial state, we opt to sample from a uniform dis-
tribution. Specifically, we set the initial state as a linear
combination of the singlet |S〉 and the triplet in the Bell basis
{|T, AFM〉 , |T, FM+〉 , |T, FM−〉} as follows:

|ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉
+ dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉 . (13)

Here, the coefficients dT,AFM, dT,FM+, and dT,FM− are com-
plex numbers, but we choose to make a discretization such
that their squared magnitudes can take on one of the values
{0.0, 0.25, 0.5, 0.75, 1.0}, and their phases can be one of the
values {0, π

2 , π, 3
2π}. This results in M = (5 × 4)4 = 204 =

160 000 potential initial states. To eliminate redundancy, we
remove the inessential global phase, arbitrarily setting the
first coefficient dS to be real. States where the magnitude is
0 but the phase differs from 0 are also discarded, as they
lead to double counting. Additionally, configurations violating
the normalization condition, where the sum of the squared
magnitudes of the four coefficients deviates from 1, are omit-
ted. Through a code designed to check these conditions, we
reduce the count from M = 160 000 to M = 332 different
realizations of the initial state, over which we compute the
average fidelity over time.

In order to verify whether our sampling of the entire Hilbert
space is sufficiently faithful, we compute the quantity∣∣∣∣∣

∣∣∣∣∣ 1

M

M∑
i=1

ρi(0) − I

4

∣∣∣∣∣
∣∣∣∣∣
F

, (14)

where M is the number of realizations, in our case 332, ρi(0)
is the initial state of the ith realization, I is the identity matrix,
and the used matrix norm is the Frobenius one. We expect this
norm to be zero if the sampling is correct, and indeed it is zero
within our numerical precision (�10−15).

Bath effects on the qubits

Our goal is to investigate the influence of the bath on the
physical qubits and the encoded qubit. To achieve this, we
compute the Uhlmann fidelity F of the density matrix of the
open system, ρo(t ), with respect to that of the closed system
(without bath interaction) ρc(t ) [28] by using MPS numerical
simulations (Appendixes A and E):

F [ρo(t ), ρc(t )] = Tr{
√√

ρo(t )ρc(t )
√

ρo(t )}. (15)
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FIG. 3. Fidelity F (t ) of the free evolution of one physical qubit
with the open-system evolution as a function of dimensionless time
�t for α = 0.01 and ν = −5� (red circles), ν = 0� (blue squares),
and ν = 5� (green inverted triangles) in (a) and for ν = −5�

and α = 0.005 (red circles), α = 0.01 (blue squares), and α = 0.02
(green inverted triangles) in (b). The initial state is |ψ (0)〉 = dS |S〉 +
dT,AFM |T, AFM〉 + dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS ,
dT,AFM, dT,FM+, and dT,FM− sample all of the two-qubit Hilbert space.
We average the fidelity over 332 realizations of these coefficients.
The symbols in the plots correspond to the average value of the
fidelity, while the shaded regions around them in light colors show
the range of values covered by the standard deviation of the fidelity.

We use � as the energy unit and set the value of the cou-
pling to the bath, α, in the range [0.005, 0.02] (Appendix C).
This range allows us to analyze the typical coupling regime
where the effect of the bath can be detrimental [24,29]. We
also analyze the system for different values of ν, specifically
ν = {−5, 0, 5}�.

When examining the fidelity of a single physical qubit over
time, averaged over all possible initial states (see Fig. 3), we
observe a minimum value at short times of about 0.8 for the
mean value and 0.6, considering the standard deviation, for all
values of α and ν. In particular, when varying the interaction
strength ν [see Fig. 3(a)], we observe that the worst-case
scenario occurs for ν = 0�, both for the mean value of the
oscillations and the standard deviation. This effect stems from
the interaction with the bath. The qubits tend to reach their
ground state earlier due to entanglement with the bath rather
than with each other. Consequently, information flows towards
the bath, causing the fidelity to decrease as the qubits signif-
icantly differ from a closed-system scenario. The behavior
is similar for the other two values of ν. However, in the
ferromagnetic case, there is a decreasing mean value of the os-

cillations, while in the antiferromagnetic case, the mean value
is almost constant and higher than the others. Figure 3(b)
shows that decreasing α results in the same fidelity behavior,
but with lower oscillation frequencies, thereby shortening the
period. Roughly speaking, a doubling of α leads to a halving
of the period. By extrapolating the period’s behavior concern-
ing α, we observe a quasihyperbolic relationship represented
as T = a/α, where fitting the three points to such a curve
suggests a ≈ 1/3. This finding is consistent with the limit of
α approaching zero, where the fidelity must remain constantly
1; therefore the oscillation frequency is zero, and the period
tends towards infinity. Given this worst-case behavior for a
single physical qubit, we need to determine the optimal way
to encode information into a logical qubit. For the remainder
of this paper, we focus on the results obtained for α = 0.01
and ν = −5�, as they are the most interesting and promising.
We point out that the value of the coupling is within the inter-
mediate regime, for which we need nonperturbative methods
to analyze the dynamics. This coupling strength value takes
advantage of the antiferromagnetic interaction, which can
help mitigate the effects of the bath (the exact elimination
of the bosonic degrees of freedom induces an effective fer-
romagnetic time-retarded interaction between the two spins).
In Appendix C, we demonstrate how increasing the coupling
to the bath affects the optimal encoding strategy.

IV. OPTIMAL ENCODINGS IN ONE LOGICAL QUBIT

The general idea is to encode the logical up and down states
in other states. In particular, we choose these states to be the
Bell states or a linear combination of them. We define the
logical up state |ψ↑L 〉 and logical down state |ψ↓L 〉 as follows:

|ψ↑L 〉 =
N↑∑
i=1

li |ψi〉 , (16)

|ψ↓L 〉 =
N↓∑
i=1

ki |φi〉 , (17)

where N↑ and N↓ are the dimensions of the subspaces chosen
for the encoding and ψi and φi are the states that span the
subspaces, respectively [4]. The normalization conditions are
satisfied such that

∑N↑
i=1 |li|2 = 1 and

∑N↓
i=1 |ki|2 = 1.

With this choice, the generic state of the encoded qubit
is given by |ψE 〉 = α |ψ↑L 〉 + β |ψ↓L 〉, where α and β are
complex coefficients satisfying the normalization condition
|α|2 + |β|2 = 1. To represent the encoded qubit, we need to
find the new Pauli operators σ E

i , where i = x, y, z. These op-
erators are given by

σ E
x = |ψ↑L 〉 〈ψ↓L | + |ψ↓L 〉 〈ψ↑L | , (18)

σ E
y = −i |ψ↑L 〉 〈ψ↓L | + i |ψ↓L 〉 〈ψ↑L | , (19)

σ E
z = |ψ↑L 〉 〈ψ↑L | − |ψ↓L 〉 〈ψ↓L | . (20)

These operators allow us to define the encoded qubit state:

ρE (t ) = 1

2

(
1 + 〈σ E

z (t )〉 〈σ E
x (t )〉 − i〈σ E

y (t )〉
〈σ E

x (t )〉 + i〈σ E
y (t )〉 1 − 〈σ E

z (t )〉
)

.

(21)
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A. Encoding strategies and optimization

Our approach involves utilizing the singlet and triplet sub-
spaces to encode one logical qubit in the two physical qubits.
In the following sections, we present our three proposed en-
coding strategies and their respective optimizations.

1. Antiferromagnetic single-level encoding

Due to the presence of an antiferromagnetic interaction
(ν = −5�), here we utilize a single-level encoding (SLE)
strategy to encode information in the two physical qubits.
Specifically, we select the singlet state |S〉 as the logical up
state, which is also an eigenstate of the closed Hamiltonian
(|2〉), and the antiferromagnetic state of the triplet in the
Bell basis |T, AFM〉 as the logical down state. This encoding
strategy, which we refer to as “antiferromagnetic” encoding,
works by exploiting the properties of the singlet state and
the antiferromagnetic interaction to create a sort of semi-
decoherence-free (semi-DF) subspace encoding, since it al-
most coincides with the ground state manifold (see Fig. 2). In
addition, upon examining the analytical expression of fidelity
within the Lindblad approach, it is confirmed that the state in
“antiferromagnetic” strategy is the most resilient one in the
triplet, remaining constantly 1 in the limit of |ν| � � (see
Appendix D). The singlet state, indeed, is decoherence-free,
while the antiferromagnetic state of the triplet in the Bell basis
is the state that is most protected by the antiferromagnetic
interaction. By encoding information in these two states, we
can mitigate errors and noise caused by the bath, which makes
our system more robust and reliable.

2. Symmetric multilevel encoding

Here we consider as a possible implementation of the
multilevel encoding (MLE) strategy the “symmetric” case, in
which we use an equal number of states to span the two logical
subspaces.

In particular, we select two antiferromagnetic states from
the Bell basis, |S〉 and |T, AFM〉, to span the logical up sub-
space. Similarly, we choose two ferromagnetic states, |ψFM,+〉
and |ψFM,−〉, to span the logical down subspace. The logical
up and down states can be expressed as∣∣ψSM

↑L

〉 = lSM
S |S〉 + lSM

T,AFM |T, AFM〉 , (22)∣∣ψSM
↓L

〉 = kSM
T,FM+ |T, FM+〉 + kSM

T,FM− |T, FM−〉 , (23)

where lSM
S and lSM

T,AFM are coefficients representing the con-
tributions of the logical up states and kSM

T,FM+ and kSM
T,FM− are

coefficients representing the contributions of the logical down
states. It is important to note that these states are normal-
ized and so |lSM

S |2 + |lSM
T,AFM|2 = |kSM

T,FM+|2 + |kSM
T,FM−|2 = 1.

We also vary these coefficients to find the best encoding
strategy.

We first check that the phases of the coefficients have only
a slight effect on the oscillations of the standard deviation of
the fidelity. Therefore we set the coefficients to be real. We
vary the squared modulus of lSM

S and kSM
T,FM+ in the interval

{0.25, 0.50, 0.75}, and the other coefficients are determined
by normalization, resulting in an “optimal symmetric” encod-
ing (OPTSYMM). We then observe the effect of this encoding

FIG. 4. Fidelity F (t ) of the free evolution of the encoded qubits
OPTSYMM with the open-system evolution for different values
of lSM

S and kSM
T,FM+ ∈ {0.25, 0.50, 0.75} (rainbow colors from vio-

let to red) as a function of dimensionless time �t for ν = −5�,
α = 0.01, and the initial state |ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉 +
dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS , dT,AFM, dT,FM+, and
dT,FM− sample all of the two-qubit Hilbert space. We average the
fidelity over 332 realizations of these coefficients.

on the fidelity of the qubit over time. Figure 4 shows that
increasing lSM

s (or decreasing lSM
T,AFM) leads to a higher asymp-

totic value of the fidelity. When lSM
S and lSM

T,AFM are fixed,
varying kSM

T,FM+ and kSM
T,FM− only affects the frequency of the

oscillations, with a slight improvement in fidelity for the lower
value of kSM

T,FM+, which corresponds to the main contribution
to the most excited eigenstate of the closed Hamiltonian. To
optimize the encoding strategy, we fit the curve in our range
of time with four parameters ci, where i = 1, . . . , 4, using the
following function:

Ffit[ρ
o(t ), ρc(t )] = c1 + c2t + (1 − c1) cos(c3t )e−c4t . (24)

This function takes into account the linear behavior of the
average (c2) and the damped oscillations, where c3 determines
the frequency of the oscillations and c4 determines the rate of
decay. The parameter c1 ensures that the fitted curve starts at a
value of 1, which is defined as the absence of any bath effect.

To determine the best encoding parameters and coeffi-
cients, we analyze how the fitting parameters depend on lSM

S
and kSM

T,FM+ and how they relate to the fidelity over time. To
examine the asymptotic behavior of the fidelity, we take its
value from the numerical data at time �t = 100 and extrap-
olate it from the fit at time �t = 200 [Figs. 5(b) and 5(c),
respectively].

We can stop our analysis at �t = 200 because the large
τ = 1/c4 value from the fit, which quantifies the decay, is
approximately 75, as shown in Fig. 5(d). Therefore we have
already observed the complete behavior of the system over the
time interval �t = 200.

We observe that the higher the value of lSM
S , the higher

the fidelity of the encoding strategy becomes. If we further
increase its contribution, the c2 coefficient passes through zero
and becomes slightly positive, although it remains on the order
of 10−4. Therefore we choose lSM

S = √
3/2 and kSM

T,FM+ = 1/2
as the best encoding in the symmetric case.
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FIG. 5. Fidelity F (t ) of the free evolution of the encoded qubits
OPTSYMM with the open-system evolution for different values
of lSM

S and kSM
T,FM+ ∈ {0.25, 0.50, 0.75} (rainbow colors from vio-

let to red) as a function of dimensionless time �t for ν = −5�,
α = 0.01, and the initial state |ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉 +
dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS , dT,AFM, dT,FM+, and
dT,FM− sample all of the two-qubit Hilbert space. We average the fi-
delity over 332 realizations of these coefficients. In (a) the parameter
c2 is responsible for the linear behavior, while in (d) we observe the
decay rate τ = 1/c4. In (b) and (c) we show the fidelity from MPS
data at � t = 100 and from fitting data at � t = 200, respectively.

3. Nonsymmetric multilevel encoding

The second implementation of the MLE strategy that we
introduce here is the “nonsymmetric” encoding, in which
we use a different number of states to span each subspace.
In particular, we encode the logical up state in the singlet
|ψNSM

↑L
〉 = |S〉 (lNSM

S = 1), while varying the logical down
state in the triplet. Specifically, the logical down state can be
written as an arbitrary combination of the three states of the
triplet in the Bell basis as∣∣ψNSM

↓L

〉 = kNSM
T,AFM |T, AFM〉 + kNSM

T,FM+ |T, FM+〉
+ kNSM

T,FM− |T, FM−〉 , (25)

and it is normalized: |kNSM
T,AFM|2 + |kNSM

T,FM+|2 + |kNSM
T,FM−|2 = 1.

We optimize the coefficients of |ψNSM
↓L

〉 to improve the fi-
delity of the encoded qubit. As before, we set the coefficients
to be real. We also find that the coefficient kNSM

T,AFM has the
most significant contribution to the fidelity, while the other
two coefficients (kNSM

T,FM+ and kNSM
T,FM−) related to the higher

system eigenenergies are less important. Hence we set them
to be equal, and the other coefficient is determined by nor-
malization, making an “optimal nonsymmetric” encoding
(OPTNSYMM). This allows us to vary a single parameter
kNSM

T,FM+ ∈]0, 1/
√

2[ and observe the effect on the fidelity over
time of the encoded qubit. In this way, we explore the cases
in between the AFM strategy (i.e., kNSM

T,AFM = 1 and kNSM
T,FM+ =

kNSM
T,FM− = 0) and the case in which kNSM

T,FM+ = kNSM
T,FM− = 1/

√
2,

completely canceling the contribution of the antiferromag-

FIG. 6. Fidelity F (t ) of the free evolution of the encoded
qubits OPTNSYMM with the open-system evolution for increas-
ing values of kNSM

T,FM+ ∈]0, 1/
√

2[ (rainbow colors from violet to
red) as a function of dimensionless time �t for ν = −5�, α =
0.01, and the initial state |ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉 +
dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS , dT,AFM, dT,FM+, and
dT,FM− sample all of the two-qubit Hilbert space. We average the
fidelity over 332 realizations of these coefficients.

netic triplet state. Figure 6 shows that increasing kNSM
T,FM+

(decreasing kNSM
T,AFM) leads to a lower minimum value of the

fidelity at short times but a higher asymptotic value. Using
the same fitting function [Eq. (24)], we find the best compro-
mise between these two behaviors. As previously done for the
symmetric encoding, we observe how the fitting parameters
depend on kNSM

T,FM+. We concentrate on the range of coeffi-
cients that offer the optimal trade-off between the minimum
short-term value and the highest asymptotic value, specifically
centered around c2 passing through zero, indicating a constant
average value [see Fig. 7(a)]. Again, we take the fidelity from
the numerical data at time �t = 100 and extrapolate it from
the fit at time �t = 200 [Figs. 7(b) and 7(c), respectively] to
analyze its asymptotic behavior.

The best encoding with the corresponding fit is obtained
for kNSM

T,FM+ ≈ 1/
√

3.

B. Comparison of optimal encodings: Fidelity and leakage

After optimizing the two MLE strategies, we aim to com-
pare them with the AFM strategy and determine the best
approach.

We begin by computing the fidelity of the three encoded
qubits and the physical one. For the encoded ones we fix the
coefficients of |ψ↑L 〉 and |ψ↓L 〉 as follows.

(i) For “antiferromagnetic” encoding (AFM), we use SLE
in the Bell basis (|ψ↑L 〉 = |S〉 and |ψ↓L 〉 = |T, AFM〉) (see
Sec. IV A).

(ii) For “symmetric” encoding (SYMM), we use MLE
in the Bell basis (|ψ↑L 〉 =

√
3

2 |S〉 + 1
2 |T, AFM〉 and |ψ↓L 〉 =

1
2 |T, FM+〉 +

√
3

2 |T, FM−〉) (see Sec. IV A).
(iii) For “nonsymmetric” encoding (NSYMM), we

use MLE in the Bell basis ( |ψ↑L 〉 = |S〉 and |ψ↓L 〉 =
|T,AFM〉+|T,FM+〉+|T,FM−〉√

3
) (see Sec. IV A).
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FIG. 7. Fidelity F (t ) of the free evolution of the encoded
qubits OPTNSYMM with the open-system evolution for increas-
ing values of kNSM

T,FM+ ∈]0, 1/
√

2[ (rainbow colors from violet to
red) as a function of dimensionless time �t for ν = −5�, α =
0.01, and the initial state |ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉 +
dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS , dT,AFM, dT,FM+, and
dT,FM− sample all of the two-qubit Hilbert space. We average the fi-
delity over 332 realizations of these coefficients. In (a) the parameter
c2 is responsible for the linear behavior, while in (d) we observe the
decay rate τ = 1/c4. In (b) and (c) we show the fidelity from MPS
data at � t = 100 and from fitting data at � t = 200, respectively.

We assess the fidelity of the three encoding strategies, and
the results are presented in Fig. 8(a). Our findings show that
all encoding strategies outperform the physical qubit. Specifi-
cally, the AFM strategy exhibits higher fidelity at short times,
but its fidelity linearly decreases over time with small damped
oscillations. On the other hand, allowing for a nonzero proba-
bility for other states in the two logical states initially worsens
fidelity but ultimately reaches a better asymptotic value. The
two MLE strategies demonstrate a higher asymptotic value
for fidelity. The symmetric strategy has a short-time mini-
mum and an asymptotic value lower than the nonsymmetric
case. This behavior can be explained by the system dynam-
ics, which involves a timescale during which higher-order
processes with the bath become dynamically allowed and
low-energy states can be excited, overcoming the energy gap.
As the effect of the bath increases, higher energy levels de-
cay, leading to a stationary state that ultimately increases the
fidelity. Therefore, including all triplet states in one of the en-
coded logical states allows for better accounting of the various
processes arising during the dynamics. Also, we introduce a
quantity called “leakage” that measures the effect of the bath
(i.e., the environment) on the encoding strategy. We can define
the leakage as follows:

L(t ) = |TrL{�Qρ(0)}| − ∣∣TrL
{
�U

Q (t )ρ(0)
}∣∣

2
√

2
. (26)

In this definition, �Q is the projector in the encoded space,
which is spanned by the new logical up and down states. �Q

FIG. 8. Fidelity F (t ) of the free evolution with the open-system
evolution (a) and leakage L(t ) (b) of encoded qubits AFM (red cir-
cles), SYMM (blue squares), and NSYMM (green inverted triangles;
more details on the definitions are given in the main text) and one
physical qubit (orange pentagons) as functions of dimensionless time
�t for ν = −5�, α = 0.01, and the initial state |ψ (0)〉 = dS |S〉 +
dT,AFM |T, AFM〉 + dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS ,
dT,AFM, dT,FM+, and dT,FM− sample all of the two-qubit Hilbert space.
We average the fidelity and the leakage over 332 realizations of these
coefficients. The symbols in the plots correspond to the average value
of the fidelity and the leakage, while the shaded regions around them
show the range of values covered by the standard deviation of the
fidelity and the leakage.

is defined as the outer product of the two basis states |ψ↑L 〉
and |ψ↓L 〉. The superscript U denotes the evolution under the
complete Hamiltonian, and hence �U

Q is the evolved projector.
The trace is performed in the encoded logical space, which is
indicated by the subscript L. The factor 2

√
2 in the denomi-

nator is a normalization factor such that the leakage assumes
only values in the range [−1; 1]. This quantity is a measure
of how dissipation makes the system deviate from or return to
the logical subspace during the evolution.

Figure 8(b) indicates that the NSYMM and AFM strategies
are the best options, being negative, which means that the
dynamics increases the populations in the logical subspace.
However, the leakage for the AFM strategy reaches a lower
asymptotic value. Based on our analysis, we can conclude
that the AFM SLE strategy in the Bell basis allows for bet-
ter information extraction from two physical qubits to one
logical qubit, while remaining robust in the presence of the
detrimental effects of the bath over time (Appendix C). Ad-
ditionally, we conducted this analysis for both sub-Ohmic
and super-Ohmic spectral densities. Our findings consistently
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demonstrate that the AFM strategy remains the optimal choice
regardless of the bath’s specific form.

C. Encoded qubit: Analysis of the purity

We are now prepared to examine the newly encoded logical
subspace to determine whether the encoded qubit retains its
quantum properties, as indicated by the purity of its state. To
do this, we will perform an average over 18 realizations of
the initial state, which is extracted from a uniform distribution
within the new logical encoded space. This initial state is
defined as a linear combination of the two new logical states,
up and down, as follows:

|ψL(0)〉 = cos θ |↑L〉 + eiφ sin θ |↓L〉 . (27)

Similar to our approach for averaging initial states in the
two-qubit case, we will verify that the sampling of the log-
ical Hilbert space provides an adequate representation of the
problem. Our analysis indicates that the norm in (14) is indeed
approximately 10−8.

Since in Sec. II, in Fig. 1, we describe all three encoding
strategies compared with the physical one and find that the
best two approaches are NSYMM and AFM, as identified in
the previous section, in what follows we will focus on these
two.

In Fig. 9(a) we depict the qubits in isolation from the bath.
It is evident that the purity exhibits periodic oscillations, peri-
odically returning to a value of 1, signifying the preservation
of quantum characteristics in our qubit. Notably, the AFM
strategy exhibits smaller amplitude oscillations, closer to a
purity value of 1.

Conversely, Fig. 9(b) presents the scenario where there is
a nonzero coupling to the bath. In the case of NSYMM, all
peaks are shorter, and the purity no longer reaches a value
of 1 over time; instead, it converges towards a stationary
value of approximately 0.7. In contrast, for the AFM strategy,
although the amplitude of oscillations is reduced, the purity
consistently remains high, stabilizing at around 0.97.

Based on our analysis, we can confidently conclude that the
AFM encoding strategy is an excellent choice for encoding
information that is highly resistant to the effects of the bath
over time.

V. DISCUSSION AND CONCLUSIONS

In Sec. IV A we established that the most effective encod-
ing strategy, following our analysis, is the antiferromagnetic
SLE. This strategy involves the antiferromagnetic state of the
triplet as the logical down state and the singlet state as the
logical up state. This superior performance might be attributed
to the use of the states closer to the lowest levels of the system
thanks to the antiferromagnetic interaction between the qubits.
It outperforms the nonsymmetric MLE strategy (Sec. IV A),
which is also a good choice, in particular in terms of fidelity.
In this case we can observe the excitation of low-energy states
and the decay of higher energy levels, owing to higher-order
processes, which lead to a stationary state that enhances fi-
delity. In other words, as suggested in Ref. [4], mixing and
decoherence in the encoding subspace do not affect the coher-
ence between the logical states and therefore do not reduce the
computational fidelity. Specifically, the nonsymmetric case

FIG. 9. Purity P(t ) of encoded qubits for α = 0 (a) and α =
0.01 (b) as a function of dimensionless time �t for ν = −5�, for
the AFM strategy (red circles) and the NSYMM strategy (green
inverted triangles), and for the initial state |ψL (0)〉 = cos θ |↑L〉 +
eiφ sin θ |↓L〉, where θ and φ sample all of the logical qubit Hilbert
space. We average the purity over 18 realizations of these angles. The
symbols in the plots correspond to the average value of the purity,
while the shaded regions around them show the range of values
covered by the standard deviation of the purity.

outperforms the symmetric one (Sec. IV A) because it does
not couple the two subspaces (singlet and triplet) and also it
leverages the DFS (singlet).

In the previous sections, we focused on the strength of the
antiferromagnetic interaction ν = −5� and the system-bath
coupling α = 0.01. However, we have conducted a compre-
hensive analysis. Regarding the physical qubits shown in
Fig. 3(a), the best performance is achieved with the antiferro-
magnetic interaction, which is true for all encoding strategies.
In fact, the qubits, when influenced by the bath, tend to es-
tablish a ferromagnetic order. Therefore an antiferromagnetic
interaction can mitigate the detrimental effects of the bath.
Additionally, as α increases, we observe that the fidelity re-
mains very high, as supported in Appendix C, where we show
fidelity and leakage for various α couplings.

One of the limitations of our work is the inevitable “loss”
of information that occurs when encoding one qubit in two
physical ones, as it requires the use of two qubits to store
the information of a single qubit. Another limitation lies in
determining how to model the interaction with the bath, a
common critique for encoding strategies proposed in the exist-
ing literature. However, the potential “gain” achieved through
a nondetrimental bath effect on the system dynamics could
counterbalance the aforementioned loss of information. It is
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worth noting that the long-wavelength limit [27] holds when
dealing with two qubits, justifying the use of the same cou-
pling method, global bath, and coupling constant. Yet this
assumption may become problematic when dealing with a
chain of more than two qubits.

Since the encoding can be done a posteriori, utilizing the
mean values of the observables of the two physical qubits, the
experimental implementation only requires an antiferromag-
netic interaction between the qubits. One possible approach
for this implementation is the use of a coupler [30,31] (qubit
or electromagnetic mode) that achieves an effective interac-
tion between the two qubits without directly coupling them.

Our work helps us to understand and analyze the potential
of the interaction between qubits in the presence of the bath.
As a future study, we could investigate the behavior when
more qubits are involved, since the DFSs become more in-
triguing. Additionally, we can conduct a detailed analysis of
the model by introducing a coupler through MPS numerical
simulations, accurately reproducing the system dynamics.

ACKNOWLEDGMENTS

G.D.F. and A.H. acknowledge financial support from
376 PNRR MUR Project No. PE0000023-NQSTI; A.H.
was also supported by PNRR MUR Project No. CN
00000013-ICSC. C.A.P. acknowledges funding from the
IQARO (Spin-orbitronic Quantum Bits in Reconfigurable 2D-
Oxides) project of the European Union’s Horizon Europe
research and innovation program under Grant Agreement
No. 101115190. C.A.P. acknowledges funding from PRIN
2022 PNRR Project No. P2022SB73K: Superconductivity in
KTaO3 Oxide–2DEG Nanodevices for Topological Quantum
Applications (SONATA). G.D.F. and C.A.P. acknowledge fi-
nancial support from the PRIN 2022 project 2022 FLSPAJ
“Taming Noisy Quantum Dynamics” (TANQU). The authors
acknowledge interesting discussions with A. de Candia.

APPENDIX A: LINDBLAD VERSUS MPS
AND DECAY RATE ESTIMATION

In this Appendix we wish to clarify that MPS numerical
simulations are necessary instead of relying on the more com-
monly used Lindblad master equation solution. We focus on
the relaxation and decoherence due to the presence of the bath
[32–36]. It is worth noting that the singlet state |ψS〉 is a DFS
due to the nature of its interaction with the bath, which means
that it is not affected by decoherence.

We follow the notation used in Ref. [37] for the Lindblad
master equation in the presence of the interaction Hamil-
tonian Hqub-bath = A ⊗ B, where A = σ 1

z + σ 2
z is the system

operator coupled to the bath one B = ∑N
i=1 λi(ai + a†

i ). The
singlet state does not participate in the dynamics and can
be effectively decoupled from the other equations. Hence,
in the interaction picture using the system energy eigenbasis
Hqub |i〉 = Ei |i〉, with i = 0, . . . , 3 and neglecting the Lamb-
shift Hamiltonian, the Lindblad equation reads

dρ

dt
= γ01,01

[|0〉 〈1| ρ(t ) |1〉 〈0| − 1
2 {|1〉 〈1| , ρ(t )}]

+ γ13,13
[|1〉 〈3| ρ(t ) |3〉 〈1| − 1

2 {|3〉 〈3| , ρ(t )}], (A1)

where the decay rates are

γ01,01 = γ (E1 − E0) 〈0| (σ 1
z + σ 2

z

) |1〉 〈1| (σ 1
z + σ 2

z

) |0〉

= 4

(
b
( ν

�

))2

2πJ (E1 − E0), (A2)

γ13,13 = γ (E3 − E1) 〈1| (σ 1
z + σ 2

z

) |3〉 〈3| (σ 1
z + σ 2

z

) |1〉

= 4

(
a
( ν

�

))2

2πJ (E3 − E1). (A3)

Here, J (Eb − Ea) is the spectral density of the bath at the
energy difference Eb − Ea, and a(ν/�) [Eq. (11)] and b(ν/�)
[Eq. (12)] are the coefficients in the definitions of the system
eigenstates. We can use these equations to calculate the time
evolution of the populations and coherences of the system
reduced density matrix. If we look at the populations ρ00(t )
and ρ11(t ), we see that there is a difference between the two
decay rates. Furthermore, if we use an Ohmic spectral density
J (ω) [Eq. (5)] with a cutoff made by the Heaviside function,
we obtain a 0/0 indeterminate form. Hence we choose to
model the system decay using an exponential function with
the cutoff frequency and then take the limit as the cutoff
frequency goes to infinity. We only need to compute one limit;
for example, ρ11(t ) and ρ00(t ) will be fixed by the normal-
ization [

∑3
i=0 ρii(t ) = 1]. By defining a single decay rate γ =

2παc, where the constant c = (a(ν/�))2(
√

4�2 + ν2 + ν) =
(b(ν/�))2(

√
4�2 + ν2 − ν), the populations and coherences

can be rewritten in a very compact way as follows:

ρ00(t ) = 1 − ρ11(0)e−γ t − ρ22(0) − ρ33(0)e−γ t (1 + γ t ),
(A4)

ρ11(t ) = ρ11(0)e−γ t + ρ33(0)e−γ tγ t, (A5)

ρ22(t ) = ρ22(0), (A6)

ρ33(t ) = ρ33(0)e−γ t , (A7)

ρ01(t ) = ρ01(0)e− γ

2 t , (A8)

ρ03(t ) = ρ03(0)e− γ

2 t , (A9)

ρ13(t ) = ρ13(0)e−γ t . (A10)

It is worth noting that the coherence ρ13 exhibits a decay rate
equal to γ , which is the same as that of the population ρ33.
Meanwhile, the decay rate of the other two coherences is half
of γ , similar to what occurs in the case of a single qubit.
Now, we can use these time functions to compare them with
our MPS numerical results and estimate the accuracy of the
Lindblad solution in predicting the decay rates, as well as the
errors that may arise in the dynamics when using it, starting
from the quasiferromagnetic (quasi-FM) state:

|ψ (0)FM〉 = |1〉 + eiπ/4 |3〉√
2

⊗ |0, . . . , 0〉B . (A11)

This means that the two-qubit system is initially in a com-
bination of the most excited ferromagnetic eigenstates of the
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FIG. 10. Coherence modulus |ρ13(t )| and populations ρ11(t ) = P1 and ρ33(t ) = P3 of the energy eigenstates |1〉 and |3〉, respectively, of H0.
These are the only nonzero terms of the reduced density matrix ρ(0), given the initial state [Eq. (A11)], displayed as functions of dimensionless
time �t . Also, the population ρ00(t ) = P0 is fixed by normalization. The bath coupling strength is α = 0.02, and the qubit-qubit interaction
strength takes the values ν = 0� in (a)–(c), ν = 5� in (d)–(f), and ν = −5� in (g)–(i). In the plots, the red solid curves correspond to the MPS
numerical results, while the orange dashed curves are the Lindblad master equation solutions and the blue dotted curves are the fits obtained
by using the same functional forms as the Lindblad solutions.

closed Hamiltonian (|1〉 and |3〉) and the bath is empty at zero
temperature.

We investigate three values of the interaction strength
between the qubits, ν = {−5, 0, 5}�, to study the interplay
between the energy scale of the system and the bath effects.
Additionally, we observe the dynamical behavior of the sys-
tem for two different values of the coupling to the bath,
α = {0.01, 0.02}.

Figure 10 displays the time evolution of the modulus of
the coherence |ρ13(t )| and the populations ρ11(t ) = P1 and
ρ33(t ) = P3. These populations are computed for a typical
bath coupling strength of α = 0.02, which is of the same order
of magnitude as the coupling strength used in the main text.
The density matrix elements are shown for the three differ-
ent values of the qubit-qubit interaction strength: ν = 0� in
Figs. 10(a)–10(c), ν = 5� in Figs. 10(d)–10(f), and ν = −5�

in Figs. 10(g)–10(i).
It is evident that the Lindblad equation, which is a per-

turbative approach in the coupling to the bath and does not
consider higher-order processes, only accurately predicts the
exponential decay of the P3 population. Nevertheless, it fails
to correctly forecast the population P1 and P0 (not displayed
in the figure, but fixed by normalization) as higher-order pro-
cesses become significant and are not taken into account.

For the coherence modulus, we observe that the Lindblad
solution cannot reproduce the oscillations of the MPS numer-
ical simulations. Additionally, for ν �= 0�, it also predicts an
incorrect initial transient. Looking at the real and imaginary
parts of the coherence separately (not shown in the figure for
clarity), we observe more discrepancies in frequencies and
amplitudes of the oscillations, which are somewhat balanced

when considering the modulus. To estimate the decay rates of
the MPS results γfit, we also plot the results obtained by fitting
the MPS data with the same functional forms as the Lindblad
equation solutions [Eqs. (A4)–(A10)].

It is worth noting that the ferromagnetic qubit-qubit in-
teraction [Figs. 10(d)–10(f)], especially for P1, enhances the
effect of the bath, which always induces the ferromagnetic
order of the qubits. As a result, the Lindblad equation fails to
reproduce the expected stationary state. On the other hand, the
antiferromagnetic qubit-qubit interaction [Figs. 10(g)–10(i)]
offers some protection against the bath and yields the correct
stationary state, even for this intermediate value of α. This
suggests that the particular type of qubit-qubit interaction can
significantly impact the behavior of the system in the presence
of a bath.

APPENDIX B: FIDELITY IN THE LOGICAL SUBSPACE
OF BEST ENCODING STRATEGIES

In this Appendix, we aim to emphasize that the AFM strat-
egy remains the superior choice when considering the new
logical subspace of the qubit. This observation is underscored
by the data presented in Fig. 11. Specifically, the NSYMM
strategy exhibits a fidelity that oscillates with increasing
amplitudes over time, reaching a value of approximately
0.85 within the duration of our simulation. Conversely, the
AFM strategy displays smaller oscillation amplitudes and ap-
proaches a fidelity value of around 0.97.

This further supports the conclusion that the AFM strategy
is the preferred option for maintaining qubit integrity within
the new logical subspace.
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FIG. 11. Fidelity F (t ) of the free evolution with the open-
system evolution of encoded qubits AFM (red circles) and NSYMM
(green inverted triangles) as a function of dimensionless time �t
for ν = −5�, α = 0.01, and the initial state |ψL (0)〉 = cos θ |↑L〉 +
eiφ sin θ |↓L〉, where θ and φ sample all of the logical qubit Hilbert
space. We average the fidelity over 18 realizations of these angles.
The symbols in the plot correspond to the average value of the
fidelity, while the shaded regions around them show the range of
values covered by the standard deviation of the fidelity.

APPENDIX C: EFFECTS ON THE ENCODING OF
INCREASING THE SYSTEM-BATH COUPLING

STRENGTH

In this Appendix, we investigate how increasing the cou-
pling strength of the system to the bath affects the optimal
encoding strategy. Specifically, we explore how the variation
of α impacts the fidelity and leakage of the encoded infor-
mation and determine whether the encoding strategy becomes
ineffective under stronger coupling regimes. Our results pro-
vide valuable information on the robustness of the encoding
scheme under different coupling conditions. Figure 12 pro-
vides insight into the robustness of the encoding paradigm
concerning the coupling strength parameter α. In Fig. 12(a)
we observe the efficacy of our chosen encoding strategy,
which consistently approaches high asymptotic values, even
as α increases. Furthermore, Fig. 12(b) illustrates that as α

increases, the degree of leakage becomes more negative. This
behavior is attributed to the increased influence of the bath on
the system, particularly as the system approaches its ground
state. Thus our chosen encoding strategy exhibits strong re-
silience to the detrimental effects of the bath, in contrast
to that of physical qubits. Moreover, the fidelity values are
even higher, indicating that we are effectively leveraging the
interaction between the two qubits to counteract the bath’s
negative effects.

APPENDIX D: LINDBLAD FIDELITY DYNAMICS
OF THE BELL STATES

In the main text, we assert that the antiferromagnetic
state is particularly resilient due to the antiferromagnetic

FIG. 12. Fidelity F (t ) of the free evolution with the open-system
evolution (a) and leakage L(t ) (b) of the encoded qubit AFM as
functions of dimensionless time �t for ν = −5�; α = 0.005 (red
circles), α = 0.01 (blue squares), and α = 0.02 (green inverted tri-
angles); and the initial state |ψ (0)〉 = dS |S〉 + dT,AFM |T, AFM〉 +
dT,FM+ |T, FM+〉 + dT,FM− |T, FM−〉, where dS , dT,AFM, dT,FM+, and
dT,FM− sample all of the two-qubit Hilbert space. We average the
fidelity and the leakage over 332 realizations of these coefficients.
The symbols in the plots correspond to the average value of the
fidelity and the leakage, while the shaded regions around them show
the range of values covered by the standard deviation of the fidelity
and the leakage.

interaction ν [see Eq. (2)], hence forming the core of our an-
tiferromagnetic strategy. The fundamental concept underlying
this assertion is that when the interaction is antiferromagnetic
at very high |ν|, namely |ν| � �, the antiferromagnetic state
closely coincides with the ground state, suggesting its high
resilience in the presence of interactions with the environ-
ment. Here, we aim to validate this concept by computing an
analytical expression for fidelity dynamics. To achieve this,
we calculate the time-evolved density matrices, both without
and with the bath, using the Lindblad formalism, initializing
the system in one of three states within the triplet: |T, FM−〉,
|T, FM+〉, or |T, AFM〉. Subsequently, we evaluate the fi-
delity for these three cases. The calculations are simplified
since the state of the closed system is pure. Hence the
fidelity reduces to F [ρo(t ), ρc(t )] = √〈ψc(t )| ρo(t ) |ψc(t )〉.
Here, as in the main text, ρo is the density matrix of
the open system, and ρc(t ) is that of the closed one
(without bath interaction). The analytical expressions for
the fidelity of the three initial states in the triplet are as
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FIG. 13. Fidelity F (t ) of the free (α = 0) evolution of the three initial states in the triplet, namely |T, FM−〉, |T, FM+〉, and |T, AFM〉
(dashed red, solid blue, and dash-dotted green curves, respectively), with the open-system evolution as a function of dimensionless time �t
for α = 0.02 and ν = 0� (a), ν = 5� (b), and ν = −5� (c), computed with the analytical Lindblad approach.

follows:

F
[
ρo

T,FM−(t ), ρc
T,FM−(t )

] = e− γ

2 t ,

F
[
ρo

T,FM+(t ), ρc
T,FM+(t )

] =
√

b2 + (a4 − a2b2(1 + γ t ))e−γ t + 2a2b2e− γ

2 t cos[(E0 − E3)t],

F
[
ρo

T,AFM(t ), ρc
T,AFM(t )

] =
√

a2 + (b4 − a2b2(1 + γ t ))e−γ t + 2a2b2e− γ

2 t cos[(E0 − E3)t],

where a and b are defined in Eqs. (11) and (12), Ei are
the eigenvalues of the two-qubit Hamiltonian in Eq. (6),
and the decay rate γ is the one obtained in Appendix A.
It is worth noticing that the Lindblad approach allows us to
write down an analytical compact form for the fidelity of
the stationary state of the antiferromagnetic state, which is
F [ρo

T,AFM(t ), ρc
T,AFM(t )] = |a|. Additionally, under the condi-

tion of an antiferromagnetic interaction where |ν| � �, the
fidelity of |T, FM+〉 mirrors the time evolution of |T, FM−〉,
while the antiferromagnetic state remains consistently at a
fidelity value of 1, reinforcing our hypothesis. In Fig. 13,
we illustrate the fidelities of these three states for the three
interaction values ν ∈ [−5, 0, 5]�. Across all scenarios, the
fidelity of the state |T, FM−〉 (independent of ν) decays, while
the other two oscillate before stabilizing at a fixed value.
Specifically, in the absence of interaction, the behaviors of
the other two states align, whereas in the remaining scenarios,
their behaviors interchange. For the ferromagnetic case, the
most resilient state is the ferromagnetic one, while for the
antiferromagnetic case, it is the antiferromagnetic state. It is
worth noting that this symmetric behavior holds true only
within the Lindblad approach; the MPS method captures the
differences between these behaviors.

APPENDIX E: MPS NUMERICAL SIMULATIONS

We employed time-dependent matrix product state (MPS)
simulations, implemented with the ITENSOR library [20], to
investigate the system’s dynamics. We analyzed the fidelity,
the leakage, and the purity of the encoded system over time.
The long-range interactions between each of the two qubits
and each bath mode were described using the star geome-
try. In this configuration, the qubits of frequency � were

placed on the first two sites, and the collection of N bosonic
modes of the bath with frequencies ωi were placed on the
remaining sites. The couplings λi between each qubit and each
bosonic mode were defined to describe the bath in terms of
an Ohmic spectral density, as explained in the main text. The
coupling constants to the bath are |λi| =

√
q0kiωi

8 = ωc
N

√
αi,

where ωc is the cutoff frequency, ki = miω
2
i , and q0 is the

position of the minima in the symmetric double-well potential
from which we derive the spin-boson Hamiltonian for the
qubits, which we set to 1. We neglected the energy shift∑N

i=1 ωi/2, which does not affect the dynamics. The dimen-
sionless parameter α measures the strength of the qubits-bath
coupling.

We studied the system’s dynamics for different values of α

in the range [0.005, 0.2], for different values of their interac-
tion ν = [−5, 0, 5]�, and setting ωc = 10�. We selected 332
realizations of the initial state for simulating the system’s dy-
namics. We applied the time-dependent variational principle
(TDVP) [19,21,22], where the time-dependent Schrödinger
equation is projected onto the tangent space of the MPS man-
ifold with a fixed bond dimension at the current time.

In this paper, we employed the two-site TDVP (2TDVP
as described in Ref. [19]), using a second-order integrator
with a left-right-left sweeping approach and a half time step
of dt/2. This method exhibits a time-step error of O(dt3),
with accuracy controlled by the MPS bond dimension and
the threshold to terminate the Krylov series. We halted the
Krylov vectors recurrence when the total contribution of two
consecutive vectors to the matrix exponential dropped below
10−12. While more advanced methods, such as basis exten-
sion optimization [38,39], exist, we opted for convergence
in the number of bath modes (N = 250) with Hilbert space
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dimension (Nbos = 3). This approach allowed us to find the
optimal compromise between the smallest bond dimension
and longest simulation times, by converging also over the time
interval that we set to δdt = 0.05.

Our truncation error remained below 10−13 by requiring
a maximum bond dimension of Dmax = 50. Simultaneously,
this optimal maximum bond dimension enabled us to achieve
a final time for our simulations as large as �tfinal = 150.
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