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Measurement-induced phase transitions (MIPTs) are known to be described by nonunitary conformal field
theories (CFTs) whose precise nature remains unknown. Most physical quantities of interest, such as the
entanglement features of quantum trajectories, are described by boundary observables in this CFT. We introduce
a transfer matrix approach to study the boundary spectrum of this field theory, and consider a variety of
boundary conditions. We apply this approach numerically to monitored Haar and Clifford circuits, and to the
measurement-only Ising model where the boundary scaling dimensions can be derived analytically. Our transfer
matrix approach provides a systematic numerical tool to study the spectrum of MIPTs.

DOI: 10.1103/PhysRevB.109.014303

I. INTRODUCTION

Repeated measurements can drive phase transitions in the
entanglement structure of quantum trajectories of many-body
quantum systems [1–7]. The discovery of such measurement-
induced phase transitions (MIPTs) has attracted a lot of
attention recently [5,8–45], mostly in the context of monitored
quantum circuits, consisting of entangling unitary gates and
disentangling local measurement operators. Focusing on the
properties of quantum states conditional on the measurement
outcomes, the unitary dynamics results in the scrambling
of quantum information and volume-law entanglement scal-
ing, whereas increasing the rate of local measurements can
eventually lead to area-law scaling. This transition can also
be equivalently interpreted as a purification transition [46],
a quantum coding transition [5,47,48], or a learning transi-
tion [49–55], quantifying how much information the observer
learns from the measurement records.

Given these diverse interpretations and applications, a nat-
ural question is to understand the critical behavior of this
transition. A crucial step in that direction is provided by
exact mappings onto replica statistical mechanical models
where the transition is interpreted as an ordering transition
from ferromagnetic (volume law) to paramagnetic (area law)
phases [27,56–59]—see also Refs. [60–62] for earlier results
on random tensor networks and random unitary circuits. In
turn, this statistical mechanics mapping can be used to formu-
late effective field theory descriptions of MIPTs [27,57,63],
which remain to be fully understood. A key prediction of the
statistical mechanics mapping is the emergence of conformal
invariance at the critical point, which was first observed nu-
merically in monitored Clifford circuits [64]. More precisely,
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MIPTs in 1+1d generic monitored quantum systems are de-
scribed by nonunitary conformal field theories (CFTs) with
central charge c = 0, also known as logarithmic CFTs [65–67]
(or log-CFTs for short). Consequently, conformal invariance
plays a crucial role in precise characterization of the nature of
MIPTs [54,58,64,68–71].

While a full analytic understanding of the CFTs under-
lying MIPTs remains out of reach at the moment, it is
possible to utilize conformal invariance to study their prop-
erties numerically, at least in one dimension. In recent work
[71], it was argued that the quantum evolution with fixed
measurement outcomes can be interpreted as a disordered
transfer matrix which can be used to extract critical prop-
erties using standard CFT tools. This approach was used to
extract universal properties and also provided numerical es-
timates of various bulk scaling dimensions accurate enough
to distinguish MIPTs in generic monitored circuits (sam-
pled with Haar measure) from those in Clifford monitored
circuits.

This transfer matrix approach relies on using periodic
boundary conditions. It probes the bulk properties of the un-
derlying CFT—including the effective central charge, the or-
der parameter, and the energy operator scaling dimensions—
by putting it on an effectively infinitely long cylinder and
applying a finite-size scaling analysis in the circumference.
However, many physical quantities of interest are, in fact,
boundary observables in the statistical mechanics model and
in the CFT. This is because of the nature of the corresponding
statistical mechanics model, which is defined on the geometry
of the circuit: any physical quantity (including entanglement)
computed at a given time t in the monitored quantum circuit
will map onto a statistical mechanics observable defined at
the top boundary of a two-dimensional lattice (the space-time
of the circuit). For example, the von Neumann entanglement
entropy of an interval of size LA scales logarithmically with
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FIG. 1. Boundary condition for monitored circuits: Implementation of three different boundary conditions for monitored circuits undergo-
ing hybrid dynamics [(a)–(c)]. It consists of two qubit random unitary gates (blue rectangles) and σz measurement operations (shown with red
circles). All single qubit measurement operations occur at a given space-time location with a probability p. The initial state |ψ0〉 is evolved
under hybrid dynamics with boundary ends set to be (a) open or free, (b) dissipation (shown as purple diamond) at right end and other end
is left free, and (c) entangled system-ancilla qubits at both ends. In particular, we model dissipation by introducing either dephasing along z
axis or by using a maximally mixed depolarizing channel. For the entangled system-ancilla setup, we replace the boundary system qubit with
a bell pair in each time period where the ancilla set comprise one qubit from the Bell pairs (denoted by filled black circle) and all the discarded
system qubits. The transfer matrix operator which encodes the action of unitaries and measurements at the jth time step is given by T j .

LA at criticality (at sufficiently long times),

SA ∼ γ ln LA, (1)

while, in analogy with the entanglement structure of the
ground state of translationally invariant, i.e., nonrandom CFTs
in 1+1d one could naively expect γ to be related to the
central charge of the underlying CFT [72], this is incorrect.
Instead, the universal coefficient γ is related to a bound-
ary scaling dimension—the scaling dimension of a so-called
boundary condition changing (BCC) operator [57,64], using
terminology from the boundary CFT (BCFT) [73,74]. Note
that, while, as already mentioned, the actual central charge
is c = 0, the quantity playing instead a corresponding role in
log-CFTs, including those discussed in this paper, is the so-
called effective central charge ceff , defined in Eqs. (4) and (5)
below.

In this paper, we introduce a boundary transfer matrix
approach to study the BCFT data in various families of moni-
tored circuits, which are believed to undergo MIPTs in distinct
universality classes. We find that the boundary spectra for
distinct universality classes are different. In addition, we nu-
merically evaluate boundary exponents which were unknown
via different approaches.

The paper is organized as follows. In Sec. II, we discuss
the boundary transfer matrix approach to extract the boundary
spectrum of MIPTs in monitored 1+1d quantum systems. In
Sec. III, we benchmark this approach using the measurement-
only Ising model (MOIM) by comparing our numerical results
to analytic predictions. In Secs. IV and V, we compute the
boundary spectra of dual Clifford and dual Haar monitored
random circuits, respectively. Finally, we conclude in Sec. VI
by summarizing our results and discussing their broader
implications.

II. BOUNDARY TRANSFER MATRIX

MIPTs are most well studied in hybrid circuits that consist
of local projective measurements that are interspersed be-
tween two-site random unitary gates arranged in a brick-work
pattern (as shown in Fig. 1). The measurement probability p at
a given space-time location is used to drive the transition. The
resulting phases exhibit a distinct steady-state entanglement
structure, conditional on measurement outcomes. At low p,
the dynamics due to entangling unitary gates dominate, which
in turn results in a subsystem entanglement entropy that scales
with the subsystem volume (volume law), whereas at large
p the local measurements effectively collapse the many-body
wave function (area-law scaling). At the critical point p = pc,
the entanglement scales logarithmically with the subsystem
size following Eq. (1) and conformal invariance emerges.

In this paper, we probe the boundary conformal properties
(BCFT spectrum) of MIPTs by using a boundary transfer
matrix, where different boundary conditions can be used to
probe the scaling dimension of different BCC operators (i.e.,
boundary observables). This generalizes the bulk transfer ma-
trix study of Ref. [71].

We will apply this approach numerically to monitored
circuits that feature Haar and Clifford dynamics, and to the
MOIM, where the boundary scaling dimensions can be de-
rived analytically. The Haar and Clifford circuits are realized
by drawing the two-qubit unitary gates from the Haar distribu-
tion and the finite Clifford group, respectively. However, the
transfer matrix spectrum extracted for random circuits with
gates drawn from these groups have large error bars due to the
nonuniversal anisotropy factor (α) from the asymmetry in the
circuit space and time direction [71]. This is improved by re-
stricting the circuit dynamics to a smaller gate set called dual
unitary gates [75–78], which are not expected to change the
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universality class [68,71], but have anisotropy factor α = 1
since the gates are unitary both in space and time direction.

As we detail below, we will focus on the following three
boundary conditions at the two boundary ends of the infi-
nite strip circuit geometry: (i) free boundary conditions, (ii)
dissipator boundary using either dephasing or depolarizing
channels, and (iii) cyclic/swap boundary conditions by prob-
ing the entanglement properties of boundary ancilla qubits
(see Fig. 1). This last boundary condition (iii), however, is
out of reach with Haar random gates as the number of ancilla
qubits must grow with time. In spite of this limitation in the
special case (iii), our analysis allows us to extract various
boundary scaling dimensions of various MIPTs, and to fur-
ther test the emergence of conformal invariance in monitored
systems.

A. Transfer matrix

We consider monitored quantum circuits with open spatial
boundary conditions, using the various boundary conditions
depicted in Fig 1. To begin, we consider a fixed set of space-
time coordinates for the action of measurement operators and
unitary gates. The dynamics is then described by the quantum
channel

Nt (ρ) =
∑

m

KmρK†
m, (2)

where ρ is the system’s initial density matrix and Km =
Kmt

t Kmt−1
t−1 . . . Km1

1 , where Kms
s = Ps

ms
Us consists of the random

unitary operations Us (possibly trivial for measurement-only
dynamics) and random projectors Ps

ms
onto the measurement

outcomes ms. Each term (KmρK†
m) in the sum of Eq. (2)

represents a quantum trajectory which occurs with the Born
probability pm [= Tr(KmρK†

m)] for the measurement out-
comes m. The trajectories in the channel form an ensemble
of statistical mechanical models with inherent space-time ran-
domness coming from the measurement outcomes. Following
Ref. [71], we introduce the transfer matrix T j = K

m2 j

2 j K
m2 j−1

2 j−1
(shown in Fig. 1) for the unitary-measurement dynamics
which describes evolution for a single time period (maps ρ →
T jρT †

j ). Now, at late times the singular values σ m
i [where

(σ m
i )2 are eigenvalues of KmK†

m] of Km decay exponentially
σ m

i = eλ
mt
i (where λ

mt
i < 0) as the state purifies under evolu-

tion of the maximally mixed density matrix [where (σ m
i )2 are

its eigenvalues]. The trajectory averages of λ
mt
i give the values

of the Lyapunov exponents λ0, λ1, . . . (in descending order)
of the transfer matrix. The leading Lyapunov exponent is
related to the average free energy of the statistical mechanical
model up to a factor of time, i.e., F = −λ0t . Interestingly, this
is equivalent [71] to the Shannon entropy of the measurement
record, where

F = −
∑

m

pm ln pm. (3)

At criticality, the scaling of this averaged free energy with
system size L is dictated by conformal invariance. This can
be seen by introducing the replicated partition functions Z̄k =∑

m(pm pk
m) from which the averaged free energy can be ob-

tained as F = limk→0
dFk
dk in the replica limit k → 0, where

Fk( = − ln Z̄k) is the replicated free energy. For any finite

FIG. 2. Conformal mapping: The conformal transformation
[z′ = iL

π
log(z)] of upper-half plane maps to infinite strip of width L.

The two boundary ends α (shown in red) and β (shown in blue) of
infinite strip geometry results in the insertion of boundary observable

αβ at the origin of the upper-half plane that separates the boundaries
α and β in the surface geometry. A semicircle (ACB) gets mapped
to an equal-time line segment joining the boundary strip (A′B′) as
shown by the black dashed line. The respective boundary condition
shown in Fig. 1 will be denoted (α, β ) = ( f , f ), ( f , a), and (a, b),
respectively, using notations consistent with Ref. [64].

number of replicas k, Fk is the free energy of a statisti-
cal mechanics model which exhibits (for k small enough) a
second-order phase transition with emerging conformal in-
variance [56,57]. In the replica limit k → 0, this transition
coincides with the MIPT. To find the free-energy density,
we have to take into account the space-time area (A), where
A = αLt and α is a nonuniversal anisotropy factor that char-
acterizes the asymmetry between the intrinsic space and time
directions of the statistical mechanical model with periodic
boundary conditions. Using standard CFT results [79–82],
this implies that the bulk free-energy density f (L) = F/(αtL)
scales as [71]

f (L) = f (L = ∞) − πceff

6L2
+ . . . (4)

for a cylindrical geometry of circumference L and circuit
depth t (when t � L), where f (L = ∞) is the extensive bulk
term, and the effective central charge

ceff = lim
k→0

dc(k)

dk
(5)

is a universal number that characterizes the log-CFT. Note
that the actual central charge of the MIPT CFT is c =
limk→0 c(k) = 0, since the partition function Z̄k becomes triv-
ial Z̄k→0 = 1 in the replica limit. Thus, the free energy is
trivial(= 0), with no system size dependence and hence c = 0.
In this bulk geometry, typical values of scaling dimensions are
extracted from differences of higher (subleading) Lyapunov
exponents, as shown in Ref. [71].

B. Boundary CFT spectrum

To study boundary scaling properties, we now turn to a
different geometry, consisting of an infinite strip of width
L as shown in Fig. 2. This coordinate system (x′, t ′) with
z′ = x′ + it ′ can be related to the upper half of the com-
plex plane via the conformal transformation x′ + it ′ = z′ =
(iL/π ) ln(z) with z = x + it . We introduce distinct boundary
conditions on the bottom of the upper-half plane, where the
left boundary condition is depicted as red and labeled α and
the right boundary condition is blue and labeled β as shown
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in Fig. 2, corresponding to the insertion of BCC operator 
αβ

at the origin. Upon applying the conformal transformation,
this maps to distinct boundary conditions on the left and right
edges of the strip (quantum circuit). In the strip geometry,
the BCC operator 
αβ is inserted at imaginary time τ = −∞
and changes the boundary conditions from α to β from the
left to the right side of the strip. As a result of the different
(conformally invariant [83]) boundary conditions α and β, the
scaling of the averaged free energy density is given by [80,84]

f(α|β ) = f (L = ∞) + f (α|β )
s

L
+ πhα|β

L2
− πceff

24L2
. (6)

Compared to Eq. (4), there is an extra nonuniversal 1/L
dependence due to the presence of the surface free energy
f (α|β )
s and a boundary specific universal contribution from the

scaling dimension hα|β (= 0, when α = β). As illustrated in
Fig. 2, this scaling dimension corresponds to the insertion
of a BCC operator 
αβ at imaginary time τ = −∞, which
changes boundary conditions from α to β from the left to the
right side of the strip. Just like the effective central charge,
the scaling dimension hα|β is obtained as a derivative hα|β =
limk→0

dhα|β (k)
dk from the replicated theory (and represents a

typical scaling dimension). The surface free energy ( f α|β
s )

contribution occurs in any statistical mechanics model with
specified boundary ends, including for an example an Ising
model on a strip.

Using Eq. (6), we see that we can extract numerically
the BCC scaling dimensions hα|β (belonging to the boundary
spectrum of the CFT) from finite-size scaling using various
sets of boundary conditions (α, β ). The boundary conditions
that we will consider are guided by the underlying replica
statistical mechanics model [57]. We will consider both free
boundary conditions (corresponding to open boundary con-
ditions and denoted by α = f ), and different fixed boundary
conditions, corresponding to fixing the boundary spins of the
statistical mechanics model at the boundary. The degrees of
freedom (spins) of the replicated statistical mechanics model
are permutations of the replicas g ∈ Sk , and we will only
consider two particular permutations corresponding to dissi-
pation (identity permutation, label α = a), and entanglement
(cyclic/swap permutation, label β = b). This terminology is
consistent with Ref. [64].

C. Dissipative boundary setup (α, β) = ( f , a)

We first introduce dissipators at a boundary end to imple-
ment the boundary condition shown in Fig. 1(b). A single
qubit maximally mixed depolarizing channel or dephasing
along the z axis are used to model dissipation. For random
Haar circuits, dephasing and depolarizing channels are ex-
pected to flow—in the renormalization group sense—to the
same conformally invariant boundary condition. These are
added after each time period as shown in Fig. 1(b). The re-
sulting dynamics is described by the quantum channel

N (D)
t (ρ) = D(Tt . . .D(T2(D(T1ρT †

1 ))T †
2 ) . . . T †

t ), (7)

where D is the single qubit depolarizing/dephasing map [85]
that acts on the boundary qubit x = L. The maximally mixed
depolarizing channel maps ρ → D(ρ) = I/2, which mod-
els absolute decoherence and the dephasing channel maps
ρ → D(ρ) = P↑ρP↑ + P↓ρP↓, which amounts to adding

measurements on this qubit and discarding the measurement
outcomes [86,87]. This random circuit geometry will be de-
noted by the boundary conditions (α, β ) = ( f , a), and in
the statistical mechanics model language it corresponds to
fixing boundary spins at the right boundary to the identity
permutation.

Mapping this boundary condition back to the half plane,
we see that the ( f , a) boundary condition corresponds to a
setup in which one measures the spins on the left half-line at
the final time, and computes the resulting Born probability,
Tr(|ψ〉m̃〈ψ |m̃), where m̃ is a bit string of measurement
outcomes for both the midcircuit measurements in the
spacetime bulk of the circuit and the measurements on the left
half-system on the final time step. This quantity receives a
nonuniversal surface contribution (which would exist even if
all the sites were independent) and a subleading part capturing
the long-range correlations between the outcomes of distant
measurements.

Another observable that contains direct information about
the (typical) scaling dimension h f |a turns out to be the Shan-
non entropy of the measurement record of the circuit at early
time, i.e., that of a shallow circuit. To see this, consider a
sideways variant of Fig. 2, where the roles of space and time
are exchanged: Specifically, it is convenient to first consider a
circuit with periodic boundary conditions in space of large cir-
cumference L, and small depth t , so t � L. Then choose as the
initial condition the state labeled by the boundary condition f
(which can be represented, e.g., by a simple product state);
the state of the circuit appearing at depth t , the final time,
which contains the physical qubits, is represented by boundary
condition a [88]. Now consider the partition function Zm of
the so-defined shallow circuit which equals [89] the Born
probability for the measurement record, pm = Zm. For this
shallow circuit we are considering now, where t � L, the
corresponding Born-probability-averaged free energy density,
which, by definition, Eq. (3), is the corresponding shallow-
circuit Shannon entropy density, has the same form [90] as
Eq. (6), except that the roles of space and time are exchanged,

− lim
L→∞

ln Zm

αtL
= − lim

L→∞
1

αtL

∑
m

pm ln pm

= f (t = ∞) + f ( f |a)
s

t
+ π h f |a

t2
− π ceff

24t2
,

(8)

where Om = ∑
m pmOm refers to the average over quantum

trajectories, and f (t = ∞) and f ( f |a)
s are nonuniversal. Equa-

tion (8) shows that the 1
t2 -decay of the Shannon entropy

density at early times is directly affected by the exponent
h f |a, a universal signature of the sensitivity of this entropy
to the initial state f . At long times, the circuit “forgets”
about the initial state f , and at finite spatial circumference
L the behavior in Eq. (4) obtains in the opposite limit of a
deep circuit where t � L, in the steady state, for the case of
periodic spatial boundary conditions we are currently consid-
ering. (Open spatial boundary conditions do not modify the
early-time t � L behavior [64], Eq. (8), but the late-time form
Eq. (6) obtains in the opposite limit of a deep circuit, t � L,
in the steady state.)
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D. Boundary ancillas measurement-induced
entanglement setup (α, β) = (a, b)

To implement different boundary conditions, we introduce
ancilla qubits at left and right edges [64] as shown in Fig. 1(c).
Every time step, we introduce two fresh system qubits that
individually form a Bell pair with an ancilla qubit and inject
them into the system at the first (x = 1) and last (x = L) qubit
locations. Then, after the evolution of system qubits for one
time period, we take out the first and last qubits to store them
as ancillas with no further action on them. After that, we
repeat by introducing two fresh pre-entangled qubits at the
boundary ends again, and so on. Thus, for a circuit of depth
t , we introduce 2t ancilla qubits. Tracing over the ancillas at
a boundary effectively implements dissipation, corresponding
to α = a.

We now compute the entanglement between the right
and left ancillas, while measuring all physical qubits—
corresponding to a free f boundary condition on the top layer
of the circuit [91]. This measurement-induced entanglement
(MIE) [92,93] between right and left boundaries effectively
implements a change in boundary conditions: one of the
boundaries is traced over (boundary condition α = a), while
the other is subject to a partial trace (corresponding to a cyclic
permutation of replicas, boundary condition β = b). In the
statistical mechanics language, this forces the insertion of a
domain wall propagating vertically between the two ends of
the strip. The MIE is then directly given by the free-energy
cost of changing this boundary condition:

SMIE

αLt
= f(a|b) − f( f | f ) = πha|b

L2
+ . . . . (9)

A sideways version of this geometry, where the space and
the time directions of the circuit were exchanged, was con-
sidered in Ref. [64]. We thus see that this geometry allows
us to extract the entanglement scaling dimension ha|b which
controls the scaling of the entanglement entropy at criticality.
In particular, in previous works, ha|b was typically extracted
directly from the logarithmic scaling of entanglement entropy
(of the physical qubits) at criticality SA ∼ 2ha|b ln LA, which
exhibits the coefficient γ of the logarithm in Eq. (1), γ =
2ha|b. As already mentioned, we can unfortunately not use this
boundary condition with Haar random circuits as the Hilbert
space dimension grows with time as one adds ancilla qubits as
depicted in Fig. 1.

E. Numerical analysis

In the rest of this paper, we apply this boundary transfer
matrix approach numerically. We average free energies over
105–107 sampled quantum trajectories where each trajectory
is evolved up to time t = 10L, after an initial equilibration
time (∼4L). The sampling complexity of quantum trajectories
limits us to inspect small system sizes, even with state-of-
the-art computing platforms. However, we still manage to do
larger systems, both for Clifford and Haar, as compared to
the previous work with periodic boundary [71]. All results are
shown at criticality p = pc, with pMOIM

c = 0.5, pDC
c = 0.205,

pDH
c = 0.14, and pC

c = 0.1596, for MOIM, dual Clifford, dual
Haar, and Clifford circuits, respectively [68,94]. Note that
adding dissipators at boundary does not influence saturation

time of free-energy density. However, it results in additional
Monte Carlo sampling of trajectories for Haar circuits as
described in Appendix D (Fig. [12]). This further limits the
system sizes and thus results in larger error bars for the uni-
versal and nonuniversal quantities as compared to the Clifford
circuit. This also leads to larger error bars for the dissipator
boundary as compared to the open boundary condition, even
within the Haar circuit. The space-time asymmetries for dif-
ferent monitored circuits are characterized by the anisotropy
parameter (α) and we extract this from the ratio of space and
time correlators [71], which gives αMOIM = αDC = αDH = 1
for MOIM, dual Clifford, and dual Haar circuits (which are
all isotropic), and αC = 0.61 for the Clifford random circuit.
All error bars are estimated using a bootstrap analysis where
the data is bootstrapped over 1000 samples. To improve the
estimate of universal quantities, we use standard double fitting
procedure where we successively remove small system sizes
(L < Lmin) from the fit which in turn accounts for the leading
order correction to the averaged free energy density.

III. MEASUREMENT-ONLY ISING MODEL

To demonstrate the validity and accuracy of the boundary
transfer matrix spectrum approach to MIPTs, we first consider
the MOIM [95,96] where the conformal spectrum can be
derived analytically.

A. Measurement-only dynamics

Measurement-only circuits are comprised of different non-
commuting measurement operators and are free from random
unitary gates [95–101]. We consider the MOIM, which de-
scribes measurement-only dynamics using noncommuting
competitive measurement operators, σ x

i and σ z
i σ z

i+1, acting on
sites i ∈ {1, 2, . . . , L} of a one-dimensional spin-1/2 chain.
The dynamics involve the projective measurement operator
M[O] that measures the observable O, which then maps the
state |ψ〉 onto the eigenspace of O, i.e., M[O]|ψ〉 = Pλ|ψ〉√〈ψ |Pλ|ψ〉 ,
with probability pλ = 〈ψ |Pλ|ψ〉, where λ is the eigenvalue
of the corresponding eigenspace of O and Pλ is the projec-
tion operator onto the eigenspace of O with eigenvalue λ.
For MOIM, the observable O is either σ x

i or σ z
i σ z

i+1 and

the corresponding projection operator Pλ is either I+λσ x
i

2 or
I+λσ z

i σ z
i+1

2 , where λ takes value ±1. In each discrete time step,
the measurement operators M[σ z

i σ z
i+1] (≡ Mzz

e ) and M[σ x
i ](≡

Mx
i ) act randomly on each edge e = (i, i + 1) and site i with

a probability 1 − p and p, respectively. The layer of Mzz
e

measurements precedes all probable Mx
i operators. The ini-

tial state is set to |ψ0〉 = | + + · · · +〉, where |+〉 = |0〉+|1〉√
2

is the eigenstate of the σ x operator and thus the resulting
dynamics leaves the state invariant under the operator C =∏L

i=1 σ x
i , which describes the symmetry of this model. The

transfer matrix evolving the system for a single time step then
acts as

|ψ (t + 1)〉 = Mx
i ⊗ Mzz

e |ψ (t )〉, (10)

where e and i are the sets of all edges and sites, respectively,
on which the measurement operations (Mzz

e and Mx
i ) act. It has

been shown that the model exhibits an entanglement phase
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(a) (b)

FIG. 3. Percolation mapping of the MOIM: (a) Each σ z
i σ z

i+1 mea-
surement (blue edge) along an edge maps to a horizontal bond and
the absence of a σ x

i (green circles) measurement corresponds to a
vertical bond. This defines a percolation cluster (shown by dark black
line). A given time step comprises a layer of σ z

i σ z
i+1 and then σ x

i

measurement operations with probability (1 − p) and p, respectively,
that evolves the initial state (X1, X2, X3, X4, X5) from t = 0 to time
t = 5, where X ≡ σ x. At the last time step, one artificially measures
all sites using σ x measurement operators. The resulting configuration
has parameter Ns = 30 (number of space-time sites), Nvb = 11 (num-
ber of vertical bonds), and Nc = 11 (number of percolation clusters,
including single-site clusters denoted by isolated black dots). (b) In
this example, we fix the order of measurement from the left to right
end in each time step. The total number of random measurements
Nrand = 16 (marked by stars) is independent of the choice of order in
which the measurements are performed. All measured links (vertical
or horizontal) which are not marked by a star in this panel correspond
to deterministic measurements (meaning the Born probability of that
particular measurement outcome is 1). This example satisfies the
relation between percolation clusters and number of random mea-
surements stated in Eq. (11).

transition between two area law phases and the physics at
the critical point is described by bond percolation (which is
a CFT with central charge c = 0, as it should to describe
a MIPT).

B. Percolation mapping and replicated
statistical mechanics model

We now review the mapping of this model onto bond
percolation [95,96] and generalize it to fully characterize
the associated replicated statistical mechanics model Zk =∑

m pk+1
m . First, note that to each realization of the circuit,

one can associate a bond percolation configuration as shown
in Fig. 3(a), where a measurement along an edge Mzz

e cor-
responds to a horizontal bond along that edge, whereas the
absence of a local measurement Mx

i on a site maps to a vertical
bond. This provides a one-to-one correspondence between
percolation configurations and measurement locations. As we
now show, the free energy is entirely given by the properties
of this percolation configuration.

First, note that the MOIM is a stabilizer (Clifford) circuit,
so each measurement outcome is either fully deterministic
(determined outcomes) or fully random (with equally prob-
able outcomes). For example, let us suppose we have a
stabilizer state |+,+〉. Then measuring σ z

1σ z
2 will result in

either (|00〉 + |11〉)/
√

2 or (|01〉 + |10〉)/
√

2, each with prob-
ability 1/2. However, if we measure σ x

1 for the same state,
we get back |+,+〉 with probability 1. We call the former

random and the latter to be a deterministic measurement out-
come. Note that for MOIM, whether an outcome is random or
deterministic will depend on the order in which measurements
are performed in a given layer of time but the total number of
random measurements is independent of the choice of order.
We choose the order of measurements from the left to right
end in each time step. As a result, the Born probability of
a given trajectory is given by pm = ( 1

2 )Nrand , where Nrand is
the total number of random (nondeterministic) measurements.
This means that the free energy is given by F = N rand ln(2),
where N rand is the average number of random measurements
in those circuits. Next, we note that the number of random
measurements is purely determined in terms of the geometri-
cal properties of the percolation clusters, namely, we find by
inspection that

Nrand = 2(Ns − Nvb − Nc), (11)

where Ns, Nvb, and Nc are the total number of sites, vertical
bonds, and disconnected clusters in the percolation configura-
tion. An example illustrating the validity of this expression
is provided in Fig. 3, where we fix the order of measure-
ments from the left to right end in each time step. For this
particular choice, the random and deterministic measurement
locations are shown in Fig. 3(b). So, for a fixed measure-
ment trajectory with all measurement outcomes set to 1, we
write the evolution of stabilizer generators for one time step
from t = 2 to t = 3 in Fig. 3(b), following the convention
X ≡ σ x and Z ≡ σ z to denote these generators. The stabilizer
generators at t = 2 are given by {X1, X2, X3, X4, X5}; this set
evolves to {X1X2, Z1Z2, X3X4, Z3Z4, X5} upon measuring σ z

1σ z
2

and σ z
3σ z

4 . Clearly, both measurements are random in accor-
dance with the two-site example discussed earlier. Next we
measure σ x

2 and σ x
4 , which results in the stabilizer generators

{X1, X2, X3X4, Z3Z4, X5} at the end of time t = 3. The mea-
surement on site 2 is random while the measurement on the
last qubit is deterministic since the qubit already is in the
|+〉 state. Doing this for all time steps, in turn, leads to the
total random measurements that obey the formula in Eq. (11).
Although we do not have a formal proof of this formula, we
have checked its validity numerically for very large circuits.
This equation can further be broken down into purely exten-
sive contributions, and terms including nonextensive universal
corrections. The first two terms scale extensively [O(Lt )] and
will therefore contribute to the bulk free energy only. Drop-
ping these nonuniversal extensive contributions, we thus find
that

F ∼ −2Nc ln 2, (12)

where Nc is the average number of percolation clusters
at criticality. This quantity can be computed using the
standard Fortuin-Kasteleyn (FK) [102] mapping between
percolation and the Q → 1 limit of the Q-state Potts
model. Using these standard percolation results, we find
that Nc = − d

dQ F Potts|Q=1, where F Potts is the free energy
of the classical Q-state Potts model. This provides a direct
relation between the free energy of the circuit (Shannon
entropy of measurement record) and that of the classical Potts
model. In fact, using the same reasoning as above, one can
show that the replicated partition function Zk = ∑

m pk+1
m
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FIG. 4. Boundary spectrum of MOIM: We implement the boundary condition in Fig. 1 to obtain the respective boundary spectrum of
MOIM. (a) The plot of f( f | f ) and 1/L clearly respect the scaling form stated in Eq. (6) (for Lmin ∈ {10, 12, 14, 16, 18}) as shown by the dashed
blue line. In the inset, we perform the double fitting procedure to extract effective central charge ceff and free-energy surface term f s

( f | f ) by
successively removing the smallest system size and then fitting the data with L � Lmin. This gives us ceff = 1.0(1) and f s

( f | f ) = −0.4671(7)
as shown by the red dashed line. (b) The plot of ( f( f |a) − f( f | f ) )L scales linearly with 1/L as shown by the dashed blue line, and from fitting
the values of slope and intercept, we obtain the dissipator scaling dimension hf |a = 0.048(6) and fδs = 0.27, as shown with their respective
red dashed lines in the inset plots. (c) The plot of SMIE vs 1/L clearly follows the trend stated in Eq. (9) and we find the entanglement scaling
dimension ha|b = 0.097(2) using the red dashed line in the inset plot. The fit of SMIE includes a leading correction term coefficient A1 = 0.37.
All the data shown above for the MOIM have pc = 0.5, α = 1, and L ∈ {10, 12, 14, 16, 18, 20, 24, 28}. We sample = 5 × 106 trajectories to
find the average value of free-energy density.

maps onto a Potts model with Q = 4k (up to nonuniversal
contributions), with Q → 1 in the replica limit k → 0.
We can then use standard CFT results for the Potts model
to infer universal quantities for the MOIM transition. For
example, the central charge of the Potts model [82] is given
by cPotts = 1 − 6

m(m+1) , where m = π

arccos(
√

Q
2 )

− 1. We thus

find that the effective central charge is given by

ceff = ln 4
d

dQ
cPotts

∣∣∣∣
Q=1

= 5
√

3 ln 2

2π
� 0.96. (13)

Scaling dimensions can be identified through this
mapping as well, and fit into the Kac table [82]:
hr,s = ((r(m + 1) − sm)2 − 1)/(4m(m + 1)).

We now turn to a numerical analysis of the MOIM in
the various geometries summarized in Fig. 1. We will first
implement the open (free) boundary conditions, Fig. 1(a), to
extract ceff . Then we introduce dissipation at one end of the
boundary to evaluate the dissipator scaling dimension (h f |a).
Finally, to extract the entanglement scaling dimension ha|b, we
implement the entangled system-ancilla setup [as described
in Fig. 1(c)]. We make use of stabilizer formalism [2,103–
106], which allows for efficient classical simulation of large
quantum circuits.

C. Effective central charge (ceff )

We first compute the numerical value of the effective cen-
tral charge in the cylindrical geometry setup with periodic
boundary conditions. The plot of free-energy density ( f ),
shown in Appendix A [Fig. 8(a)], follows a straight line when
plotted against 1/L2 as expected from Eq. (4) and the slope
gives ceff = 0.96(1). This is in good agreement with the ana-
lytic prediction in Eq. (13). We also extracted a precise value
of f (L = ∞) = 0.55718(2), using the linear double fitting
procedure. We now implement MOIM with free boundary
ends as shown in Fig. 1(a), corresponding to (α, β ) = ( f , f ).

The free-energy density scales in accordance with Eq. (6)
where h f | f = 0 (as expected [64]) and the resulting fit gives
ceff = 1.0(1) as shown in Fig. 4(a). Note that this estimate
is less accurate than the periodic boundary conditions case,
largely because of the nonuniversal surface term f s

( f | f ), which
adds a fitting parameter. To reduce the number of fitting pa-
rameters, we use the extensive free energy term f (L = ∞)
obtained from periodic boundary conditions in Eq. (6).

D. Dissipator scaling dimension (hf |a)

Next, we implement boundary depolarizing/dephasing
channels as shown in Fig. 1(b) to extract the dissipator scaling
dimension h f |a. To get rid of the extensive bulk contribution,
we plot the free-energy difference

f( f |a) − f( f | f ) = fδs

L
+ πh f |a

L2
, (14)

where fδs = f s
( f |a) − f s

( f | f ). The plot of ( f( f |a) − f( f | f ))L vs 1
L

displays a linear trend with 1/L as shown in Fig. 4(b). Now,
using the double fitting procedure, we find the boundary scal-
ing dimension h f |a(L) = 0.048 − 0.432

L2 and the nonuniversal
free-energy surface term fδs = 0.27 + 0.06

L2 . We conclude that
h f |a = 0.048(6) and fδs = 0.275(1). Note that the addition
of dissipators still preserves the global symmetry C. We also
observe that the scaling dimension remains unchanged with
the type of dissipator since dephasing along the z axis is
equivalent to depolarizing in this model.

The mapping onto bond percolation can be generalized in
the presence of boundary dissipators. We find that bound-
ary dissipation induces additional random (nondeterministic)
measurements that are associated with the hulls of per-
colation clusters touching the boundary, see Appendix B.
The BCC operator associated with changing the fugacity
of such boundary hulls was identified in Ref. [107]. Com-
bining these results, we find that h f |a =

√
3

8π
ln 2 � 0.048
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FIG. 5. Boundary spectrum of dual Clifford circuit: We implement the boundary condition in Fig. 1 to obtain the respective boundary
spectrum of dual Clifford circuit. (a) The plot of f( f | f ) and 1/L clearly respect the scaling form stated in Eq. (6) (for Lmin ∈ {10, 12, 14, 16, 18})
as shown by the dashed blue line. In the inset, we perform the double fitting procedure to extract effective central charge ceff and free energy
surface term f s

( f | f ) by successively removing the smallest system size and then fitting the data with L � Lmin. This gives us ceff = 0.32(3) and
f s
( f | f ) = −0.0615(2) as shown by the red dashed line. (b) The plot of ( f( f |a) − f( f | f ) )L scales linearly with 1/L as shown by the dashed blue

line, and from fitting the value of slope and intercept we obtain the dissipator scaling dimension hf |a = 0.029(2) and fδs = 0.0479 as shown
with their respective red dashed lines in the inset plots. (c) The plot of SMIE vs 1/L clearly follows the trend stated in Eq. (9) and we find the
entanglement scaling dimension ha|b = 0.519(8) using the red dashed line in the inset plot. The fit of SMIE includes a leading correction term
coefficient A1 = −1.833. All the data shown above for the dual Clifford circuit have pc = 0.205, α = 1, and L ∈ {10, 12, 14, 16, 18, 20, 24, 28}
except for SMIE where L = 28 is absent. We sample = 5 × 106 trajectories to find the average value of free energy density.

(see Appendix B), in very good agreement with our numerical
results.

E. Entanglement scaling dimension (ha|b)

Finally, the boundary scaling dimension ha|b has
been determined both numerically and analytically
for the MOIM with cylindrical geometry [96], with
ha|b = ln 4 d

dQ hPotts
1,2 |Q=1 � 0.096. This critical exponent

corresponds to counting clusters crossing the strip. Here,
we extract it using the boundary ancilla setup of Fig. 1(c).
We compute SMIE between ancilla qubits present on the
left and right ends of the boundary where all system qubits
after the last time step are measured. The result in Fig. 4(c)
agrees with the scaling form Eq. (9) and we extract the
entanglement scaling dimension ha|b(L) = 0.097 − 0.06

L2 . We
conclude that ha|b = 0.097(2), which is in good agreement
with the theory prediction. Hence these results completely
support our approach to obtain the boundary conformal
spectrum. We thus can now generalize it to the more general
unitary-measurement dynamics.

IV. DUAL CLIFFORD RANDOM CIRCUIT

The dual Clifford random circuit consists of two-qubit
dual-unitary Clifford gates and local measurement operators
that project along the computational basis states.

The two-site dual-unitary Clifford gates comprise those
Clifford gates which obey the duality relation which makes
them unitary both in space and time directions [75]. The dual-
unitary condition is satisfied by the SWAP and the iSWAP
classes of the two qubit Clifford operators. This contains a
total of 5760 (576 SWAP + 5184 iSWAP) gate operations
[108]. Using these gates fixes the anisotropy parameter α = 1,
allowing us to extract critical properties more accurately. We
then follow the boundary transfer matrix approach outlined in
Sec. II.

A. Effective central charge (ceff )

We will first start by discussing the calculation of ceff

in cylindrical geometry (periodic boundary conditions). In
Appendix A [Fig. 8(b)], we find that the free-energy den-
sity f shows a clear linear dependence when plotted against
1/L2 in accordance with the CFT result stated in Eq. (4).
This yields ceff = 0.349(3) and f (L = ∞) = 0.131 574(6).
We now implement a dual Clifford circuit with free boundary
ends, where we find ceff = 0.32(3) from the plot between
f( f | f ) and 1/L as shown in Fig. 5(a). More precisely, using
a double fitting procedure, we find ceff (L) = 0.32 − 8.74

L2 and
f s
( f | f )(L) = −0.0615 − 0.0569

L2 . The plot respects the scaling
form given in Eq. (6) and the value of ceff is in agreement
with the one extracted from periodic boundary conditions. As
in the MOIM case, ceff has relatively large error bars as a
consequence of the free-energy surface term. Lastly, we find
that f s

( f | f ) = −0.0615(2).

B. Dissipator scaling dimension (hf |a)

We now implement boundary dissipation as shown in
Fig. 1(b) to extract the dissipator scaling dimension h f |a. The
plot of ( f( f |a) − f( f | f ))L vs 1

L displays a linear dependence
against 1/L as shown in Fig. 5(b). Now using the double fitting
procedure, we find the boundary scaling dimension h f |a(L) =
0.029 − 0.430

L2 and the nonuniversal free-energy surface term
fδs = 0.0479 + 0.0666

L2 . We conclude that h f |a = 0.029(2) and
fδs = 0.0479(3). Note that the scaling dimension remains
invariant with the type of dissipator used at the boundary,
consistent with the fact that both depolarizing and dephasing
channels correspond to the same conformally invariant bound-
ary condition α = a.

C. Entanglement scaling dimension (ha|b)

The entanglement scaling dimension ha|b is known for
a Clifford circuit with cylindrical geometry [1–3,64] from
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the coefficient of the subsytem entanglement entropy. Here,
we extract it from the boundary ancilla setup shown
in Fig. 1(c).

We compute the MIE SMIE between ancilla qubits present
on the left and right ends of the boundary where all sys-
tem qubits after the last time step are measured. The plot in
Fig. 5(c) clearly respects the scaling form Eq. (9) and we ex-
tract the entanglement scaling dimension ha|b(L) = 0.519 +
0.116

L2 . The entanglement scaling dimension ha|b = 0.519(8)
agrees with existing results, and provides yet another check
of our approach.

While we focused on dual-unitary Clifford circuits in this
section, we also checked that we obtain consistent (but less ac-
curate) results for regular Clifford circuits (see Appendix C).
This confirms the expectation that Clifford and dual-unitary
Clifford monitored circuits are in the same universality class.

V. DUAL HAAR RANDOM CIRCUIT

We now come to the case of Haar random circuits under-
going random and local projective measurements. The qubit
chain evolves in time under a bricklayer sequence of dis-
crete time steps involving two-qubit entangling gates Ui,i+1

and local σ z
i measurements with probability p as depicted in

Fig. 1. As in the previous section, to avoid the error associ-
ated with computing the space time anisotropy, we consider
dual-unitary circuits by choosing only the gates Ui,i+1 that are
unitary in space and time such that α = 1. The dual unitary
gates are given by

U = eiφ (u+ ⊗ u−) · V [J] · (v− ⊗ v+), (15)

where φ, J ∈ R are chosen randomly from [0, π ), u±, v± ∈
SU(2) are randomly chosen using the Haar measure, and

V [J] = exp
[
−i

π

4
(σ x ⊗ σ x + σ y ⊗ σ y + Jσ z ⊗ σ z )

]
. (16)

The statistical self-duality of these models under rotation
forces α = 1, allowing for more accurate estimate of their
critical properties.

A. Effective central charge (ceff )

First, we consider the dynamics of the model with open
boundary conditions shown in Fig. 1(a). As discussed in
Sec. II, the effective central charge can be obtained from the
free-energy density f( f | f ) expected to obey the scaling form
given in Eq. (6). We note that numerically probing the CFT
with OBC is costly, as it requires averaging the quantities
over a large number of trajectories compared to that with
cylindrical geometry. For the results presented in this section,
we obtained 107 samples for statistical averaging, similar to
the stabilizer simulation presented before. In Fig. 6, we show
f( f | f ) at late times (t � L) vs L for L = 8 to 20. In addition
to the leading 1/L scaling, f( f | f ) exhibits the expected 1/L2

correction. As suggested in Eq. (6), the coefficient of 1/L term
gives f s

( f | f ), while that of the 1/L2 is related to ceff . To obtain
estimates of ceff and f s

( f | f ), we use the double fitting procedure
explained previously to fit with the forms, ceff (L) = ceff (L =
∞) + b/L2 and f s

( f | f )(L) = f s
( f | f )(L = ∞) + b̃/L2 shown in

bottom and top insets of Fig. 6, respectively. This double-
fitting procedure gives an estimate of ceff = 0.27(2) which

FIG. 6. Haar dual unitaries free energy with open boundaries.
The free-energy density f( f | f ) with open boundary condition vs L.
The data fits well with the expected scaling form given in Eq. (6) with
open boundaries f( f | f )(L) = f (L = ∞) + 0.0251/L − 0.09417/L2,
allowing us to extract ceff and f s

( f | f ). The top and bottom insets show
the double fitting procedure we used to extract ceff and f s

( f | f ) by
successively removing the smallest system size(Lmin) from the fit.
For f s

( f | f ), we find f s
( f | f )(Lmin ) = 0.09352 + 0.0431/L2

min shown by
the dotted line in the top inset. For ceff , we find ceff (Lmin ) = 0.27 −
4.92/L2

min shown by the dotted line in the bottom inset. We conclude
ceff = 0.27(2) and f s

( f | f ) = 0.09352(2). We used 107 trajectories for
averaging each data point in this plot.

matches with the previous result for periodic boundary con-
dition [ceff = 0.24(2)] obtained in Ref. [71]. We also estimate
the surface free energy, f s

( f | f ) = 0.09 352(2). We note that we
used the extensive bulk parameter f (L = ∞) = 0.8902(2),
which is obtained using periodic boundary conditions as we
did for the other circuit models.

B. Dissipator scaling dimension (hf |a)

We next apply a dissipator to one end of the open bound-
ary conditions. In particular, in the odd time steps, the qubit
at the right end of the chain (i.e., site x = L) is subjected
to the dephasing channel along the z axis, which can be
rewritten as

D(ρ) = P↑ρP↑ + P↓ρP↓ = pdρ + (1 − pd )σzρσz, (17)

where pd = 1
2 . The monitored dynamics with the dissipator

can be described by a stochastic master equation, which de-
scribes the evolution of the density matrix, ρ̇ = Lρ, where the
Liouville superoperator L under the Lindblad approximation
takes the form

ρ̇ = Lρ = ĉρĉ† − 1
2 {ĉĉ†, ρ̂}. (18)

Here the Lindblad operator ĉ = σz
√

1/(2dt ).
Writing the dissipator in this form allows us to Monte

Carlo sample many quantum trajectories from a single de-
phasing channel on the end qubit, and a fixed set of gates
and measurement locations on the other qubits. Using this
method, we can study the dissipative dynamics without hav-
ing to resort to simulating the full density matrix, which
is much more numerically challenging, e.g., ρ requires 22L
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FIG. 7. Haar dissipator free energy and its difference with open
boundaries. The dissipator free energies fφ (L) displays expected
dependence on L from Eq. (6). For system sizes up to L = 14
we ran 6 × 108 trajectories, including Monte Carlo samples. For
L = 16, we ran 6 × 107 trajectories. The difference in free energy
densities displays the correct dependence as expected from Eq. (14),
f f |a(L) − f f | f (L) = 0.004

L + 0.077
L2 allowing us to extract fs (Inset top)

and hf |a (inset bottom). We find that fδs(Lmin ) = −0.003 + 0.566
L2

min
and

hf |a(Lmin ) = 0.05 − 2.26
L2

min
.

numbers, whereas storing the state vector only requires 2L.
Nonetheless, due to the large number of circuit realizations
required to handle the open boundary conditions, how this
Monte Carlo sampling is done on top of that, which requires
a Monte Carlo average for each circuit sample, remains a
nontrivial task.

As the only quantity we are aiming to compute is the free-
energy density, we can utilize its dependence on the Monte
Carlo sampling “time” (denoted by τ and we stress it’s not a
real physical time) f f |a(t, L; τ ) to extrapolate the Monte Carlo
averages to τ → ∞. We find that f f |a(t, L; τ ) converges like
1/τ at sufficiently late τ . Instead of converging each circuit
sample in Monte Carlo time, we instead work at a fixed Monte
Carlo realization of the dissipator and then average over sam-
ples of the circuit. This produces a smooth function that we
extrapolate to τ → ∞ using a fourth-order polynomial in 1/τ .
Hence, using this τ dependence, we extract the Monte Carlo
average using a reasonable number (∼600) of Monte Carlo
samples. This procedure is demonstrated in more detail in
Appendix D.

With the dissipative free energy in hand f( f |a), we
compute its difference with free boundaries f( f |a) − f( f | f ) =

fδs

L + πh f |a
L2 , where fδs = f s

( f |a) − f s
( f | f ). The results and scaling

of the data are shown in Fig. 7. After performing a similar
double fitting procedure, we obtain f s

( f |a) = 0.094(8) and
find h f |a = 0.05(1). This appears to be different from the
dissipator scaling dimension measured in the Clifford case, as
expected. We note that this critical exponent was not measured
before, and it would be interesting to find other geometries
and quantities to extract it. Of course, the boundary-ancilla
setup used to measure the entanglement scaling dimension
ha|b in the Clifford case cannot be implemented in the Haar
case as the number of ancillas grows linearly with time, so
our transfer matrix approach cannot be used in that case.

VI. CONCLUSIONS

In this paper, we investigated the boundary conformal
properties of MIPTs for various circuit models as summarized
in Table I by introducing a numerical boundary transfer matrix
approach. This, in turn, characterizes the CFT that describes
these transitions. It further solidifies the fact that Haar and
Clifford circuits do not belong to the same universality class.
The extracted effective central charges in the cylindrical and
infinite strip geometry agree with each other, validating the
overall transfer matrix approach as an efficient way to probe
MIPTs numerically. This is further validated by the analyti-
cally tractable case of the MOIM. In this paper, we extracted
the scaling dimension associated with two specific BCC op-
erators, namely, the dissipator scaling dimension (h f |a) and
entanglement scaling dimension (ha|b). Implementing differ-
ent boundary conditions beyond those considered in this paper
should allow one to extract different scaling dimensions, re-
alizing different “permutations” of replicas in the statistical
mechanics models describing the MIPTs discussed in this
paper. Classifying these boundary conditions and understand-
ing their physical meaning in terms of quantum information
theoretic quantities remains an important challenge for future
work.
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( f |a). The universal parameters are effective central charge ceff with periodic boundary
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Nonuniversal parameters Universal parameters

Circuit type pc f (L = ∞) f s
( f | f ) f s

( f |a) ceff (PBC) ceff (OBC) hf |a ha|b

MOIM 0.5 0.55718(2) −0.4671(7) −0.1919(7) 0.96(1) 1.0(1) 0.048(6) 0.097(2)
Dual Clifford 0.205 0.131574(6) −0.0615(2) −0.0136(3) 0.349(3) 0.32(3) 0.029(2) 0.519(8)
Clifford 0.1596 0.170469(6) −0.0749(3) −0.0202(3) 0.375(5) 0.32(4) 0.034(2) 0.534(2)
Dual Haar 0.14 0.8902(2) 0.09352(2) 0.094(8) 0.24(2) 0.27(2) 0.05(1)
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FIG. 8. Effective central charge in cylindrical geometry: The plot of f shows linear trend with 1/L2 in accordance with the scaling form
stated in Eq. (4). We compute ceff in cylindrical geometry by the double fitting procedure and we find ceff = 0.96(1), 0.349(3), and 0.375(5)
and the extensive bulk parameter f (L = ∞) = 0.55718(2), 0.131574(6), and 0.170469(6), obtained to high precision for (a) MOIM, (b)dual
Clifford, and (c)Clifford random circuits, respectively. Each data point is averaged over 5 × 106 trajectories.
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APPENDIX A: EFFECTIVE CENTRAL CHARGE
FROM CYLINDRICAL GEOMETRY

The free-energy density for cylindrical geometry obeys the
relation given by Eq. (4). We plot f vs 1/L2 for MOIM, dual
Clifford, and Clifford random circuits as shown in Fig. 8. The
plot shows a linear trend with 1/L2. We extract the value of
ceff and f (∞) using the double fitting procedure and we find
ceff = 0.96(1), 0.349(3), 0.375(5), and the bulk term f (L =
∞) = 0.55718(2), 0.131574(6), and 0.170469(6) for MOIM,
dual Clifford, and Clifford circuit, respectively.

APPENDIX B: BOUNDARY DISSIPATION
IN THE MEASUREMENT-ONLY ISING MODEL

Adding boundary dissipation (depolarizers) to the MOIM
induces additional nondeterministic, random measurements.
In turn, the number of such additional random measurements
determines the scaling dimension of the BCC scaling dimen-
sion h f |a using Eq. (14) and

F( f |a) − F( f | f ) = �Nrand ln 2, (B1)

where �Nrand = N
D
rand − N rand, with N

D
rand and N rand are the

averaged number of random measurements with and without
the depolarizers present at the right boundary, respectively. We
note that for each realization, �Nrand has a simple geometrical
meaning in terms of percolation clusters. We find by inspec-
tion that

�Nrand = Nbh, (B2)

where Nbh represents the number of hulls of clusters touch-
ing the right boundary (where the depolarizers act). We

illustrate this relation in Fig. 9. This particular example con-
tains �Nrand = 6 extra number of random measurements as
compared to the case with no dissipator at the right bound-
ary. Those extra measurements are denoted with red stars

FIG. 9. Boundary dissipation in the measurement-only Ising
model: (a) The qubits are initialized in a stabilizer state
(X1, X2, X3, X4, X5, X6), where X ≡ σ x, that undergoes measure-
ment plus dissipation dynamics using the two site measurement
operation σ z

i σ z
i+1 (blue edge), the single site measurements σ x

i (green
circles), and the dissipators denoted by purple diamond that act on
the right boundary qubit after each time step up to time t = 8. In
this case, we consider maximally mixed depolarizing channel to
model dissipation. At the last time step, one artificially measures all
sites using σ x measurement operators. The measurement operations
give rise to outcomes that are either random or deterministic. We
denote the random outcomes using stars where the red colored stars
are the extra random measurements that are absent in the exact
same dynamics but with no boundary dissipators. The blue stars
are random measurements that are not affected by the boundary
dissipation. This particular configuration consists of six red and 30
blue stars. (b) Percolation mapping of the configuration shown in (a).
The internal and external hulls of boundary clusters (that touch the
right boundary) are shown in dark and light blue colors, respectively.
All other hull of clusters are shown in red. Note that there are six
boundary hulls, in agreement with Eq. (B2).
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FIG. 10. Boundary spectrum of Clifford circuit: We implement the boundary condition in Fig. 1 to obtain the respective boundary spectrum
of monitored Clifford circuits. (a) The plot of f( f | f ) and 1/L clearly follows the scaling form Eq. (6) (for Lmin ∈ {10, 12, 14, 16, 18}) as shown
by the dashed blue line. In the inset, we perform the double fitting procedure to extract ceff and f s

( f | f ). This gives us ceff = 0.32(4) and
f s
( f | f ) = −0.0749(3) as shown by the red dashed line. (b) The plot of ( f( f |a) − f( f | f ) )L scales linearly with 1/L as shown by the dashed blue

line, and from fitting the value of slope and intercept we obtain hf |a = 0.034(2) and fδs = 0.0547(4), shown by the red dashed line in the
inset. (c) The plot of SMIE vs 1/L clearly follows the trend stated in Eq. (9) and we find ha|b = 0.534(2) and A1 = −1.9(1). All the data shown
above for the Clifford circuit have pc = 0.1596, α = 0.61, and L ∈ {10, 12, 14, 16, 18, 20, 24, 28}. We sample = 5 × 106 trajectories to find
the average value of free energy density.

in Fig. 9(a). Note that these may happen far from the right
boundary. The corresponding boundary hulls are shown in
Fig. 9(b), there are four external boundary hulls shown in light
blue and two internal boundary hulls shown in dark blue. The
remaining hulls (red) do not contribute to �Nrand. We have
checked the validity of Eq. (B2) numerically for very large
circuits.

We now turn to recent BCFT results for boundary loop
models, that allow us to tag boundary hulls and count them at
criticality [107]. We find numerically that internal boundary
hulls do not contribute to the universal exponent h f |a (not
shown), while the external boundary hulls can be counted
using Ref. [107]:

Nexternal
bh

t
∼ π

2L

√
3

4π
, (B3)

ignoring nonuniversal, O(1) contributions, and where the fac-
tor of 2L is the number of sites in the loop (or Majorana)
language. Using Eqs. (14) and (B1), we identify the scaling
dimension:

h f |a =
√

3

8π
ln 2. (B4)

APPENDIX C: CLIFFORD RANDOM CIRCUITS

The dynamics of the Clifford random circuit can be
expressed using the transfer matrix approach discussed in
Sec. II. We thus use the scaling form of free energy and SMIE

to compute the boundary conformal properties for the Clifford
MIPT.

a. ceff . We first start by discussing the calculation of ceff

in cylindrical geometry. In Fig. 8(c), the plot of f shows
linear trend with 1/L2 in accordance with the CFT result
stated in Eq. (4). We note that the double fit method gives
ceff = 0.375(5), which is in agreement with the previously
known result [71] and the extensive bulk parameter f (L =
∞) = 0.170469(6). We now implement Clifford circuit with
free boundary ends, where we find ceff = 0.32(4) from the
plot between f( f | f ) and 1/L as shown in Fig. 5(a). The plot

respects the scaling form given in Eq. (6) and the value of
ceff validates the result for the dual Clifford circuit as noted in
Table I. The extracted values from the plot between f( f | f ) and
1
L gives a leading order correction to Eq. (6) since we have
ceff (L) = 0.32 − 6.608

L2 and f s
( f | f )(L) = −0.075 − 0.042

L2 using
the double fitting procedure.

b. h f |a. The plot of ( f( f |a) − f( f | f ) )L vs 1
L2 displays a

linear trend as shown in Fig. 10(b). Now, using the double
fitting procedure, we find the boundary scaling dimension
h f |a(L) = 0.034 − 0.442

L2 and the nonuniversal surface term
fδs = 0.055 + 0.068

L2 .
c. ha|b. The plot in Fig. 10(c) clearly respects the

scaling form of SMIE as given in Eq. (9) and we ex-
tract the entanglement scaling dimension ha|b(L) = 0.534 −
0.517

L2 , which agrees with known results for Clifford random
circuits [64].

1. Saturation time

We investigate the dynamics of free-energy density to mea-
sure the saturation time with and without depolarizers for the
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FIG. 11. Saturation time: Evolution of free-energy density for
Clifford circuit with (a) free boundary ends and (b) with depolarizing
channel at the right boundary end. It realizes saturation near the
equilibration time ∼4L both for random product (blue) and random
stabilizer initial states (orange). The average of two states together is
shown in green. Following are the parameters for both plots: L = 16,
pc = 0.1596, and number of samples = 105.
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FIG. 12. (a) Ff |a extrapolated to various values of τ . (b) f f |a as a function of 1/τ , where τ is the number of Monte Carlo iterations used
to calculate f f |a. The dashed blue line is the extrapolated fit, which is also shown in the inset. The dashed red line in the main plot is the
full density matrix data. Inset: f f |a computed from Ff |a extrapolated to τ . The black line is computed from the free-energy density without
extrapolation, starting from τit = 300 to τit = 600. The blue line is the extrapolation to τit = ∞ for L = 6 and L = 8. For L = 6, the full
density matrix yields f = 0.07 519 188(1) and f (τ = ∞) = 0.07 514(2) from the extrapolation method. For L = 8, f = 0.07 865 890(1) and
f (τ = ∞) = 0.07 857(2).

Clifford random circuit as shown in Fig. 11. We initialize the
circuit with a random product or a random stabilizer state
and then compute free-energy density by averaging over 105

sampled trajectories. One clearly notices saturation above the
equilibration time ∼4L and the average in Fig. 11 represents
the mean of free energy associated with the two types of initial
states.

APPENDIX D: METHODS OF MONTE CARLO SAMPLING

A quantum system undergoing decoherence can be de-
scribed by the map ρ(t + dt ) = ∑

k M̂kρM̂†
k , where the set of

Krauss operators {M̂k} satisfy
∑

k M̂†
k M̂k = I over the set of

possible measurement outcomes k. The choice of Mk is not
necessarily unique. If the states were initially pure, then after
a measurement described by M̂k , |ψ〉 → M̂k |ψ〉√

pk
, with prob-

ability pk = Tr(M̂k|ψ〉〈ψ |M̂†
k ). The Monte Carlo method is

implemented by starting from a pure initial state, and evolving
|ψ〉 with M̂k with probability 〈ψ |M†

k Mk|ψ〉. The dephasing
channel can be written with k = 2 Krauss operators: M̂0 = P↑
and M̂1 = P↓, where

ρ(t + dt ) = M̂0ρM̂†
0 + M̂1ρM̂†

1 , (D1)

or, alternatively, with Krauss operators

M̂ ′
0(dt ) = I − c†

1c1

2
dt =

√
1 − pd I,

M̂ ′
1(dt ) =

√
dtc†

1 = √
pdσz, (D2)

where ĉ =
√

1−pd

dt σz is the Lindblad operator for a dephasing
channel along the z axis and pd = 1/2. In a given Monte
Carlo sample of the dissipator, |ψ〉 undergoes a “jump,”
or evolution with ĉ, with probability pjump = Tr[M̂ ′

1ρM̂ ′†
1].

In the simulation, a random number r, chosen from the
unit interval, and if r < pjump, the state vector evolves as

M̂ ′
1(dt )|ψ (t )〉√

〈ψ (t )|M̂ ′†
1 (dt )M̂ ′

1(dt )|ψ (t )〉
whereas, if no jump occurs, |ψ (t )〉 is

unchanged.
Each circuit realization is specified by a set of two-site ran-

dom unitary gates U = {Ut,i j}, the space-time measurement
locations �X , and the measurement trajectory m yielding the

outcomes of the measurements. After T time steps, the circuit
yields the unnormalized state:

ρm = ρm(U, �X , T )

= D{PT UT ...D{P2U2P1U1ρU †
1 P1U

†
2 P2}...U †

T PT }. (D3)

One time step consists of a layer of either even or odd gates
and measurements. The probability of a measurement trajec-
tory m is pm(U, �X , T ) = Tr(ρm(U, �X , T )). The dephasing
channel can be rewritten as

ρm =
∑

�i
M̂iT {PT UT ...M̂i2

× {P2U2P1U1ρU †
1 P1U

†
2 P2}M̂i2 ...U

†
T PT }M̂iT , (D4)

where M̂i j is an operator chosen from either Krauss rep-
resentation and we sum over all 2T/2 possible dephasing
trajectories labeled by �i = {i2, ..., iT } for fixed (U, �X , m). We
can now write the probability of a given Lindblad trajec-
tory described by the specific Krauss operators Mi2,i4,...,iT =
{M ′

i2 , M ′
i4 , ..., M ′

iT }, where it ∈ {0, 1} labels the Krauss op-
erator for the dephasing channel at the tth layer. For
each (U, �X , m), we apply M̂ ′

0 or M̂ ′
1 with equal proba-

bility on x = L at each time step. After T time steps,
we have

pi2,i4,...,iT = Tr{M̂ ′
iT P2T U2T ...

× {M̂ ′
i2 P2U2P1U1ρU †

1 P1U
†
2 P2M̂ ′

i2}...U †
2T P2T M̂ ′

iT }.
(D5)

We compute pi2,i4,...,iT for several different trajectories and
estimate the Born probability after averaging over all possible
dissipator outcomes pm,

pm = [pi2,i4,...,iT ]MC, (D6)

where [. . . ]MC denotes a Monte Carlo average over dissipator
outcomes for many samples.

1. Extrapolation method

In this subsection, we describe our numerical method
of Monte Carlo sampling from the full density density
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matrix to approximate the free energy. For a fixed (U, �X ),
the free energy of the measurement record, F , is the
average of the logarithm of the probability of a given
trajectory:

F = −
∑

m

pm ln pm = −
∑

m

〈ln pm〉. (D7)

We perform the Monte Carlo sampling over the dissipator
outcomes for a fixed projective measurement trajectory m
and fixed (U, �X ). The probability of a given Monte Carlo
trajectory i, consisting of a fixed sequence of Monte Carlo
propagators from the dissipator, is pm(i). Obtaining many
samples i allows us to approximate pm = [pm(i)]MC for a
fixed set of gates and measurements.

The accuracy of the sampling method depends on the num-
ber of Monte Carlo samples taken, due to the statistics of the
dissipator outcomes. Due to the large number of Monte Carlo
trajectories with high pm, 〈pm(i)〉 decreases as the number of
Monte Carlo trajectories increases.

To estimate the entropy of the measurement record, we
record the free energy as a function of the number of Monte
Carlo samples (denoted as τ ) at each time: F (t ; τ ). To de-
termine the free energy when τ → ∞, we compute the free
energy averaged over multiple circuit realizations and out-
comes as a function of the number of Monte Carlo iterations.
We extrapolate to τ → ∞ from τmin = 300 to τmax = 600,
where F exhibits a leading 1/τ dependence for all system
sizes studied, as depicted in Fig. 12. We obtain an estimate
for F (t ; τ → ∞) from the intercept of the extrapolation as
τ → ∞ using a fourth-order polynomial in 1/τ . From the
intercept of the extrapolation, we estimate F (t ; τ → ∞). The
accuracy of the approach is exemplified in Fig. 12 and dis-
cussed in more detail in its caption.

To compute the error bars, we record f from individual
trajectories and calculate the bootstrap standard error σ for
500 samples for random Haar and product initial states. The

errors are combined using σ = 1
2

√
σ 2

product + σ 2
Haar for each

f (L) point. The size of the error bar in ceff and fs is determined
by the range of possible ceff and fs for f varying within σ .
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