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Thermal conductivity of CaO under the conditions of the Earth’s interior
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The thermal conductivity of mantle materials, viz., oxides, perovskites, and silicates, controls the heat balance
and thermal evolution of the Earth. We report the pressure (P) and temperature (T ) dependence of lattice
thermal conductivity of quicklime, an important insulating oxide in the deepest mantle, by employing the phonon
anharmonicity added and density functional theory assisted Debye-Callaway (DC) model. The previous [Vyas
et al., Phys. Rev. B 107, 014107 (2023) and Physica B 645, 414250 (2022)] first-principles calculations that
included the anharmonic contribution to the vibrational response were utilized to deduce the input parameters of
the DC model, such as the characteristic temperature, the average phonon velocity, and the thermal Grüneisen
parameter. In this paper, instead of the conventional Debye temperature, we used a different characteristic
temperature (θ ) to derive the resistive umklapp phonon scattering rate. The equilibrium value of θ is derived
from the second-order volume (V ) derivative of the self-consistent plane-wave total energy, whereas the V and
T variation of θ is governed by the explicit V ,T -dependent Grüneisen parameter. We employed the lowest-order
thermodynamic perturbation theory to find an explicit T -dependent thermal gamma and thereby θ (V ,T ). The
high-P, T lattice thermal conductivity (Klat) results for the B2 phase (CsCl structure) of CaO were also computed
and compared with those derived using the Boltzmann transport equation (BTE) approach. While the DC model
relies on the equation of states and average phonon group velocity, the discrepancy in high-P data suggests that
the effect of inflection of the phonon-phonon scattering mechanism with volume is critical. However, the DC
model remains successful for the high-T and low-P evaluation of Klat , and the calculated results for high-T but
zero-pressure (Klat ) coincides with results based on the BTE approach. Further, we also obtained the radiative
part of the thermal conductivity (Krad) from the absorption coefficient that was derived within the independent
particle approximation and using the Planck function for the blackbody radiation. The computed results at P
and T relevant to the Earth’s lower mantle and outer core regions suggest that (i) the radiative component Krad

remains two to three orders of magnitude smaller compared to the lattice part, and it is negligible; (ii) the B2
phase of CaO is important at the examined P,T plane, and decisively contributes to the heat transport; and (iii)
the estimated value (∼ 4.9–8 W m−1 K−1) of Klat at the core-mantle boundary is of the same order of magnitude
as that of cubic CaSiO3 perovskite, and MgSiO3 perovskite and bridgmanite along the geotherm.

DOI: 10.1103/PhysRevB.109.014302

I. INTRODUCTION

The thermal conductivities of solids vary theatrically both
in magnitude and with temperature from material to material.
This is attributed, experimentally, to the sample size of a
single crystal, grain sizes for polycrystalline samples, lattice
imperfections, dislocations, and theoretically, to anharmonic-
ity offered by the interatomic forces, interactions between
the heat carriers and the lattice waves, etc. [1]. The great
variety of processes makes thermal transport an interesting
area of study both experimentally and theoretically [2]. This
nonequilibrium transport property cannot be solved exactly,
and an approach based on a combination of perturbation the-
ory and the Boltzmann equation is often required to analyze
the microscopic processes that govern heat conduction by car-
riers and lattice waves. Lattice thermal conductivity (Klat ) is a
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primitive physical quantity that determines the heat transport
for nonmetals, if not the only one.

The thermal properties in the Earth’s deep interior are con-
trolled by Klat of the Earth’s mantle and the core. For instance,
the Klat and temperature gradient (∇T ) of the deepest mantle
(D′′ layer) determines the heat flow from the core to the
mantle. The interface between the molten metallic core and
the rocky mantle is the core-mantle boundary (CMB) located
at 2890 km depth. Since the mixed convection between mantle
and core materials is prohibited due to gravity, heat from the
hot Earth’s core has been transported by both the conduction
and the radiation (Krad, radiative thermal conductivity) parts
of the thermal conductivity mechanisms at CMB. In met-
als, thermal conductivity is dominated by electron transport,
whereas in insulators such as oxides and silicates, it is domi-
nated by anharmonic phonon transport. At high temperatures,
it is believed that the thermal conductivity of mantle miner-
als, particularly, due to perovskites, has a vital contribution
from Krad [3]. The radiative component of total conduc-
tion in defect-free material is determined by the material’s
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optical response, viz, the absorptivity [4]. Restricting the
CMB heat flow, which can be accomplished through the ade-
quate knowledge of total conductivity Ktot (= Klat + Krad ), can
help us to understand the dynamic state and the thermal his-
tory of both the mantle and the core [5], as well as the relative
importance of conduction versus convection above the CMB.
The experimental and theoretical estimates of Klat and Krad

under the conditions spanning from the lower mantle (LM)
to the CMB are challenging because of extreme P and T ,
ranging from 23 < P < 135 GPa and 2000 < T � 4000 K,
respectively. Also, the estimated values for conductivity in the
LM condition disperse from 4 to 16 W m−1 K−1. This makes
the ab initio computations for thermal transport properties
nontrivial.

CaO or quicklime is an important constituent of the Earth’s
LM, and it is the base compound for the formation of CaSiO3

perovskite (CaPv). The high-P,T studies of CaO are essential
for a better understanding of the Earth’s LM and the outer
core. However, its high polarizability, anharmonic nature, and
high melting temperature (TM ) are the major constraints for
theoretical and in situ experimental investigations. To ac-
count for the anharmonicity in the B1 phase of lime, in our
previous work [6] (hereafter, we refer to Ref. [6] as Paper
I), we attempted the anharmonic thermal evaluation using
the lowest-order thermodynamic perturbation theory (TPT) in
conjunction with the density functional theory (DFT) based
quasiharmonic (QH) lattice dynamics. Paper I compares the
results for high-T thermal properties by employing the pro-
jector augmented wave (PAW) potentials within the local
density functional (LDA) and generalized gradient approxi-
mation, and it was concluded that the PAW+LDA scheme
offers a modest amount of anharmonicity up to 3000 K at
zero-pressure condition. Later, we [7] (we refer to Ref. [7]
as Paper II) employed the same strategy to investigate the
structural phase diagram and thermoelastic properties of lime,
and concluded that CaO exists in the B1 phase (NaCl struc-
ture) only below 23 GPa and 4600 K. At this pressure and
temperature, the B1, B2 (CsCl structure), and the liquid phase
coexist [7]. In pressure above it, CaO assumes the B2 phase.
Paper II also discusses the structural phase transition from a
thermoelastic viewpoint and the thermodynamics of the B2
phase of lime along with the high-P melting curve. Thus, for
a P, T range relevant to the mantle-core region the B2 phase is
equally important. For instance, Paper II proposes that at the
CMB, it is the B2 phase that contributes to various physical
quantities.

To our knowledge, no studies on the evaluation of P−T
dependence of both Klat and Krad are available for quicklime
at mantle-core condition. Recently, Ma et al. [8] have pre-
sented results for the thermal conductivity of alkaline-earth
oxides, including the CaO, to 3000 K at ambient pressure
and, in pressure, up to 140 GPa but at room temperature
(RT) by solving the BTE. On the contrary, ample literature
on thermal conductivity is available for MgSiO3 (MgPv)
[9–12], and isostructural and isovalent MgO [13–16]. de
Koker [13] determined the temperature variation of Klat and
also its pressure variation for various isotherms using the
Peierls-Boltzmann transport equation via a combination of
first-principles molecular dynamics (MD) and lattice dynam-
ics. Tang and Dong [14] have utilized a numerical technique

that combines first-principles electronic band structure theory
and Peierls-Boltzmann transport theory to predict the Klat of
MgO. Imada et al. [15] have used the pulsed light heating ther-
moreflectance technique to study the pressure variation of Klat

for MgO. Dalton et al. [16] determined the Klat of MgO at high
pressure up to 60 GPa and 300 K via the diamond-anvil cells
using the time-domain thermoreflectance technique. Zhang
et al. [3] have predicted the P−T dependence of Klat using
the phonon quasiparticle approach (PQA) that is suitable for
strongly anharmonic materials like CaPv. The PQA is a hybrid
approach combining ab initio lattice dynamics and MD simu-
lations, which fully accounts for anharmonic effects. In other
words, it treats the phonon anharmonicity to all orders in prin-
ciple [17]. Zhang et al. [3] also carried out experiments using
the pulsed light heating thermoreflectance to measure Klat in
a laser-heated diamond-anvil cell. Yang et al. [18] studied the
strain response of thermal conductivity and also determined
the RT conductivity of alkaline-earth chalcogenides including
CaO.

Several methods exist for the determination of Klat , one of
which is by estimating the ∇T from the nonequilibrium MD
simulations at a given heat current [19,20]. Another approach
is based on the Green-Kubo method using the equilibrium
MD simulations [21,22]. However, one major downside of
these simulations is to deal with a large supercell to consider
the finite size effect and a long computation time for better
autocorrelation function’s convergence. One way to determine
Klat is by using the phonon BTE [1]. An exact solution to the
BTE is not possible, and we resort to unavoidable approxima-
tions. Though its linearized version is simple and comprises
a set of linear equations, the linear equation set has a large
dimension. The lack of reliable linear coefficients determined
by the interatomic potentials can also make the exact solution
of the BTE not so readily available. As a substitute, one can
use the DC model [17,23,24] to compute relaxation times.
The DC model is believed to operate at the same level of
approximations [8,24] as the various other approaches that
are used to factorize the set of the linear equation for solving
the BTE. Furthermore, it is computationally affordable and
resorts to the relaxation time approximation (RTA). Conven-
tionally, the DC model neglects the full phonon dispersion and
assumes the phonon density of state (P-DOS) to vary as ω2.
This is true when only low-frequency (ω) acoustic phonons
contribute to heat transport. If required, the contribution from
the optical modes was included using the single-frequency
Einstein model [22]. We have demonstrated in Papers I and
II [6,7] that the role of optical phonons is non-negligible
for CaO, and they contribute to bonding and other physical
properties decisively.

In this paper, we compute the P−T variation of Klat and
Krad of lime for both B1 and B2 phases. The computation of
Klat is carried out employing the frequently used DC model
[23]. However, the ingredients of the DC model, as elaborated
in the next section, are derived differently. For insulating
materials like CaO, the thermal transport is largely governed
by the three-phonon umklapp interactions, which are also re-
sponsible for the thermal expansion mechanism. To obtain the
anharmonicity-assisted equilibrium volume at each tempera-
ture, V0(T ), the total Helmholtz free energy versus volume
curve at all temperatures for both phases was computed in
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Papers I and II, respectively. The computed V0(T )’s are used
in the present paper to evaluate the transport properties. We
propose a couple of modifications for computing the model in-
put parameters. In this anharmonicity-included DC model, the
relaxation time due to the phonon-phonon scattering can be
written as an explicit function of volume (V ) and T -dependent
characteristic temperature (θ ), phonon velocity (v), and the
Grüneisen parameter (γ ), which are all extracted from the
first-principles calculations by optimizing the Helmholtz free
energy [6,7]. In this paper, we utilized an explicit T -dependent
Grüneisen parameter, and a different characteristic tempera-
ture is used instead of the Debye temperature. The pressure
variation of the Klat for chosen temperatures is also determined
using the BTE approach [1] for the B2 phase of CaO, and
computed results are compared and discussed with DC-model
based findings. The evaluation of Krad is carried out using a
conventional approach [4,25] which involves the computation
of the absorption coefficient (α) and the Planck function but
now derived at each equilibrium volume V0(T ).

The rest of the paper is organized as follows. In Sec. II, the
theory and computational details are elaborated for the evalu-
ation of Klat and Krad. The computed results are compared in
Sec. III and is followed by a summary, Sec. IV. The paper is
concluded in Sec. V.

II. THEORY AND COMPUTATIONAL DETAILS

Previous studies on CaO [6,7,26,27] show the inade-
quacy of QH approximation in investigating the high-T
thermodynamic and structural properties because of its highly
polarizable nature and anharmonic interaction present even
at RT. Thus, for a reliable study aiming at high-T transport
properties, one is required to include an anharmonic contri-
bution using an appropriate theoretical model. As discussed
earlier, in Papers I and II, we have utilized the lowest-order
TPT to estimate these anharmonic phonon contributions in
combination with the DFT based QH phonon dynamics for
unveiling the high-P,T behavior of the B1 and B2 phases of
CaO. We refer to Papers I and II for complete details about the
anharmonic computations for free energy. It was concluded in
Papers I and II that anharmonicity in CaO is modest with the
PAW+LDA scheme. The equilibrium volume corresponding
to each temperature, V0(T ), obtained by minimizing the total
(including the anharmonic contribution) Helmholtz free en-
ergy for both the phases is utilized for the computation of Klat

and Krad.
Components of the thermal conductivity tensor can be ex-

pressed as a sum over all wave vectors �k of the first Brillouin
zone for each polarization branch ζ ,

Ki j =
∑
�k,ζ

vi(�k)v j (�k)τ jCζ . (1)

Here, τ j and Cζ denote the phonon relaxation time and
mode heat capacity per unit volume, respectively. The vi(�k)
represents wave vector dependent phonon velocity. The opti-
cal phonons are usually less effective (but not negligible) to
carry thermal energy, and are responsible for the attenuation
of heat flux originated by the acoustic modes in insulators.
Thus, the thermal energy in insulators is carried by acoustic

phonons with damping introduced by optical branches of the
phonon dispersion curve (PDC). It is then natural to cast the
computation of lattice conductivity for the acoustic branch but
with a supplement from the high-frequency optical phonons.
For weak anharmonic insulating oxides, such as CaO [6,7],
the acoustic modes transfer the heat by three-phonon interac-
tions [28,29]. It is argued that the lifetimes of optic modes are
considerably shorter than the acoustic modes, and the lattice
conductivities are predominantly governed by the acoustic
phonons at all pressures studied in the paper [13]. The Klat

has three contributions: one from the longitudinal acoustic
(KLA) phonon branch and two from the transverse acoustic
(KTA and K

′
TA) branches,

Klat = KLA + KTA + K ′
TA. (2)

In the RTA, the thermal conductivity is a function of the
relaxation time (τtot ), which indicates the time taken by the
phonon distribution to restore the equilibrium phonon state.
The umklapp process (U process) gives rise to thermal resis-
tance due to the reversed phonon flux, whereas the normal
process (N process) considers the redistribution of momentum
and energy among phonons. In the DC model, it is assumed
that the different scattering mechanisms act independently.
For a defect-free crystal, the total phonon scattering rate τ−1

tot ,
which involves the contribution from normal τ−1

N and umklapp
τ−1

U scattering processes, can be written as

1

τtot
= 1

τN
+ 1

τU
. (3)

Further, the assumptions made are the following: (i) an
average phonon velocity (v) is used for all-optical and acous-
tic phonon branches, (ii) phonon velocities are the same for
all polarization branches, and, more importantly, (iii) replace-
ment of conventional Debye temperature by a characteristic
temperature, θ in the calculations, as described below. The
lattice thermal conductivity is now given by

Klat = kB

2π2v

(
2πkBT

h

)3

×

⎡
⎢⎣

∫ x

0
τtot

x4 ex

(ex − 1)2 dx +
{
∫x

0
τtot
τN

x4 ex

(ex−1)2 dx
}2

∫x
0

τtot
τU τN

x4 ex

(ex−1)2 dx

⎤
⎥⎦, (4)

where, x = θ (V,T )
T wherein θ (V ,T )(≡ h̄ω

kB
) is the characteristic

temperature, h is the Planck constant, ω is the characteristic
frequency, and kB is the Boltzmann constant. The average
phonon velocity can be evaluated as follows [30]:

v =
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

, (5)

wherein vl and vt are the longitudinal and transverse wave
velocity, respectively, and are given as

vl =
(

3B + 4G

3ρ

)1/2

, (6)

vt =
(

G

ρ

)1/2

, (7)
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where ρ = M
V is the mass density, M is the total atomic

mass, B is the bulk modulus, and G is the shear modulus.
From Papers I and II, anharmonic computation of V , T -
dependent density (�volume) and elastic moduli helps to
evaluate Eqs. (5) through (6) and (7) accurately. The normal
and umklapp phonon scattering rates are parametrized in the
DC model as [24,31]

1

τN
= B′ωaT b, (8)

1

τU
= h̄γ 2(V, T )

Mv2θ (V, T )
ω2Te−θ (V,T )/3T , (9)

where, in Eq. (8), B′ (= 4.4 × 10−11 K−3), a (= 1), and
b (= 3) are the fitting parameters. These parameters were
chosen such that the computed Klat fits best with the reported
datum at RT [18]. Equation (9) is the main equation of the
paper through which the contribution from intrinsic anhar-
monicity can be introduced. For instance, γ (V, T ) is now
explicitly T dependent,

γ (V, T ) = γ (V ) −
(

1

2
mTa(V )

)
, (10)

where the first term indicates the V -dependent part of γ ,
whereas the second term depends on T . The details about
the V -dependent coefficient a(V )[≡ a

′
0( V

V0
)
m

] and the values

of the anharmonic fitting parameters (m and a
′
0) involved in it

are elaborated in Papers I and II.
Within the textbook definition, Eq. (10) allows one to com-

pute the characteristic temperature to vary with volume and
temperature as

θ (V ,T ) = θ0exp

{
−

∫ V

V0

γ (V )

V
dV

}

× exp

{
1

2
m(m − 1)a

′
0T

[(
V

V0

)m

− 1

]}
. (11)

In this paper, we have computed θ0 in Eq. (11) using the

relation h̄
kB

( 1
M

d2E
da2 )

1/2
(where E is the total energy and a is the

lattice constant), instead of the Debye temperature (θD) which
is conventionally used in the DC model. The θ0 corresponds
to equilibrium volume at 0 K, zero-pressure condition. The
reason for using θ0 is that the θD is computed from the knowl-
edge of P-DOS through first- and second-frequency moments.
However, as elaborated in Paper II, the B2 phase of lime
is unstable for a considerable range in a (P, T ) plane, and
may lead to an inaccurate estimation for θD. For instance,
θD calculated from the first- and second-phonon moments of
P-DOS is, respectively, 580.41 and 589.19 K for the B1 phase,
and 479.29 and 538.28 K for the B2 phase at equilibrium. The
θ0 computed based on self-consistent total energy derivatives
circumvents the phonon dynamics at every (P, T ) point of
interest. Although the θ0 always remains lower than the θD

(see Refs. [32–35]), it was demonstrated that θ0 demarks the
low-T quantum region and high-T classical region accurately.
It is assumed here that with lower θ , i.e., at the lower char-
acteristic frequency ω, the P-DOS is better represented by ω2

approximation. However, V and T dependences are still intro-
duced through Eq. (11), where all parameters are optimized
from the minimization criterion for Helmholtz free energy that

comprises cohesive energy, and QH and anharmonic ion-
motional free energies [6,7].

The pressure variation of Klat for the B2 phase is also
evaluated using the BTE [1] in the single mode RTA as im-
plemented by the PHONO3PY [36] code. A supercell of size
3 × 3 × 3 and a q-point mesh size of 11 × 11 × 11 is used for
the finite displacement method. This scheme, however, is not
extended for the B1 phase of CaO since executing the finite
displacement technique is found heavy.

Finally, the radiative component of thermal conductivity is
determined based on the following relation [4,25]:

Krad(T ) = 4n2

3

∫ ∞

0

1

α(ϑ )

∂I (ϑ, T )

∂T
dϑ, (12)

where n is the refractive index, ϑ is the excitation frequency,
α(ϑ ) is the frequency-dependent absorption coefficient, and
I (ϑ, T ) is the Planck blackbody emission function. The real,
ε1(ω), and imaginary, ε2(ω), parts of the dielectric function
are computed to derive various optical properties including
α(ϑ ) using the standard relations [37]. It is a common practice
to solve Eq. (12) by evaluating the dielectric function of the
equilibrium volume at ambient condition, and the temperature
dependence of Krad is estimated only through I (ϑ, T ). Instead,
in this paper, we exploit the results obtained in Papers I and II,
and the α(ϑ ) and n both are evaluated at each V (P,T ) within
the independent particle approximation (IPA) as implemented
in the THERMO_PW code [38] in conjunction with the QUAN-
TUM ESPRESSO code [39,40]. The IPA allows the inclusion
of single-particle excitations, and the electrons are treated
independently of each other when reacting to the external
optical perturbation.

III. RESULTS AND DISCUSSION

The equilibrium properties and the volume thermal expan-
sion for the B1 and B2 phases of lime were evaluated using
the computed V0(T ), and the results were compared in Papers
I and II, respectively. Papers I and II exemplify the role played
by phonon anharmonicity while determining various thermal
and thermoelastic properties, including the phonon softening
at high T . The good comparison of the thermal expansion
ensures accurate computation for all the other properties that
are derived using them. We note that, in this paper, all figures
depicting the computed results are shown as symbols, and the
line joining these symbols represents a guide to the eye.

Figure 1 shows the temperature variation of γ [V0(T )] at
zero-pressure condition, and represents the measure of vi-
brational anharmonicity [41]. Thus, γ [V0(T )] represents the
combined effect of volume expansion added by T -dependent
contribution, the second term in Eq. (10). A common practice
among geophysicists is either to fit γ with Eulerian finite
volume strain or tune to match the overall conductivity data in
Earth’s interiors [13,42,43]. Instead, in this paper, γ [V0(T )] is
obtained consistently from the ab initio calculation added with
optimized phonon anharmonicity. In general, γ for both the
phases increases with temperature, with a steeper rise for the
B1 phase, however. It rises by ∼20% for the B1 phase from
0 to 3000 K. The increase in γ is attributed to the closed-
packed structures and can be explained by the nature of the
anharmonicity. Stacey and Issak [44] have demonstrated that
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γ
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T (K)
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FIG. 1. Grüneisen parameter as a function of temperature at am-
bient pressure.

closed-packed structure with bonds to each atom are always
appearing opposite in pairs; i.e., they are symmetrical, for
which the phonon anharmonic contribution lowers the value
of CV with temperature [6,7,32–35]. In cubic structure, al-
though the thermal expansion of the crystal lowers the phonon
frequency but with positive anharmonicity, so as to restrict the
overwhelming thermal expansion for the case of lime [6,7],
it reduces the rate of phonon softening. The B2 phase is
dynamically unstable at high-T and zero-pressure conditions;
the phonon states contributing to the thermal gamma are less
in number. This explains the lower value of γ for the B2
phase. The variation of γ with pressure at fixed temperatures
is shown in Fig. 2. The structural phase diagram of lime,
presented in Paper II, predicts the triple point (TP; coexistence
of B1, B2, and liquid phase) at 23 GPa and 4600 K. Thus, the
TP corresponds to the LM region having the highest tempera-
ture and lowest pressure and thus provides the most stringent
test to measure the largest possible anharmonicity that can be

γ

1

2

3

4

P (GPa)
0 100 200 300

3000 K - B1
4600 K - B1
3000 K - B2
4600 K - B2
3800 K - B1
3800 K - B2

FIG. 2. Grüneisen parameter as a function of pressure.

θ 
(K

)

200

300

400

500

T (K)
0 1,000 2,000 3,000

B1
B2

FIG. 3. Characteristic temperature as a function of temperature
at ambient pressure.

found in the entire Earth’s LM. Hence, for Fig. 2 and all the
other computed P-dependent properties, one of the temper-
atures we have chosen is the temperature corresponding to
the TP, i.e., 4600 K for both the B1 and B2 phases of CaO.
One fixed temperature chosen for both phases is a temperature
below the TP and close to normal TM , i.e., 3000 K, where the
B1 phase is stable but with the largest anharmonicity. Apart
from these two temperatures, we have also evaluated all the
properties at the temperature corresponding to the CMB, i.e.,
3800 K. Experimental TM for the B1 phase is 3160 K [45]
whereas classically simulated TM for the B2 phase is 2605 K
(see the Supplemental Material of Paper II). The structural
phase diagram in Paper II predicts a negative melting slope
beyond 140 GPa and 7800 K. To investigate the properties at
this transition point (from a pressure viewpoint, this lies in
the vicinity of the CMB), where the B2 phase is stable and
is in competition with the denser liquid phase [7], we extend
the computation for the B2 phase close to this pressure and
beyond. In Fig. 2, altogether, γ decreases with pressure. The
γ at (P, T ) = (0 GPa, 3000 K) for both the phases almost
coincides but that of (0 GPa, 4600 K) has 5% variation. For
3800 K, the γ of the B1 and B2 phases coincides with that of
the 3000 K data, specifically at higher pressures. The rate of
decrease of γ is more for the B1 phase. Since with pressure
the anharmonicity is suppressed, eventually the results for γ

converge to their respective values.
The characteristic temperature, θ (V ,T ), is one of the cru-

cial characteristics of a material, which reflects its structural
stability, the strength of bonds between its elements, and
its density [41]. Figure 3 shows the temperature variation
of θ [V0(T )] that is evaluated by including the anharmonic
contribution using Eq. (11). At 0 K and zero pressure, θ0 of
both the phases varies by 35% and at 3000 K the variation
is 37%. Initially, θ decreases with an increase in temperature
but increases beyond 2000 K. The zero-pressure increase in
θ [V0(T )] reflects the dominating T -dependent contribution.
The P-dependent θ (V ,T ) is shown in Fig. 4. The P-dependent
behavior of θ is opposite to that of T -dependent nature. For
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FIG. 4. Characteristic temperature as a function of pressure.

3000 K, θ of the B1 phase increases gradually with pressure
but at P ∼ 50GPa it shows a downward trend. It is due to the
fact that at T = 3000 K, B1-CaO transforms to B2 phase for
P � 50 GPa. For 4600 K, temperature dominates the pressure
for a studied range, and θ in the B1 phase decreases. For the
B2 phase, θ increases with pressure for all temperatures. The
θ for 3800 K of the B1 phase initially decreases and then
increases beyond 50 GPa and that of the B2 phase mimics the
trend of the other two temperatures and it increases throughout
the investigated pressure window. Within the same phase, a
dispersion in θ for different temperatures accounts for the
anharmonicity.

The temperature dependence of the total phonon scatter-
ing rate, 1

τtot
, is shown in Fig. 5. For both the phases, 1

τtot
increases with temperature and shows a dispersion beyond
500 K. Throughout the temperature range, the scattering rate
of the B2 phase remains higher in magnitude than the B1
phase, indicating that the heat flux due to phonons increases
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FIG. 5. Total phonon scattering rate as a function of temperature
at ambient pressure.
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FIG. 6. Total phonon scattering rate as a function of pressure.

rapidly for the B2 phase. In our previous papers [6,7], we have
demonstrated the sensitivity of the expanded and compressed
volumes on the PDC and P-DOS for B1-CaO, particularly
at the  point of the Brillouin zone. Due to the increase of
frequency gap induced by LO-TO splitting, the three-phonon
scattering rate of CaO increases rapidly. Comparatively, the
B2 phase shows less sensitivity to the compressive strain. As
elaborated in Ref. [8] for the case of CaO, the third-order
anharmonic scattering rate (�reciprocal of phonon frequency)
decreases with phonon frequency at ambient conditions. But
it should increase with temperature. This assertion is based
on Papers I and II which illustrate that the anharmonic fre-
quency softens with temperature, and hence the scattering
rate increases. Due to the negative shear modulus [7] for
the B2 phase at zero-pressure condition, the results for 1

τtot
are restricted below 1500 K. The P-dependent total phonon
scattering rate is shown in Fig. 6. Again, the shear stability
criteria restrict the data points in Fig. 6. Except for the B2
phase, for 4600 K, the 1

τtot
initially decreases with pressure but

then shows an upward trend.
Figure 7 shows the temperature variation of Klat at

zero-pressure condition. The Klat for both the phases increases
initially, attains a peak value, and then decreases with an
increase in temperature. Computed results are compared with
the RT datum due to Yang et al. [18], Knoop et al. [46], and
the recent high-T first-principles calculations due to Ma et al.
[8]. Ma et al. [8] have solved the BTE using the third-order
force constant and derived the lattice thermal conductivities
up to 3000 K at atmospheric pressure. Our results of the
temperature variation of Klat coincide with the results in
Ref. [8]. The trend of the computed Klat is also validated
with the available thermal conductivity of the isostructural
and similar alkaline oxide, MgO [13–16]. The experimental
value of Klat at 300 K is scattered for MgO, ranging from
36 to 70 W m−1 K−1 [13], whereas the computed RT Klat

of CaO and other reported data is around 20 W m−1 K−1.
Further, the trend of Klat obtained for CaO beyond the peak
value is the same as that for the complete alkaline-earth
oxides family [8,13–16], i.e., as the temperature increases, the
Klat decreases. The decrease in Klat is related to the phonon
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FIG. 7. Lattice thermal conductivity as a function of temperature
at ambient pressure. The pink circle with a line and the diamond
symbol are the BTE based results due to Ma et al. [8] and Yang et al.
[18], respectively, for the B1 phase of CaO. The open circle is the ab
initio Green-Kubo based result due to Knoop et al. [46] for the B1
phase of CaO.

softening [6,7] and hence to the decrease in group velocities.
For the B1 and B2 phases, Klat sharply increases up to 60
and 150 K, respectively, starts decreasing, and approaches
zero at higher temperatures. The low-T region is governed
by the normal process, Eq. (3). Traditionally the DC model
utilizes the QH inputs in Eq. (4) through (11), whereas in
this paper, we utilized all parameters which are derived after
including the explicit effect of temperature. The variation
of Klat with pressure at different temperatures is shown in
Fig. 8. In a similar study, Ma et al. [8] have calculated high-P
conductivities for alkaline-earth oxides including the CaO
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FIG. 8. Lattice thermal conductivity as a function of pressure.
The fitting of the data is done using the equation Klat (P,T )

K0
lat

=
( V0

V )
g
( T0

T )
β ′

. The compared BTE based result due to Ma et al. [8]
is for the B2 phase of CaO.

but at RT. The present BTE based results at 300 K for the B2
phase agree reasonably with the reported results [8] (inset of
Fig. 8). It is to be noted that the difference in these two sets of
observations is assigned to the different compressed volumes
utilized to determine the pressure variation of Klat , and to the
size of the supercells. For example, the present computation
is based on the volume corresponding to a given pressure
after finding the equilibrium volume at each temperature,
V0(T ), as derived in Papers I and II. Figure 8 infers that
the DC model based results generally remain higher. We
investigated this systematic deviation, and it is attributed
to the higher value for the characteristic temperature of
the B2 phase, Fig. 3. The larger value of the characteristic
temperature governs the magnitude of the Klat . The results in
Ref. [8] show the general trend which is similar to the present
estimates, i.e., slightly downward bending with pressure for
the B1 phase, but the concave-up trend for the B2 phase.
The overall trend of the pressure variation of Klat for CaO
is similar to that of MgO [13–16], except for the difference
in magnitude. As reported in Ref. [15], the Klat at 300 K
increases with an increase in temperature. The Klat of 3000,
3800, and 4600 K of the B2 phase increases in a similar
manner but with a steeper slope while that of the B1 phase
also increases. This is true for both DC-model and BTE based
findings. Since the present investigation aims to examine the
Klat at Earth’s LM and core conditions, temperature is kept
3000 < T < 4600 K. At this temperature range and with a
pressure ∼140 GPa, Paper II reveals the phase transitions
between B1, B2, and the liquid phase of lime. These intrinsic
phenomena govern the behavior of Klat , and its discussion
is in order. For 3000 K of the B1 phase, Klat increases up
to 50 GPa and then decreases. This tendency is similar to
the high-P results for Klat in MgPv and Mg bridgmanite
(Mg-Brg) [3]. The increase in Klat is attributed to the increase
in phonon frequency [6,7] and hence to the increase in group
velocities, and to the lattice quasiparticle longer lifetimes.
In their rigorous investigation, Ma et al. [8] have also noted
that the effect of specific heat and high-frequency optical
modes is less due to the variation of Klat with volume but
the group velocity is an important parameter. The downward
trend with pressure for the B1 phase of CaO is due to
phase instability. Ma et al. [8] have also noted that close
to and at the phase transition, Klat decreases for a given
phase. However, within the stability limit for the B1 phase,
Klat increases. For 4600 K, due to the strong temperature
effect, the value of Klat decreases at low P, but at higher
pressure, the anharmonicity is suppressed and Klat starts
increasing. For the stable B2 phase, a uniform increasing
trend is observed. Though the Klat increases with pressure, the
rate of increase reduces with temperature. Further, at higher
temperatures, Klat will attain a lower value at a fixed pressure.
A similar trend was obtained in the recent ab initio studies
by Dekura and Tsuchiya [9] for MgPv and Mg-Brg, and
also by Zhang et al. [3] for MgPv, Mg-Brg, and CaPv. The
high-P variation of Klat for CaPv increases monotonically
up to 170 GPa [3] similar to the B2 phase of CaO. It is
important to note that Klat for MgPv, Mg-Brg, and CaPv
under mantle and core conditions is of comparable magnitude
to that of the B2-CaO. To interpret the DC-model data, we
attempt to fit Klat results for the B2 phase using a frequently
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FIG. 9. Real and imaginary parts of the frequency-dependent
dielectric functions. The compared results are the first-principles
calculations due to Duan et al. [48].

employed power law, Klat (P,T )
K0

lat
= (V0

V )
g
( T0

T )
β ′

, where 0 super-
and subscripts refer to the reference equilibrium condition,
i.e., volume V0(T0) and temperature (T0 = 300 K), and the
power coefficients g and β ′ are selected to find an overall fit to
the derived data points. We can reasonably fit (lines with black
symbols in Fig. 8) 3000, 3800, and 4600 K data points with
V - and T -dependent g(V ,T ) = 3γ (V ,T ) + 2q(V ,T ) − 1

3 ,
where the log-derivative of γ (V ,T ), Eq. (10), is computed
by q(V ,T ) = − V

γ (V ,T )
dγ (V ,T )

dV |
T0

− 1
γ (V ,T ) { 1

2 m2Ta
′
0( V

V0
)
m},

whereas β ′(= 1.351) is considered as a constant fitting
parameter. The value of the only fitting parameter β

′
[as g

and q are computed at a given (V , T ) point] different than the
unity is also reported in the literature [16]. It is noteworthy
that since the present findings involve the computation of Klat

through the anharmonic inputs to the DC model, we find the
parameter g to be dependent on pressure and temperature via
γ (V ,T ) and q(V ,T ) in a self-consistent manner. A similar
exercise can be adopted for BTE based results also. The
anharmonic DC model predicts Klat at the CMB (T∼3800
K, P∼135 GPa) to be 8 W m−1 K−1, whereas the BTE
prediction is 4.9 W m−1 K−1 at the CMB. This value is close
to (in W m−1 K−1) KMg−Brg

lat ∼ 4.3, KMg−Brg
lat ∼ 6.3, and

KCaPv
lat ∼ 13 [3], all estimated at the CMB.

A vital component to compute Krad is the absorption co-
efficient. As discussed in the Introduction, all the optical
properties of a material can be derived from ε1(ω) and ε2(ω)
within the IPA [47]. However, it is necessary to validate the
variation of ε1(ω) and ε2(ω) with the excitation energy at
different pressures (�volumes). We have presented the results
for ε1(ω) and ε2(ω) for both the phases at their respective
equilibrium volumes, and compared the B1 phase results with
the available data [48] in Fig. 9. The computed results agree
well with the reported data with the principal peak for ε2(ω)
at 9.46 eV and the principal dip for ε1(ω) at 10.02 eV. No
comparison for the B2 phase is available. However, a mutual
comparison between the B1 and B2 phases reveals that the
entire optical response for the B2 phase shifts towards the

K
ra

d 
(W

m
-1

K-1
)

0

0.005

0.01

0.015

T (K)
0 2,000 4,000

B1
B2

FIG. 10. Radiative thermal conductivity as a function of temper-
ature at ambient pressure.

lower excitation energy. The real part of the dielectric function
shows a similar response at low (comparable to the average
phonon energy) excitation energy for both structures but with
a higher value for the B2 phase. The long wavelength limit
ε1(ω → 0) value is 20% higher for the B2 phase. This ex-
plains the higher refractive index (= 2.16) of the B2 phase. At
this low excitation energy range, the absorption as measured
by ε2(ω) is zero. The B2 phase shows two major peaks in
ε2(ω): one close to 7.5 eV and the other at ∼9.5 eV. The
calculated principal peaks for ε2(ω) shifts to lower photon
energy but the principal dip for ε1(ω) remains the same as
that of the B1 phase. Since the present paper aims to study the
(P, T ) variation of Krad, we have computed ε1(ω) and ε2(ω)
(results are not shown here) at respective V (T ), and our ob-
servations are as follows. Though the overall nature of ε1(ω)
and ε2(ω) remains the same, both graphs shift to a higher
frequency side. However, the results for ε1(ω) and ε2(ω) show
larger modulation for compressed volume corresponding to
100 GPa for the B1-CaO compared to the B2 phase. The
refractive index systematically increases (decreases) to com-
pressed (expanded) volumes. The magnitude of the refractive
index determines the magnitude of Krad, Eq. (12).

Figure 10 shows the temperature variation of Krad at zero-
pressure condition. The results for Krad remain two orders
of magnitude smaller than Klat for the highest temperature
studied in the paper. For the B1 phase, Krad increases up to
2000 K and then decreases, whereas for the B2 phase, the
Krad increases for the entire temperature range. Commonly,
Eq. (12) is used to compute Krad with α(ϑ ) and n evaluated
at equilibrium condition. This procedure has shown (results
are not shown here) a monotonous increase in Krad for the
B1 phase. Thus, the IPA approach adopted to compute the
optical response at respective volumes capture the effect of
(P, T ) adequately. The pressure variation of Krad is shown in
Fig. 11. For both the phases up to 4600 K, the Krad increases
until the pressure is 23 GPa and then decreases monotonically.
However, for the B1 phase at higher temperatures, the unstable
phonons restrict the calculation to moderate pressures.
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IV. DISCUSSION

Thermal conductivity is a nonharmonic property of ma-
terials. In this paper, the phonon anharmonicity added and
DFT-assisted DC approach is utilized to examine the P−T
dependence of lattice thermal conductivity, and discussed
in reference to the BTE based findings. First-principles
calculations in combination with the QH and anharmonic
contribution to the vibrational properties were carried out
to find input parameters to the DC model, such as the
characteristic temperature, average phonon group velocity,
and Grüneisen parameter. The anharmonic interatomic force
constants, which are vital to give accurate lattice thermal con-
ductivity, usually require a relatively large supercell to include
the long-range interactions, which are peculiar to polarized
and anharmonic systems like lime [49]. For instance, the
results for Klat of B2-CaO computed by Ma et al. [8] with
a 4 × 4 × 4 supercell and the present paper with a 3 × 3 × 3
supercell show a similar trend to each other but are slightly
different in magnitude. For B1-CaO, the 3 × 3 × 3 supercell
has 54 atoms but for 4 × 4 × 4, it increases to 128. Thus,
obtaining the higher-order force constants to find converged
transport properties is progressively a computationally heavy
task with higher-dimension supercells. The effect of the in-
clusion of a third-order force constant in lattice dynamics,
in general, is to renormalize the phonon frequencies, and
hence is reflected in all the other physical properties. We have
incorporated the anharmonicity directly into the computation
of the Helmholtz free energy by employing the lowest-order
TPT. We can interpret the effect of the cubic force constant
on the phonon frequencies as follows. For instance, as elab-
orated by Eq. (6) of Paper I, we can expand the phonon
frequency in the V ,T plane as ωn,�q(V ,T ) ≈ ωQH (V ,T0) +
{ 1

ω0

∂ω(V0, T )
∂T }ω0T , with ( ∂ lnω(V ,T )

∂T )
V0

≡ a
′
0( V

V0
)
m

. Here, ω0 are
the phonon frequencies at equilibrium. The phonon branch
index (n, �q) is omitted on the right-hand side only for
convenience. A superscript QH denotes quasiharmonic cal-
culations at reference temperature T0(= 1 K). The second

term is explicitly T dependent. Thus, the TPT approxima-
tion modifies the QH phonon dynamics through anharmonic
parameters, and to a good approximation, it can be con-
sidered like the phonon-renormalization-frequency approach.
Accurate thermal expansion justifies the proper inclusion of
the three-phonon anharmonic interactions. This approach not
only reduced the computational cost [6,7] but also yielded
a good result for low-P temperature variation of lattice and
radiative thermal conductivities. This is evident from the
comparison made in Fig. 7. We also tested various combina-
tions for DC-model parameters a = 1 and b = 3 in Eq. (8).
Within a reasonable range of a and b, the normal scatter-
ing is negligible with respect to the umklapp scattering and
hence plays no role in Eq. (4). This observation suggests that
the normal relaxation time ( 1

τN
) varies linearly with phonon

frequency, and follows the Debye law in temperature. The
results and discussion for pressure variation of Klat utilize
the self-consistent thermodynamic model with the no fitting
parameter. The pressure variation of lattice conductivity for
the B2 phase by the DC model deviates from the BTE based
approach, Fig. 8. Nevertheless, the gross behavior in both sets
of data is similar. The large estimate for Klat is due to the large
characteristic temperature for B2-CaO. Since the characteris-
tic temperature is related to the phonon sound velocities [it
demands the use of full lattice dynamics at every (P, T ) point
for accurate calculations], the third-order BTE based results
are more reliable. For instance, in a recent paper, Ma et al.
[8] have also emphasized the accurate determination of group
velocity and phonon lifetime for accurate calculation of Klat .
The magnitude of radiative thermal conductivity is two orders
lower than that of the lattice thermal conductivity, and hence,
the total thermal conductivity retains the magnitude of the
lattice thermal conductivity. This is in contrast to Mg- and
Ca based perovskites [3], where at high-T ,P conditions, the
contribution from Krad is vital. The computed results can be
used to find the heat flux (q) from the core to mantle across the
CMB using Fourier’s law for heat conduction q = −Klat∇T
and from the knowledge of the geotherm.

V. CONCLUSION

Overall, the anharmonic-parameters motivated DC model
and the BTE approach are proved to be efficient tools to
compute the temperature and pressure variation of lattice ther-
mal conductivity of quicklime, though, one expects a large
modulation in acoustic phonons at compressed volumes, and
its effect should be incorporated into the calculations. In the
present form of the DC model, the input quantities are derived
at the anharmonic level. As an attractive feature of the compu-
tational scheme, the characteristic temperature derived from
the second-order derivative of the total energy circumvents
the calculation of the Debye temperature from the phonon
frequency moments at every (P, T ) point. Formally, the
lowest-order TPT to account for the phonon anharmonicity is
similar to renormalizing the phonon frequencies, and accurate
results for thermal expansion [6,7] and lattice conductivity at
high T and low P is an indication of proper inclusion of the
three-phonon interaction. Thus, the overestimated results at
higher pressures due to the DC model can be rectified by for-
mulating Klat that includes the effect of the complete PDC. We
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further propose that the BTE calculation for Klat (P,T ) should
be based on accurate V0(P, T ). Although the Krad is negligible
at P and T relevant to the LM and core, it is to be noted that the
Klat and therefore the heat flux across the CMB for B2-CaO
is of the same order and compatible to that of the Mg based
oxides and perovskite, along with the CaPv. This justifies the
study of high-P, T findings for the thermal conductivity of
quicklime in the B2 phase, and invites further exploration
either from ab initio simulations or by experiments.
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