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Bose-Einstein condensation in systems with flux equilibrium
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We consider flux equilibrium in dissipative nonlinear wave systems subject to external energy pumping. In
such systems, the elementary excitations, or quasiparticles, can create a Bose-Einstein condensate. We develop
a theory on the Bose-Einstein condensation of quasiparticles for various regimes of external excitation, ranging
from weak and stationary to ultrastrong pumping, enabling us to determine the number of quasiparticles near
the bottom of the energy spectrum and their distribution along wave vectors. We identify physical phenomena
leading to condensation in each of the regimes. For weak stationary pumping, where the distribution of
quasiparticles deviates only slightly from thermodynamic equilibrium, we define a range of pumping parameters
where the condensation occurs and estimate the density of the condensate and the fraction of the condensed
quasiparticles. As the pumping amplitude increases, a powerful influx of injected quasiparticles is created by
the Kolmogorov-Zakharov scattering cascade, leading to their Bose-Einstein condensation. With even stronger
pumping, kinetic instability may occur, resulting in a direct transfer of injected quasiparticles to the bottom of the
spectrum. For the case of ultrastrong parametric pumping, we have developed a stationary nonlinear theory of
kinetic instability. The theory agrees qualitatively with experimental data obtained using Brillouin light scattering
spectroscopy during parametric pumping of magnons in room-temperature films of yttrium-iron garnet.
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I. INTRODUCTION

The Bose-Einstein (BE) condensate (BEC) is a state of
matter with a macroscopically large number of bosons occu-
pying the lowest quantum state and demonstrating coherence
at macroscopic scales [1–5]. This phenomenon was observed
and investigated in atomic systems such as 4He, 3He (in
the latter, the role of bosons is played by Cooper pairs of
fermionic 3He atoms), and in ultracold trapped atoms [6,7].

BECs were also found in systems of bosonic quasiparticles
such as polaritons [8] and excitons [9] in semiconductors,
photons in microcavities [10], as well as magnons in super-
fluid 3He [11] and magnetic crystalline materials [12–14]. In
all these cases quasiparticles have a finite lifetime, and the ap-
pearance of steady-state BEC requires continuous or periodic
excitation (pumping) of quasiparticles by an external source.
To some extent, these systems can be considered as being in
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a flux-defined (rather than thermodynamic) equilibrium. This
feature makes the quasiparticle systems qualitatively different
from the systems of real particles (atoms) whose total number
is conserved. BECs of quasiparticles are drawing significant
interest for their possible applications in new technologies of
information transfer and data processing, including coherent
quantum optics (see, e.g., Refs. [15–17]). The investigation of
such flux-driven systems is the main motivation of the present
work.

In this paper, we compare various scenarios of the
evolution of a weakly interacting overpopulated gas of quasi-
particles toward BEC under conditions of flux equilibrium.
For simplicity, we consider an isotropic homogeneous wave
system with a parabolic dispersion law:

ωk = ω0[1 + (ak)2]. (1a)

Here ω0 is the gap of the frequency spectrum (“bottom”
frequency), a is a characteristic scale, and k is the wave
number; see Fig. 1. This choice simplifies the comparison
of a BEC of quasiparticles with the energy Ek = h̄ωk in the
flux-equilibrium wave systems with a BEC of nonrelativistic
bosons with the energy

Ek = (h̄k)2/(2m) (1b)

expressed via the Plank’s constant h = 2π h̄ and the particle
mass m. Expressions for Ek stress the wave-particle duality
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FIG. 1. Schematic representation of the parabolic frequency
spectra of quasiparticles (1a) with their relevant groups: parametric
quasiparticles with frequency ωpar, denoted as blue squares , BEC
with frequency ω0, denoted as red circles , and top quasiparticles
with the frequency ωtop = 2ωpar − ωbot, denoted as green diamonds

. The bottom quasiparticles slightly above the frequency ωbot are
shown by the orange area. The light-blue arrows denote the process
of creation of parametric quasiparticles by external pumping. The red
and green arrows show the process of four-wave scattering, leading
to the phenomenon of kinetic instability.

in describing waves and quasiparticles in quantum mechanics.
For example, using the parabolic dispersion law (1a), we write
an equation for energy similar to Eq. (1b),

Ek = E0 + (h̄k)2/(2m), E0 ≡ h̄ω0. (1c)

Thus, we can consider quasiparticles having the energy spec-
trum Ek = h̄ωk with ωk defined by Eq. (1a) and an effective
mass

meff = h̄/(2ω0a2). (1d)

To simplify the discussion further we assume that the
pumping of the system results in the appearance of quasiparti-
cles with a particular frequency ωpar. A well-known example
of such pumping is the parametric excitation of magnons in
a ferromagnetic material by an almost homogeneous external
electromagnetic field of frequency ωpump = 2ωpar. In this case,
parametric magnons with frequency ωpar = ω(±kpar) appear
as a result of the decay process with the conservation law:

ωpump = ω(kpar) + ω(−kpar), (2)

schematically shown by two blue arrows in Fig. 1. All our
results can be easily generalized for more sophisticated quasi-
particle pumping in a wide range of frequencies, for example
by parametric pumping with a noisy electromagnetic field (or
noise modulation of quasiparticle frequency) [18].

The paper aims to investigate the processes leading to
the emergence of BECs in various parameter ranges of the

pumping. It also seeks to determine the total number of quasi-
particles (Ntot) in the vicinity of the spectral minimum ω0 and
the fraction NBEC of the number of quasiparticles that constitute
the condensed part.

The structure of the paper is as follows. In Sec. II we de-
scribe the wave system under consideration and, to introduce
notations, remind the well-known results for BE condensation
of bosons in three-dimensional (3D) and two-dimensional
(2D) systems.

Next, in Sec. III we formulate criteria for the BE conden-
sation and find Ntot and NBEC for a relatively simple case of
weak pumping, for which the nonlinear wave system, even in
the presence of the energy and particle number fluxes, is close
to the thermodynamic equilibrium. In Sec. IV we consider
the case of strong pumping. Here, in the 3D system, the
overpopulated gas of quasiparticles is transferred by step-by-
step cascade processes down the frequency band, followed by
the thermalization of low-energy quasiparticles into the BEC
state [19,20]. We also discuss more involved 2D and thin-film
cases.

A very strong pumping regime, as considered in Sec. V,
to the best of our knowledge, is currently realized only for
magnons in ferromagnetic materials. However, the physical
picture in this regime does not depend on the specific proper-
ties of magnons. We, therefore, consider quasiparticles with a
generic parabolic frequency spectrum, shown in Fig. 1. Here,
the cascade process can be accompanied by a direct trans-
fer of the parametrically injected quasiparticles to the lowest
(bottom) and high (top) energy states by a 2 ⇔ 2 scattering
process [21–23]

ω(kpar) + ω(k′
par) ⇒ ω(kbot) + ω(ktop). (3)

In this process, referred to as the kinetic instability
(KI) [21], a dense cloud of incoherent “bottom” quasiparticles
is formed close to the BEC point. This scattering process is
sketched in Fig. 1 by red arrows pointing from blue-filled
squares to the orange area and discussed in Sec. V A. By
the energy conservation law (3), the same number of para-
metric quasiparticles is transferred to higher energy states
with frequency ωtop � 2ωp − ωb and energy above thermo-
dynamic equilibrium (top quasiparticles, shown in Fig. 1 by
filled green diamonds). The feedback influence of the top and
bottom quasiparticles on the parametric ones is studied in
Sec. V B. Note that in the considered case of the parabolic
isotropic dispersion surface, the momentum conservation law
is satisfied because the parametric quasiparticles fill the entire
isofrequency circle ωpar. Thus, the scattering process involves
parametric quasiparticles with wave vectors kpar arranged at an
angle of 45◦ to each other, which ensures that the wave vector
length of the top quasiparticles is

√
2kpar (see Fig. 1). Four-

particle scattering of parametric and bottom quasiparticles is
responsible for the widening of the package of the bottom
quasiparticles. These processes are considered in the frame-
work of the nonlinear theory of kinetic instability, developed
in Secs. V C and V D.

Section VI is devoted to the experimental study of the BE
condensation of magnons in thin films of yttrium iron garnet
(YIG, Y3Fe5O12) using Brillouin light scattering (BLS) spec-
troscopy. This ferrimagnetic material is a classical material for
the experimental study of nonlinear magnon dynamics. There
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are several reasons for this: (i) most importantly, it has the
lowest known spin-wave damping; (ii) its Curie temperature
TC = 560 K allows experiments to be carried out at room tem-
perature; (iii) being a dielectric, it is transparent to microwave
electromagnetic radiation, which makes it possible to excite
magnetic oscillations in the entire volume of bulk samples
and study them using common microwave techniques; (iv)
thin single-crystal films of YIG are transparent to visible light,
which enables the study of magnon dynamics also by optical
methods with spatial, temporal, frequency, and wave vector
resolution. In our experiments, magnons were pumped by an
external electromagnetic field, as shown in Fig. 8. Comparing
the nonlinear theory of kinetic instability with available and
new experimental results, we conclude that at large pump-
ing amplitudes, kinetic instability is the main channel for
transferring magnons from the pumping region directly to the
lower part of their frequency spectrum. We confirm several
predictions of the newly developed nonlinear theory of BEC
of quasiparticles.

II. BEC IN THERMODYNAMIC EQUILIBRIUM:
ANALYTICAL BACKGROUND

The physics of a BEC in systems with a flux equilibrium
is, in many aspects, similar to that of a BEC in thermody-
namic equilibrium. Therefore, to stress the similarities and
differences of basic physics in these two regimes, it is useful
to use the same or similar notations. To introduce these nota-
tions, we shortly describe the BEC process in wave systems
under consideration using a customary framework (see, e.g.,
Refs. [12,24–27]).

A. Bose-Einstein and Rayleigh-Jeans distributions

It is well known from various textbooks (see, e.g.,
Ref. [28]) that the free evolution of an ideal Bose gas and
weakly interacting wave systems results in the BE distribution
for particle (e.g., 4He atom) or quasiparticle numbers:

n
BE

k = 1

exp[(Ek − μ)/T ] − 1
, (4a)

in which Ek is the particle (or quasiparticle) energy, T is the
temperature, and μ is the chemical potential. For nonrelativis-
tic particles and quasiparticles with parabolic dispersion law
Eq. (1b), to ensure T > 0 and nk � 0 the value of μ must be
smaller than the minimum of Ek: μ � E0.

In the low-energy limit, when (Ek − μ) < T , the BE
distribution approaches its classical limit, known as the
Rayleigh-Jeans (RJ) distribution [28]:

n
RJ

k (T, μ) = T

Ek − μ
. (4b)

In the opposite limit, when Ek − μ > T , the BE distribu-
tion (4a) becomes exponentially small:

n
BE

k → exp[−(Ek − μ)/T ]. (4c)

We can understand the crossover wave number k×, defined by
the equation

T = (h̄k×)2

2m
+ E0 − μ, (4d)

as a quantum cutoff of the classical RJ-distribution (4b): for
k > k× it becomes exponentially small according to Eq. (4c).

Note that the crossover wave number k× may exceed the
maximal wave number kmax � π/a0, determined by the inter-
atomic scale a0 or by some details of the system’s dynamics
(e.g., by the crossover between the flux- and the thermody-
namic equilibrium regimes) as will be clarified below. For
simplicity, in the present paper, we assume kmax to be greater
than k×.

B. Quantum nature of a BEC of Bose-atoms and waves

To stress the quantum-mechanical nature of the BEC in
both the ideal Bose gas and the gas of quasiparticles, we
briefly recall here some results of the celebrated 1925 paper
by Albert Einstein [2].

Consider the thermodynamic equilibrium in the systems
characterized by the total number Ntot of 4He atoms or quasi-
particles and the total energy Etot, measured for quasiparticles
from their energy gap E0:

Ntot =
∫

n
BE

k dd k

(2π )d
⇒ 1

2π2

∫ k×

0
n

RJ

k k2dk, (5a)

Etot =
∫

(h̄k)2

2 m

n
BE

k dd k

(2π )d
⇒ h̄2

4π2m

∫ k×

0
n

RJ

k k4dk. (5b)

Here, n
BE

k is the BE distribution, given by Eq. (4a), dkd =
4πk2dk in the isotropic 3D case considered here with the
dimensionality d = 3, and m is either the actual mass of 4He
atoms or the effective mass of quasiparticles. To estimate the
integrals in Eqs. (5), we replaced n

BE

k in the rightmost integrals
by n

RJ

k and accounted for the exponential decay of n
BE

k above
the quantum cutoff (i.e. for k > k×) by introducing the upper
limit of integration k×.

The two relations (5) allow us to find T and μ in the
final equilibrium state. However, the direct substitution of n

RJ

k
into Eqs. (5) leads to an immediate problem, known as the
ultraviolet catastrophe: both integrals for Ntot and Etot diverge
for k× → ∞:

Ntot ≈ T

2π2

∫ k×

0

k2dk

(h̄k)2/(2m) + E0 − μ
, (6a)

Etot ≈ h̄2 T

4π2m

∫ k×

0

k4dk

(h̄k)2/(2m) + E0 − μ
. (6b)

The only solution is to account for the finite value of the quan-
tum cutoff k×, i.e. for the quantum character of the problem.

A simple analysis of Eqs. (6) shows that lowering Etot with
fixed Ntot leads to smaller T , while μ increases and approaches
E0, which is zero for 4He atoms or h̄ω0 for quasiparticles. As
μ reaches E0, Eq. (6a) gives an estimate of the maximal possi-
ble number of excited “gaseous” 4He atoms or quasiparticles
with Ek > E0, which we denote as Ngas:

Ngas ≈ k3
×

4π2
, k× =

√
2mT

h̄
. (7a)

The corresponding parameter Etot we denote as Egas. Accord-
ing to Eq. (6b) we find

Egas ≈ Ngas
(h̄k×)2

6m
≈ π4/3h̄2

3 · 21/3m
(Ngas)5/3. (7b)
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For Etot < Egas, the number of “gaseous” 4He atoms or
quasiparticles at the excited energy levels Ngas becomes
smaller than their total number Ntot. What happens with their
excess number Ntot − Ngas? The answer was given by Einstein
in Ref. [2]: the excess 4He atoms (and quasiparticles, as we
understand now) occupy only ONE level with the minimal
energy, independently of the size of the system, forming a
BEC, in which the number of BE condensed atoms or quasi-
particles NBEC = Ntot − Ngas is macroscopically large. All these
BE condensed quasiparticles belong to the basic quantum
state with its wave function coherent over the entire size of
the system, owing to the fundamental principle of quantum
mechanics of the indistinguishability of identical quasiparti-
cles: the particles (or quasiparticles) with zero and natural
spins can occupy any quantum state without limitation of their
occupation number.

The existence of the quantum cutoff and the indistinguisha-
bility of identical (quasi)particles are necessary conditions
for the BE condensation of Bose atoms and quasiparticles.
Therefore, the phenomenon of the BE condensation of 4He
atoms and other Bose atoms, as well as magnons and other
quasiparticles, has a fundamentally quantum nature.

C. Quasi-BEC in two-dimensional systems

In the 2D isotropic case, d2k = 2πkdk and integrals for
Ntot and Etot, similar to Eqs. (6), take the form

Ntot ≈ T

2π

∫ k×

0

kdk

(h̄k)2/(2m) − δμ
= k2

×
4π

ln

(
1 − T

δμ

)

≈ k2
×

4π
ln

(
T

|δμ|
)

= k2
×

2π
ln

(
k×

kmin

)
, (8a)

Etot ≈ h̄2 T

8π2m

∫ k×

0

k3dk

(h̄k)2/(2m) − δμ

= k2
×

4π

[
T + δμ ln

(
1 + T

δμ

)]
≈ T k2

×
4π

, where (8b)

δμ ≡ μ − E0 < 0, and kmin ≡
√

2m|δμ|
h̄

. (8c)

As δμ → 0, Ntot becomes logarithmically large, i.e., any large
number of quasiparticles can occupy excited levels with k >

0. Therefore, BE condensation never happens in unbounded
2D media.

According to Eqs. (1) and (4b), for μ = E0 = h̄ω0 the wave
distribution diverges at k = 0:

n
RJ

k = T

h̄ω0(ak)2
= 2mT

(h̄k)2
(9a)

and formally Ntot = ∞. Nevertheless, when Ntot → ∞ but
still finite, μ → h̄ω0, and kmin → 0, the coherence length of
the quasiparticles

� � π/kmin (9b)

increases and finally reaches the sample size. In other words,
the wave system becomes coherent across the entire sample
and can be practically considered as a BEC. Nevertheless, to
be formally rigorous, we will refer to this system as quasi-
BEC [25].

III. FLUX EQUILIBRIUM WITH WEAK PUMPING:
QUASIEQUILIBRIUM REGIME

In this Section we consider an isotropic system with a
parabolic dispersion law Eq. (1) and relatively weak pumping,
such that in the stationary case the system can be considered
close to the thermodynamic equilibrium. Then, similar to the
equilibrium regime, main contributions to all Ntot- and Etot-
integrals, given by Eqs. (5), come from the range k < k×, i.e.,
below the crossover between the quantum and classical scales.
To simplify the appearance of our results, we approximate,
analogous to the previous Sec. II B, the BE distribution (4a) in
this range by the Rayleigh-Jeans distribution (4b).

The idea of the theoretical analysis of the BE condensation
in the quasiequilibrium regime is simple. By balancing the
rate of the quasiparticle input with the rate of their loss, we
will find their total number Ntot in the flux-equilibrium regime.
A similar analysis of the rate equation for the energy allows us
to find the total energy of the system Etot. Because the system
is assumed to be close to the thermodynamic equilibrium in
the vicinity of the energy minimum, we can find an effective
temperature Teff, describing a local Rayleigh-Jeans distribu-
tion in this region. In turn, this allows us to find the number of
excited quasiparticles Ngas, occupying energy levels Ek > E0.
If Ngas turns out to be smaller than Ntot, the excess quasipar-
ticles create the BEC: Ntot − Ngas = NBEC. Otherwise, there is
no BEC.

A. BEC in 3D systems

To study BE condensation in 3D systems along the lines
of the suggested procedure, consider now the continuity
equation for the quasiparticle numbers nk with a damping
frequency γ (taken for simplicity as k-independent) and a
source (influx) of quasiparticles f at a surface of the sphere
of radius kf:

k2

2π2

∂nk

∂t
+ ∂ηk

∂k
= −γ k2

2π2
nk + k2

f f

2π2
δ(k − kf ). (10)

Here ηk is the flux of quasiparticles in the 1D space of k = |k|
(the angle-averaged 3D k space),

The rate equation for the energy (measured from E0) is
obtained by multiplying Eq. (10) by h̄δωk = h̄ ω0a2k2. Inte-
grating the result, we obtain for the total energy in 3D:

E
3D

tot = h̄ω0a2 f k4
f

2π2γ
. (11a)

Now, using the definition Eq. (1d) and in analogy to Eq. (6b)
with the effective temperature T = Teff and the effective mass
m = meff, as well as assuming the presence of the BEC (i.e.,
μ = E0), we rewrite Etot as

E
3D

tot =Teffk3
×

6π2
. (11b)

Equations (11) allows us to find Teff. Using it to find, with
the help of Eq. (6a), the total number of exited (gaseous)
quasiparticles with k > 0 we obtain

N
3D

gas = Teff k×
2π2h̄ a2 ω0

= 3 f k4
f

2π2k2×γ
. (12)
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In its turn, the total number of quasiparticles Ntot can be found
by integration of the particle rate Eq. (10):

N
3D

tot = f k2
f

2π2γ
. (13)

The excess of N
3D

tot over Ngas is the number of BE condensed
quasiparticles:

N
3D

BEC = N
3D

tot − N
3D

gas = f k2
f

2π2 γ

(
1 − k2

f

k2
cr

)
, k2

cr ≡ k2
×
3

. (14)

Recall that by setting μ = E0 we assumed that the BEC is
formed, i.e., N

3D

BEC > 0. We see that the BEC appears only if the
spectral location of the quasiparticle influx f is below the criti-
cal value kcr, which is independent of the value of f . However,
if the condition kf < kcr is fulfilled, then the particle number
in the BEC is proportional to f /γ . The numerical factor 3 in
Eq. (14) is a consequence of the simplifying assumption that
γk is k-independent.

The requirement of the smallness of kf for BE condensation
has a simple physical meaning. In our model with monochro-
matic pumping [at a single frequency ω(kf )] of the energy
(counted from E0) and the quasiparticles, their influxes, PE

and PN are related: PE = h̄[ω(kf ) − ω(0)]PN . This means that
at the constant quasiparticle influx PN (and, consequently, con-
stant N

3D

tot ), the energy influx PE , being proportional to k2
f PN ,

decreases with decreasing kf. Accordingly, Etot and Teff also
decrease with decreasing kf. Clearly, the wave system with the
constant Ntot will unavoidably experience BE condensation
when kf (and consequently Teff) become smaller and smaller.
On the contrary, for large kf in the hot system there will be
no BEC. Hence, there is a critical value kf = kcr, Eq. (14), at
which BE condensation happens.

B. Quasi-BEC in 2D systems

As we discussed in Sec. II C, one expects the appearance
of a quasi-BEC in a finite-size 2D space, say in a square do-
main L × L. Assuming for concreteness periodical boundary
conditions, we end up with a discrete k-space, in which kx =
±2πnx/L and ky = ±2πny/L with nx and ny = 0, 1, 2, . . . L .
The wave vector k = 0, i.e., kx = ky = 0, can be considered
as the position of the quasi-BEC, while the rest of the k-
space can be roughly approximated as a continuous k-space,
restricted by the inequality k > k̃min ≈ 2π/L. If so, then the
quasiparticle distribution in 2D case reads:

nk = T θ (kmin)

h̄ ω0(a k)2
+ (2π )2NBECδ

2(k), k < k×, (15)

where θ (kmin) is the Heaviside step function.
The 2D version of the quasiparticle rate equation (10) is:

k

2π

∂nk

∂t
+ ∂ηk

∂k
= −γ k

2π
nk + kf f

2π
δ(k − kf ). (16)

Multiplying the stationary version of this equation by
h̄ ω0a2k2 and integrating over dk gives for the total energy

E
2D

tot = h̄ω0 f a2k3
f

2πγ
, (17a)

similar to Eq. (11a). By analogy with Eq. (6b), E
2D

tot in terms of
the effective temperature reads

E
2D

tot = Teffk2
×

4π
. (17b)

Similar to the 3D case, these equations allow one to find Teff

and, by the help of a 2D version of Eq. (6a), the total number
of gaseous quasiparticles in 2D:

N
2D

gas = Teff

2π h̄ ω0a2
ln

(
k×

k̃min

)

= f k3
f

k2×γ
ln

(
k×

k̃min

)
, k̃min ≈ 2π

L
, (18)

instead of Eq. (12) for the 3D case.
Now, integrating the stationary Eq. (16) over k, one gets a

new equation for the total particle number N
2D

tot which gives,
similar to Eq. (13) for N

3D

tot :

N
2D

tot = f kf

2πγ
. (19)

As in the 3D case, the excess of N
2D

tot over N
2D

gas gives the
number of BE condensed quasiparticles:

N
2D

BEC = N
2D

tot − N
2D

gas = f kf

2π γ

(
1 − k2

f

k2
cr

)
, (20a)

k2
cr ≡ k2

×

/[
2 ln

(
k×

k̃min

)]
. (20b)

We see that also in 2D the BEC appears only if the position of
the quasiparticle influx f is below the critical value kcr, now
given by Eq. (20b). As before, kcr is independent of the value
of this influx f and kcr < k×. Also, similar to the 3D case,
when k f < kcr, the particle number in the BEC is proportional
to f /γ .

IV. FLUX EQUILIBRIUM WITH STRONG PUMPING:
SCALE-INVARIANT REGIMES

A. Kinetic equation and damping frequency

A consistent description of the evolution of an overpop-
ulated wave system towards the formation of a BEC may
be achieved in the framework of the theory of weak wave
turbulence [27,29]. The main tool of this theory is a kinetic
equation (KE) for the occupation numbers n(k) of quasiparti-
cles:

∂nk

∂t
= St(k, t ). (21)

The collision integral St(k, t ) may be found by various ways
[27,29], including the Golden Rule, widely used in quantum
mechanics [30]. In the case of the three-wave decay

ωk = ω1 + ω2, k = k1 + k2, (22a)

and confluence processes

ωk + ω1 = ω2, k + k1 = k2, (22b)
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the collision integral takes the form [27,29]:

3St(k, t ) = π

∫
dk1dk2

[
1

2

∣∣V 12
k

∣∣2
μ12

k

× δ(k − k1 − k2)δ(ωk − ω1 − ω2) (23a)

+ ∣∣V k1
2

∣∣2
μk1

2 δ(k2 − k1 − k)δ(ω2 − ω1 −ωk).

(23b)

Here ω j ≡ ωk j ≡ ω(k j ), n j ≡ nk j , V 12
k ≡ V (k, k1k2) is the 3-

wave interaction amplitude and μ12
k ≡ n1n2 − nk(n1 + n2).

If the three-wave processes (22) are suppressed or for-
bidden, then the main role is played by four-wave 2 ⇔ 2
processes,

ωk + ω1 = ω2 + ω3, k + k1 = k2 + k3. (24a)

In this case, the collision integral reads [27,29]

4St(k, t ) = π

4

∫
dk1dk2dk3 δ(k + k1 − k2 − k3)

× δ(ωk + ω1 − ω2 − ω3)
∣∣W 23

k1

∣∣2

× [n2n3(nk + n1) − nkn1(n2 + n3)]. (24b)

Here W 23
k1 = W k2,k3

k,k1
= W (k, k1; k2, k3) is the four-wave in-

teraction amplitude.
The kinetic equations (21), (23), and (24b) have a station-

ary thermodynamic equilibrium solution in the form of the
RJ distribution (4b). To describe the evolution of the system
close to the RJ distribution, Eq. (21) can be approximately
reformulated as follows:

∂nk

∂t
= γk

[
n

RJ

k − nk
]
, (25)

where γk is proportional to the part of the collision integral
that explicitly includes nk. In the case of four-wave pro-
cesses (24a) with the collision integral (24b) we find

4γk = π

4

∫
dk1dk2dk3|W 23

k1 |2δ(k + k1 − k2 − k3)

× δ(ωk + ω1 − ω2 − ω3)[n1(n2 + n3) − n2n3].
(26a)

According to Eq. (25), near the equilibrium

nk − n
RJ

k ∝ exp[−4γkt].

Therefore, 4γk (26a) has a meaning of the damping (or relax-
ation) frequency in the four-wave scattering processes (24a).
Close to and at equilibrium it is positive 4γk > 0.

In general, the kinetic Eq. (21) with the collision term (24b)
can be written as follows:

∂n(k)

∂t
= 
(k) − γ (k)n(k), (26b)

where n(k) ≡ nk, γ (k) = 4γ (k) is given by Eq. (26a) and the
source term has the form


(k) = π

4

∫
dk1dk2dk3 δ(k + k1 − k2 − k3)

× ∣∣W 23
k1

∣∣2
δ(ωk + ω1 − ω2 − ω3) n1n2n3. (26c)

In thermodynamic equilibrium n j = n
RJ

j , 
(k) = γ (k)n
RJ

k
and Eq. (26b) coincides with Eq. (25), as expected.

B. Scale-invariant solutions of the kinetic equation

Weak wave turbulence theory [27,29] also allows us to
find stationary flux solutions of the KE in the isotropic scale-
invariant case, for which the wave frequency depends only on
k = |k| and the interaction amplitude W 23

k1 is a homogeneous
function,

ωk = ωk ∝ kα, W σk3,σk4
σk1,σk2

= σ mW k3,k4
k1,k2

. (27)

Here, α is the frequency scaling index (for example, for
magnons at the beginning of the exchange-dominated disper-
sion branch α = 2), m is the four-wave interaction-amplitude
scaling index and σ is a positive constant. For simplicity, let
us take

W 34
12 = W0am(k1k2k3k4)m/4, (28)

where W0 is a constant. Up to now, our analysis has a general
character, applicable to any nonlinear wave system. Below,
having in mind the comparison of our predictions with spin
waves in a ferromagnetic material, we choose the interaction
parameters typical for this system for further discussion. In the
ferromagnetic material, at sufficiently large k, the exchange
interaction with m = 2 is dominant. In the low-k range, the
dipole-dipole interaction dominates, with m = 0.

The scaling solutions (up to a dimensionless prefactor) read

nε(k) � ε1/3

W 2/3
0 (a k)xε

, xε = d + 2m

3
, (29a)

nη(k) � η1/3

W 2/3
0 (a k)xη

, xη = d + 2m − α

3
. (29b)

Here ε and η are the energy and the quasiparticle (magnon)
number fluxes, and d is the dimensionality of the space.

C. Directions of the fluxes and realizability
of the flux solutions in ferromagnets

Following the Fjørtoft argument [31], one can show (see,
e.g., Ref. [27,29]) that the energy flux solution (29a) is ori-
ented toward large k (“direct energy cascade”), while the
quasiparticle-flux solution (29b) flows toward small k (“in-
verse particle cascade”). This conclusion is based on the
analysis of the energy and quasiparticle number balance in
the stationary, scale-invariant, isotropic situation, in which
the energy and the quasiparticles are pumped around some
intermediate wave number kf and dissipate at both very small
k<- and very large k>-numbers: k< � kf, k> � kf.

Now we are going to verify that the scale-invariant solu-
tions (29) do have the directions of the energy and magnon
number fluxes that agree with the Fjørtoft argument.

014301-6



BOSE-EINSTEIN CONDENSATION IN SYSTEMS WITH … PHYSICAL REVIEW B 109, 014301 (2024)

(a)

(c)

(b)

(d)

FIG. 2. Schematic presentation of the particle flux η(x) (in
red) and the energy flux ε(x) (in blue) as a function of spectral
index x. (a) Exchange-dominated interaction, 2D; (b) exchange-
dominated interaction, 3D; (c) dipole-dipole dominated interaction,
2D; (d) dipole-dipole dominated interaction, 3D.

For that, we analyze the behavior of these fluxes for the dis-
tributions n(k) ∝ k−x with an arbitrary value of x. We expect
that for a very steep spectrum, the fluxes will act to change it
toward the equilibrium spectra. Therefore, for large and pos-
itive x, given that n(k) decreases sharply toward larger wave
numbers, we expect both ε and η fluxes to be positive, i.e.,
directed toward large k. On the contrary, for large negative x,
when the spectra are growing toward high wave numbers, we
expect ε, η < 0. Furthermore, both fluxes will be zero for both
thermal equilibrium exponents x

TE

η = 2 (because nRJ ∝ 1/ωk)

and x
TE

ε = 0. In addition, the flux of magnons η(x) vanishes
for the pure energy flux spectrum with exponent xε given by
Eq. (29a), and the energy flux ε(x) vanishes for the pure par-
ticle flux exponent xη, given by Eq. (29b). By continuity, the
signs of both fluxes for all x are fully determined by their signs
at infinity and the locations of their zero crossings. The fluxes
vary in the manner schematically shown in Figs. 2(a) and
2(b) for the 2D and 3D case, respectively, with the exchange-
dominated interaction with m = 2, and Figs. 2(c) and 2(d)
for the 2D and 3D case, respectively, with the dipole-dipole
dominated interaction with m = 0 [32].

First, we consider the exchange-dominated case in ferro-
magnets (m = 2) for which

xε = 10
3 , xη = 8

3 , for d = 2, (30a)

xε = 13
3 , xη = 11

3 , for d = 3. (30b)

We see in Figs. 2(a) and 2(b) that in both 2D and 3D at the
spectral index x = xε, corresponding to the pure energy flux
( 10

3 and 13
3 , respectively), the energy flux is positive, ε > 0.

Similarly, we see that for x = xη, corresponding to the pure
flux of magnons ( 8

3 and 11
3 respectively), the flux of magnons

is negative, η < 0. These findings are in full agreement with
the Fjørtoft prediction.

In the dipole-dipole interaction-dominated case, when
m = 0,

xε = 2, xη = 4
3 , for d = 2, (31a)

xε = 3, xη = 7
3 , for d = 3. (31b)

These exponents are the same as in the nonlinear
Schrödinger (NLS) equation, studied in Refs. [27,33,34].
Consequently, our schematic representation of the fluxes
Figs. 2(c) and 2(d) looks similar to Figs. 1(c) and 1(d) in
Ref. [34]. For completeness, the analysis that led to the con-
clusions made in Ref. [34], is briefly reproduced below.

In 3D, ε is positive at xη and η is negative at xε in agree-
ment with the Fjørtoft argument. We therefore can expect
that in 3D the Kolmogorov-Zakharov flux cascades with ex-
ponents (31b) are possible. A more detailed analysis [27,33]
shows that the inverse particle cascade Kolmogorov-Zakharov
spectrum is indeed realized, while the direct energy cascade
is marginally nonlocal and the respective spectrum must be
modified by the logarithmic corrections.

As seen in Fig. 2(d), in spectra (29) the quasiparticles
cascade is directed to large k and the energy cascade is zero.
This contradicts the robust Fjørtoft-type analysis based on the
energy and the quasiparticles number balance for the situation
when the energy and quasiparticles are pumped around some
intermediate wave number kf and dissipate in both ranges of
very small k<- and very large k>-numbers. The contradiction
may be resolved if, instead of the pure scaling spectra (29),
the inverse quasiparticles and the direct energy cascades are
realized by spectra with a shape close the thermodynamic
RJ equilibria (4b) with small corrections which take care
of the magnon and energy fluxes toward small and large k,
respectively.

D. Transition from 3D to 2D cases in thin films

In thin films, we chose the direction z orthogonal to the film
surface. The corresponding wave vector is kz = πnz/�, where
� is the film thickness. Accordingly, the wave frequency is
also quantized, and the frequency of the fundamental mode
with nz = 1 is separated from the frequency of the next mode
with nz = 2, etc. This results in the appearance of a crossover
wave number k2↔3 between the 2D and 3D regimes in the flux
solutions. For k � k2↔3, the 3D flux solutions can be realized,
while for k � k2↔3 the energy and quasiparticles exchange
between waves with different nz are strongly suppressed, or
even forbidden. Roughly speaking, for k2↔3 the frequency
gap between waves with neighboring nz is of the order of the
interaction frequency (or damping frequency) of waves with
k ∼ k2↔3.

For the problem at hand it means the following: if the
pumping wave number strongly exceeds the crossover kf �
k2↔3, there exists a direct energy flux toward large k for
k > kf, whereas in the intermediate range k2↔3 < k < kf, an
inverse particle flux toward small k is realized. For small wave
numbers k < k2↔3, the wave system falls into the 2D regime,
in which the scale-invariant flux solution cannot be realized.
Instead, it approaches a solution close to the thermodynamic
equilibrium with small deviations ensuring the required parti-
cle flux.
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(a)
par‛

par

top

bot

(b)
par‛par

bot‛bot

(c)

par‛par

top‛top

FIG. 3. (a) Interaction processes Eq. (32) leading to the kinetic
instability. (b), (c) Scattering processes (33), leading to the widening
of the frequency distribution of the bottom and top quasiparticles.

V. ULTRASTRONG PUMPING:
KINETIC INSTABILITY AND BEC

In this section, we consider ultrastrong parametric pump-
ing by an external monochromatic field of frequency ωpump,
exciting a very intense package of quasiparticles near the
resonant frequency ωpar = ωpump/2 according to Eq. (2); see
Fig. 1. As predicted in Ref. [21], the scattering process with
the conservation law

ω(kpar) + ω(k′
par) = ω(kbot) + ω(ktop), (32)

shown in Fig. 3(a) decreases the damping frequency of the
bottom and top waves γ (kbot) and γ (ktop) such that they may
become negative. If so, then the cascade processes, discussed
in Sec. IV B, may be augmented by a direct transfer of the
parametrically injected quasiparticles to the lowest energy
states, creating a dense cloud of incoherent “bottom” quasi-
particles formed close to the BEC point [35] and a similar
cloud at the high energy state (“top quasiparticles”).

The linear stage of this phenomenon, referred to as kinetic
instability [21–23,36], is considered below in Sec. V A. The
exponential growth of the number of the bottom and top
quasiparticles due to kinetic instability alters the damping of
the parametric ones. This process is discussed in Sec. V B. In
its turn, two other scattering processes, shown in Figs. 3(b)
and 3(c), involve parametric, bottom, and top waves,

ω(kpar) + ω(kbot) = ω(k′
par) + ω(k′

bot),

ω(kpar) + ω(ktop) = ω(k′
par) + ω(k′

top). (33)

It widens the frequency distribution of the bottom and top
quasiparticles, as described in Sec. V C. Combining all pro-
cesses together, we formulate the nonlinear description of the
kinetic instability in Sec. V D.

Although the kinetic instability was first discovered in a
system of parametrically excited magnons [21], it is a general
physical phenomenon in nonlinear wave systems. To stress
this generality and to clarify the underlying phenomena, we
describe it here for the isotropic homogeneous wave sys-
tem with the parabolic dispersion law (1a). We postpone the
discussion of the specific features related to the anisotropic
spectrum of magnons, shown in Fig. 7, until Sec. VI, which
addresses the experimental study of magnon BEC formation
in ferrimagnetic YIG.

A. Linear stage of the kinetic instability

To clarify the physics of the kinetic instability, we substi-
tute the RJ distribution (4b) into Eq. (26a) for the damping
frequency. We see that near the equilibrium γk > 0, mean-
ing that the wave system, being close to the equilibrium,

monotonically relaxes toward it. However, the right-hand-side
(RHS) of Eq. (26a) has the negative term proportional to n2n3,
which under some conditions may dominate.

To demonstrate this, let us consider the distribution as
a sum of the equilibrium waves (4b) and a package of the
parametric waves with k = kpar and total number Npar. In the
isotropic 3D case:

n(k) = n
RJ

(k) + npar(k), (34a)

npar(k) = Npar

4πk2
par

δ(k − kpar). (34b)

Consequently, the rate Eqs. (26) for the bottom and top
quasiparticles nbot(k) and ntop(k) appearing in the scattering
process (3), are as follows:

∂nbot(k)

∂t
= −γbot(k)nbot(k) − γKI(k)[nbot(k) + ntop(k)],

∂ntop(k)

∂t
= −γtop(k)ntop(k) − γKI(k)[nbot(k) + ntop(k)].

(35)

Here, γbot > 0 and γtop > 0 are the original (positive) damping
frequencies originating from the equilibrium quasiparticles
n

RJ

k . The new terms, proportional to γKI(k) < 0, which leads
to the kinetic instability, can be found from the last term
−npar(k2)npar(k3) in the RHS of Eq. (26a) for 4γk in both the
bottom and the top quasiparticles,

γKI(k) = −π

4

∫
dk1dk2dk3δ(k + k1 − k2 − k3)

× |W 23
k1 |2δ(ωk + ω1 − ω2 − ω3)npar(k2)npar(k3).

(36a)

As we see (following Ref. [21]), the value of γKI(k) is
negative. For clarity of the presentation, it is convenient to in-
troduce a positive object �KI(k) = −γKI(k) > 0 and to rewrite
Eqs. (35) for the total number of the top and the bottom
quasiparticles, Nbot = ∫

nbot(k)dk and Ntop = ∫
nbot(k)dk as

follows:

∂Nbot

∂t
= �KI[Nbot + Ntop] − γbotNbot,

∂Ntop

∂t
= �KI[Nbot + Ntop] − γtopNtop. (36b)

Next, we integrate Eq. (36a) with respect to the directions of
all k j . Using the procedure of averaging as in Refs. [33,37],
we conclude (up to a numerical prefactor) that

�KI (k) � 1

k

∫
dk1dk2dk3k1k2k3 min{k, k1, k2, k3}

∣∣W 23
k1

∣∣2

× δ(ωk + ω1 − ω2 − ω3)npar(k2)npar(k3). (36c)

Note that in our case min{k, k1, k2, k3} = k which cancels
against the prefactor of the integral 1/k.

Substituting Eq. (34b) for npar(k) we finally arrive at the
following estimate for the positive contribution to the rate
Eq. (36b), leading to the kinetic instability:

�KI(k) �
(
�par

W

)2

ωpar
, �par

W
≡ |W0|2Npar. (37)
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Here, we assume for simplicity that W 23
k1 = W0 in agree-

ment with Eq. (28) with m = 0 and we approximate
ω0(a kpar)2 � ωpar.

The linear Eqs. (36b) have exponential solutions

Nbot(k, t ) ∝ exp(ν±
k t ), Ntop(k, t ) ∝ exp(ν±

k t ), (38a)

with

ν±
k = �par − 1

2 (γtop + γbot)

± 1
2

√
(γtop − γbot)2 + 4�2

KI. (38b)

The increment ν+
k becomes positive if

.�KI > �th
KI = γtopγbot

γtop + γbot
� γbot, for γbot � γtop. (38c)

This condition may be fulfilled for low-frequency waves near
the bottom of their frequency spectra, where γbot(k) is small.
If so, then these waves become unstable, and their numbers
Nbot(t ) and Ntop(t ) are related as follows:

Nbot�KI = Ntop

2

[
γtop − γbot +

√
(γtop − γbot)2 + 4�2

KI

]
∝ exp(ν+

k t ), (39a)

and grow exponentially until the nonlinear effects become
significant. The description of these effects is the subject of
the Sec. V D.

Under stationary conditions, when ν+
k = 0, the relationship

between Nbot and Ntop is even simpler:

Nbotγbot = Ntopγtop. (39b)

Near the threshold �par = �th
par, Eq. (38b) gives

ν+
k ≈ [

�KI(k) − �th
KI (k)

] (γbot + γtop)2

γ 2
bot + γ 2

top
+ . . . (39c)

The condition ν+
k = 0 defines the threshold of the kinetic

instability if one neglects the scattering of the bottom and top
quasiparticles on the parametric ones, considered in Sec. V C.

Using the estimate (37) for �par, we find from Eq. (38c) the
critical value Ncr

par corresponding to the threshold of the kinetic
instability in which νk = 0:

π |W |Ncr
par �

√
ωpar γbotγtop

/
(γbot + γtop). (40)

Corrections to this estimate caused by the scattering of the
bottom and parametric quasiparticles will be discussed in
Sec. V C.

B. Mean-field approximation for parametrically excited waves
and feedback limitation of the kinetic instability

The statistical behavior of parametrically excited waves
in ferromagnets was intensively studied experimentally, the-
oretically, and numerically since their discovery by Suhl in
1959 [38] and by Schlömann in 1962 [39]. A relatively simple
theory of this phenomenon in the mean-field approximation,
called the “S-theory,” was developed later by Zakharov, L’vov,
and Starobinets, and presented in their review [40]. Further
important achievements in this problem were summarised, for
example, in the books [32,41].

The evolution equations for the total number of paramet-
rically excited waves Npar and their mean phase �par (cf.
Eqs. (5.4.13) of the book in Ref. [32]) is our starting point.
Here we augment them with the new term �parNpar, which
describes the loss of parametric waves due to their direct trans-
fer to the bottom and the top waves by the kinetic instability
described below.

In the spherically symmetric case, these equations take the
form

dNpar

dt
= (hV sin �par − γpar − �par)Npar, (41a)

d�par

dt
= hV cos �par + �S , �S ≡ SNpar. (41b)

Here, h is the amplitude of the external homogeneous oscillat-
ing field, V is the interaction amplitude of this field with the
parametric waves, γpar is their damping frequency, and S is the
mean interaction amplitude of a pair of parametric waves with
opposite wave vectors ±kpar, with another pair ±k′

par:

S =
〈
W

k′
par,−k′

par

kpar,−kpar

〉
. (41c)

To estimate the additional damping �par, consider KE (21)
with the collision term 4St(k, t ), given by Eq. (24b), with the
resonance conditions (24a), in which we take k = kpar, k1 =
k′

par (where |kpar| = |k′
par| = kpar), k2 = kbot, k3 = ktop or k3 =

kbot, k2 = ktop.
The last choice gives the same contribution as the previous

one and can be accounted for by replacing the numerical pref-
actor π/4 → π/2. Corresponding values of the frequencies
are as follows: ωk = ω1 = ωpar, ω2 = ωbot, ω3 = ωtop. This
way we get

�par(kpar) � π

2

∫
dk1dk2dk3 δ(kpar + k1 − k2 − k3)

× δ(2ωpar − ωbot − ωtop)
∣∣W 23

k1

∣∣2

× npar(k1)[nbot(k2) + ntop(k3)]. (42)

Note that the numerical prefactor here is twice as large as in
Eq. (36a) for γKI(k). Estimating �par(kpar) from Eq. (42), in
the same way we obtained the estimate (37) for �KI(k) from
Eq. (36a), we finally get:

�par(kpar) � 2|W |2NparN+
ω0(akpar)2

� 2|W |2NparN+
ωpar

,

N+ ≡ Nbot + Ntop. (43a)

Comparing this estimate with Eq. (37) for �KI(k), we see
that Npar�par, the rate of dissipation of parametric waves due
to the kinetic instability, is about 2Nbot�KIN+, the total input
rate of the bottom and top quasiparticles. A more detailed
analysis shows that this relationship is exact. Namely, the
positive contribution �par to the rate Eq. (36b), leading to the
kinetic instability, and the additional damping frequency �

top
bot

in Eq. (41a) are related as follows:

�parNpar = 2�KIN+. (43b)

Both effects are caused by the same four-wave scattering,

ω(k1) + ω(k2) �⇒ ω(k3) + ω(k4), (43c)
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in which the “initial” waves with wave vectors k1 and k2 are
parametric waves with ω(k1) � ω(k2) � ωpump/2, while the
“resulting” waves are the bottom and top quasiparticles with
the frequencies ωbot and ωtop = 2ωpar − ωbot.

From the quantum-mechanical viewpoint, one act of the
scattering Eq. (43c) leads to the disappearing of two paramet-
ric quasiparticles and the creation of one bottom quasiparticle
and one “top” quasiparticle with ωtop. Therefore, the cor-
responding damping −�parNpar in the rate Eq. (41a) for
the parametric quasiparticles must be negative. Its modulus
must be positive and exactly equal to the input contributions
2 � KIN+ to the RHS of the sum of the rate Eqs. (35) for the
bottom and top quasiparticles.

Equations (41) have the stationary solution

(SNpar)
2 = (hV )2 − (γpar + �par)

2. (44)

Furthermore, Eqs. (43a), (43b), and (44) allow us to find Npar

for a given hV and N+ for a given hV and Npar:

Npar = ωpar

ω2
parS

2 + 4W 4N2+

[−γparW
2N+

+
√

(hV )2
(
ω2

parS
2 + W 4N2+

) − γ 2
parω

2
parS

2
]
, (45a)

N+ = ωpar

W 4N2
par

[−γparW
2Npar

+
√

(hVW 2Npar)2 − S2(W Npar)4]. (45b)

Using Eq. (39b), one easily reconstructs Nbot and Ntop from
N+:

Nbot = N+γtop

γbot + γtop
, Ntop = N+γbot

γbot + γtop
. (45c)

Below the threshold of the kinetic instability, when N+ =
0, Eq. (45a) simplifies to

|S|Npar =
√

(hV )2 − γ 2
par. (45d)

In addition, the threshold amplitude hth of the parametric
instability (for which Npar = N+ = 0) reads

hthV = γpar. (45e)

C. Scattering of the bottom and parametric waves

In the nonlinear theory of kinetic instability, we have to
account for one more process: scattering of the bottom or top
quasiparticles on the intense parametric quasiparticles with
the conservation law (24a), in which ω1 � ω2 � ωpar and
ωk � ω3 � ωbot or ωk � ω3 � ωtop:

ω(kbot) + ω(kpar) = ω(k′
bot) + ω(k′

par). (46)

To do this, we have to account for an additional term Stscat in
the RHS of the rate Eq. (35):

∂nk

∂t
= ν+

k nk + Stscat(k), (47a)

where ν+
k is given, with required accuracy, by Eq. (39c) and

Stscat(k) = π

4

∫
dk1dk2dk3

∣∣W k2,k3
k,k1

∣∣2
npar(k1)

× npar(k2)δ(ωk + ω1 − ω2 − ω3)

× (n3 − nk)δ(k + k1 − k2 − k3). (47b)

In Eq. (47a) and below in this section, nk should be un-
derstood as nbot(k) or ntop(k). This term originates from the
collision term 4St(k, t ) [Eq. (24b)], in which we account only
for the leading terms npar(k1)npar(k2) with the frequencies
ω1 � ω2 � ωpar.

In the isotropic case, following Refs. [33,37], we can
rewrite Eqs. (47) in the ω-representation:

∂nω

∂t
= ν+

ω nω +
∫

dω1dω2dω3 S (ω,ω1, ω2, ω3)

× δ(ω + ω1 − ω2 − ω3) npar
ω1

npar
ω2

(
nω3 −

√
ω3

ω
nω

)
.

(48a)

Here ω and k are related by Eq. (1a): ω = ω0[1 + (ak)2], and
the particle number densities in the k- and ω-spaces, nk and
nω, in isotropic case are related as follows:

nω = 2πk

ω0a2
nk . (48b)

It is important to take into account that parametrically excited
waves usually experience auto-oscillation with a characteristic
frequency about �S, given by Eq. (41b) [32]. Therefore, in the
ω-representation the distribution np(ω) is not proportional to
δ(ω − ωp), but has some width � of the order of �S around
ωpar. For concreteness, we assume the simple Gaussian form
of npar(ω):

npar
ω = Npar√

2π�
exp

[
− (ω − ωpar)2

2�2

]
,

Npar =
∫ ∞

−∞
npar

ω dω, � � �S � SNpar. (48c)

The collision integral in the RHS of Eq. (48a) is taken over
the positive values ω1, ω2, and ω3. The kernel of the integral
(up to a dimensionless order-one constant) reads:

.S (ω,ω1, ω2, ω3) � min{√ω,
√

ω1,
√

ω2,
√

ω3}√
ω1ω2ω3

∣∣W 23
k,1

∣∣2
. (49)

Substituting npar
ω1 and npar

ω2 from Eq. (48c) and keeping in mind
that in this case ω � ω3 � ω0 < ω1 � ω2 � ωpar we conclude
that

S (ω,ω1, ω2, ω3) � |W|2
ωpar

, W = W
kpark0,

k0,kpar
. (50)

Furthermore, replacing the dummy variable ω3 by ω̃ and
integrating the resulting equation over ω1 and ω2, we get (up
to a numerical prefactor in the integral)

∂nω

∂t
= ν+

ω nω + �2
W

ωpar

∫ ∞

ω0

dω̃

�
(nω̃ − nω ) exp

[
− (ω − ω̃)2

4�2

]
,

�W = WNpar. (51)
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Equation (51) was derived for the 3D case. In 2D, it has ex-
actly the same form (51) but with a slightly different value of
the numerical prefactor, which we are not controlling anyway.

Already at this stage, we can formulate an important conse-
quence of Eq. (51): integrating it over ω from ω0 to ∞ one gets
a rate equation for the total number of bottom quasiparticles
Nbot (or Ntop):

dNbot

dt
= 〈ν+

ω 〉Nbot, 〈ν+
ω 〉 ≡

∫ ∞
ω0

ν+
ω nωdω∫ ∞

ω0
nωdω

. (52)

The integral term in Eq. (51) does not contribute to Eq. (52)
due to the anti-symmetry of its integrand.

D. Nonlinear theory of the kinetic instability

Some aspects of the nonlinear theory of the kinetic insta-
bility were discussed a long time ago in Ref. [36] focusing
only on the case of small super-criticality over the threshold
of kinetic instability when �KI − �th

KI � �th
KI . Here, we extend

this theory to the range of moderate and large super-criticality,
i.e., when �KI − �th

KI � �th
KI or when �KI � �th

KI .
The goal of the nonlinear theory of kinetic instability,

developed here, is to find the spectral profile of the bot-
tom quasiparticles nω, the total number of the parametric,
bottom, and top quasiparticles, Npar, Nbot, and Ntop, as a func-
tion of the pumping amplitude h, accounting for the main
interactions in the system only. The interactions among the
parametric waves in the S-theory approximation are described
in Sec. V B, the particle number flux from the parametric
to the bottom quasiparticles—in Sec. V A and scattering of
the bottom and parametric quasiparticles—in Sec. V C. At
this stage, we neglect other nonlinear effects that might be
important depending on the particular characteristics of the
system at hand (e.g., the value and orientation of the external
magnetic field, etc.). The list of possibly important effects
includes cascade mechanisms of particle transfer from the
parametric and top quasiparticles to bottom ones, as described
in Sec. IV, and nonlinear interactions in the system of the
bottom quasiparticles, which can lead to the redistribution
of the bottom quasiparticles and the growth of the damping
frequency of the bottom quasiparticles with their number (see,
e.g., Ref. [42] and book [32]).

1. Narrow package approximation

Assuming initially that the package nω is extremely narrow,
such that νω can be considered a constant, denoted ν0 = ν+

k0
,

one obtains from Eq. (51):

dNbot

dt
= ν0Nbot. (53)

Below the kinetic instability threshold, when ν0 < 0, the
total number of the bottom quasiparticles decays exponen-
tially, and in the stationary condition Nbot = 0 holds. Thus,
according to Eq. (45d), Npar increases with the pumping am-
plitude hV , see Fig. 4, dashed light-blue line, until it reaches
the value Ncr

par given by Eq. (40).
The balance between the number of bottom and parametric

quasiparticles is maintained by the increments ν+ and �par.
As Npar > Ncr

par, the increment ν+
k becomes positive in a narrow

1 2 3 4 5 6
10-1

100

101

102

Bottom magnons

Parametric magnons

par

N
, N

pa
r

bo
t

7

FIG. 4. Qualitative representation of the normalized number of
parametric SNpar/γpar (light blue dashed line) and bottom quasi-
particles SNbot/γbot (red dashed line) according to Eqs. (45). For
concreteness, we took S = W , γpar = γbot � γtop, ωpar = 1000γpar.
Below the threshold of kinetic instability, SNpar/γpar is defined by
Eq. (45d). Above the threshold, SNpar/γpar is frozen at its value at the
threshold defined by Eq. (40). Nbot is a fraction of N+ according to
Eq. (45c). In its turn, N+ as a function of h is defined by Eq. (45b)
with Npar = N cr

par. Note that Nbot = 0 for h � hcr. Solid lines: the
same, but accounting for the scattering of the bottom quasiparticles
on the parametric ones in the framework of the exponential model
(cf. Sec. V D 3). Here the spectral width of package is Dpar = 15,
giving λmod

0 = 0.26.

range around k0, and Nbot starts growing exponentially accord-
ing to Eq. (39a). The bottom quasiparticles take energy from
the parametric ones as described by the additional damping
frequency �par in the rate Eq. (41a) for the number of para-
metric quasiparticles Npar. As a result, Npar drops back to Ncr

par

and the increment ν+
k0

→ 0. Therefore, Npar becomes frozen at
the level Ncr

par for any h > hcr, see the horizontal dashed line in
Fig. 4.

Substituting in Eq. (45b) Npar = Ncr
par from Eq. (40) and

using Eq. (45d) for h = hcr, we obtain an equation for N+ in
which we assume for simplicity that W = S > 0,

SN+ = ωpar

SNcr
par

[−γpar +
√

γ 2
par + V 2

(
h2 − h2

cr

)]
. (54a)

For small super-criticality over the threshold of the kinetic
instability δh ≡ h − hcr � hcr, one gets from Eq. (54a),

SN+ � SNcr
ωpar

γpar

δh

hcr
. (54b)

One sees from Fig. 4 that Nbot grows sharply just above
hcr as predicted by Eq. (54b): Nbot reaches the level of Ncr

par
(crossing of the blue and red lines) for very small (δh/hcr ) �
γpar/ωpar � 1.

Now, we include the scattering of the bottom quasiparticles
on the parametric ones, as described by the integral term in
Eq. (51). Then Eq. (52) is identical to Eq. (53) upon replace-
ment of ν0 by the mean value 〈νω〉. Due to the linearity of
scattering Eq. (51), the profile of the bottom quasiparticles nω

is independent of their total number Nbot. Instead, it depends
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only on the number of the parametric quasiparticles Npar,
which is constant for h > hcr. Therefore, in the estimation of
�W = WNpar and � � |S|Npar in Eqs. (51) and (48c) we have
to take Npar = Ncr

par. Thus, we conclude that nω and 〈νω〉 are
h-independent for h > hcr.

2. Numerical analysis of the particle rate equation

To extend the nonlinear theory of the kinetic instability
beyond the narrow package approximation, we studied the
rate Eq. (51) numerically. It is convenient to do this by trans-
forming Eq. (51) to the dimensionless form by introducing
τ = γbott , Dpar = �/γbot, x = (ω − ω0)/γbot, and y = (ω̃ −
ω0)/γbot:

∂nx

∂τ
= λxnx + Intx,

Intx ≡
√

2

π

A
Dpar

∫ ∞

0
dy(ny − nx ) exp

[
− (x − y)2

2D2
par

]
.

(55a)

Here, the dimensionless increment is λx = νω/γbot(ω0).
Assuming for concreteness γbot(ω) ∝ ω, i.e., γbot(ω) =
γbot(ω0)ω/ω0, we have

λx = λ0 − x

x0
, λ0 ≡

(
Npar

Ncr
par

)2

− 1,

x0 = ω0

γbot(ω0)
. (55b)

Taking into account Eqs. (51), we estimate

A � ωpar

4πω0

(
W

W̃

)2

, (55c)

which is of the order of unity.
To get more detailed information about nx and λ0, we nu-

merically solve Eq. (55a) together with the S-theory Eqs. (41)
for nω using Dpar = 5, 15, and 45, and taking for concreteness
x0 = 100. Resulting profiles of nx are shown in Fig. 5 by color
solid lines together with their approximate exponential fits,

nx = 1

Dbot
exp

(
− x

Dbot

)
, (56)

shown by dashed lines with matching colors. The values of
λ0 = λnum

0 , corresponding to the stationary conditions, and
Dbot = Dfit

bot for these three values of Dpar are given in the
Table I.

3. Exponential model of the bottom quasiparticles distribution

Based on the results of the numerical solution of Eq. (55a),
we assume that the profile nx has an exponential form (56)
with some yet unknown value Dbot. Under this assumption, we
have two free parameters, λ0 and Dbot. To find them, we need
two relations. The first relation between them comes from the
rate equation for the number of bottom quasiparticles Nbot =∫ ∞

0 nxdx. We integrate the stationary Eq. (55a) with nx given
by Eq. (56) and take into account that the term Intx vanishes

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

FIG. 5. Normalized stationary solutions of Eqs. (55a) nx/n0 for
Dpar = 5, (red line) Dpar = 15, (blue line) and Dpar = 45 (pink line)
with x0 = 100 and A = 1. Respectively, colored dashed lines show
their approximated exponential fit with Eq. (56).

upon integration. Then we have

dNbot

dt
= 〈λx〉Nbot, (57a)

〈λx〉 ≡
∫ ∞

0
λxnx dx = λ0 − Dbot

x0
. (57b)

Obviously, Eq. (57a) describes a steady state if 〈λx〉 = 0, i.e.,

Dbot = x0 λ0. (57c)

The second relation between λpar and Dbot is provided by
the first moment of Eq. (55a). Multiplying this equation by x
and integrating over x from zero to infinity, we find

0 = 〈x λx〉 + 〈x Intx〉, (58a)

〈x λx〉 =
∫ ∞

0
xλxnx dx = −x0λ

2
0 = −D2

bot

x0
. (58b)

To simplifying Eq. (58b) we used Eq. (57c).

TABLE I. The increments λx and the width Dbot for three values
of Dpar. The quantities are listed in lines: (1) Dpar [cf. Eqs. (55)]; (2)
numerically found value of 〈λx〉st = 〈λx〉num, Eqs. (55); (3) 〈λx〉st =
〈λx〉mod, found from the exponential model Eq. (57c); (4) the approxi-
mate width Dfit

bot of exponential fit Eq. (56), shown in Fig. 5 by dashed
lines. (5) Dmod; (6) Dmix

b —“mixed” value of Dbot found by the model
Eq. (57c) in which λ0 is numerically found 〈λx〉num shown in the
line 2.

1 Dpar 5 15 45

2 〈λx〉num, Eq. (55) 0.13 ± 0.01 0.27 ± 0.01 0.46 ± 0.01

3 〈λx〉mod, Eq. (60) 0.13 0.26 0.48

4 Dfit
bot, Eq. (56) 19 ± 5 33 ± 5 46 ± 5

5 Dmod
bot , Eq. (60) 13 26 48

6 Dmix
bot , Eq. (57c) 13 27 48
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With nx given by Eq. (56), the integral (55a) for Intx can be
found analytically

Intx = nx

[
1 + erf

(
x√

2Dpar

)

− exp

( D2
par

2D2
bot

)
erfc

(D2
par − Dbotx√
2DbotDpar

)]
. (59)

Here, erf (z) = 2√
π

∫ z
0 exp(−t2)dt is the Gauss error function

and erfc(z) = 1 − erf (z).
Unfortunately, we cannot find the integral 〈xIntx〉 =∫ ∞

0 xIntxdx analytically. Therefore, we have solved Eqs. (58)
for Dbot,

D2
bot = x0

∫ ∞

0
x nx

[
1 + erf

(
x√

2Dpar

)

− exp

( D2
par

2D2
bot

)
erfc

(D2
par − Dbotx√
2DbotDpar

)]
dx, (60)

numerically. The results for Dbot denoted Dmod
bot with x0 = 100

(blue line) and x0 = 300 (red line) are shown in Fig. 6(b).

4. Comparison of the numerical solution of quasiparticle rate
equation and predictions of the exponential model

To clarify how the solution of Eq. (60), derived in the
framework of the approximations of the exponential model
for the bottom quasiparticle distributions, corresponds to the
“exact” numerical solution of the basic Eqs. (55), we com-
pare corresponding results for the effective increment 〈λx〉,
the characteristic width Dbot and the effective increment λ0

obtained in both ways.
a. Effective increment 〈λx〉. The values of 〈λx〉st =

〈λx〉num, found from numerical stationary solution of
Eqs. (55), are given in line 2 of Table I. Corresponding values
of 〈λx〉mod, obtained from the exponential model Eq. (57c) in
which Dmod

bot is the solution of the model Eq. (60), are listed in
line 3. To get a more general view on the model dependence
〈λx〉 versus Dpar, we have presented these dependencies in
Fig. 6(a) for x0 = 100, blue line, and x0 = 300, red line. Blue
dots with error bars denote values of 〈λx〉num found numeri-
cally for x0 = 100, Dpar = 5, 15 and Dpar = 45. We see a very
good quantitative agreement between these two approaches.

b. Effective width Dbot in the approximate exponential dis-
tribution (56). The numerical profiles, shown by the solid
lines in Fig. 5, where fitted by the exponential function (56) by
finding the parameter Dbot which minimizes the mean-square
deviation. The resulting values of Dbot = Dfit

bot are given by
line 4 in Table I, and the corresponding exponential profiles
are shown in Fig. 5 by dashed lines. We see that although the
fitted profiles describe the “exact” numerical profiles reason-
ably well, there are some systematic deviations between them.
For example, for Dpar = 45, the fitted profile goes above the
numerical one for nx > 0.35 while for nx < 0.35, the fitted
profile goes slightly below the numerical profile. This means
that for nx > 0.35 the current value of Dbot < Dfit

bot = 46,
while for nx < 0.35 the current value of Dbot > Dfit

bot = 46.
Analyzing the current values of Dbot for different x, we es-
timate the error bars as ±5. For completeness, in line 6 of
Table I we also list a “mixed” value of Dbot = Dmix

bot obtained

FIG. 6. Stationary solutions of the exponential model for
(a) 〈λx〉 = 〈λx〉st [Eq. (57b)], and (b) Dmod

bot , as a function of Dpar. The
results for x0 = 100 are shown by solid blue lines and for x0 = 300
by dashed red lines. Blue dots with error bars denote numerical
values 〈λx〉st = 〈λx〉num [Eq. (55b)] for x0 = 100.

from the model Eq. (57c) in which λ0 = λnum
0 . To complete

the comparison, in Fig. 6, we have plotted the “fit” values
of Dbot = Dfit

bot (blue dots with error bars), where the model
dependence Dbot versus Dpar is shown for the same value of
x0 = 100 by the solid blue line.

In all the cases, we see a very reasonable agreement
between the model values of 〈λx〉 and Dpar with the corre-
sponding “exact” values found from the numerical solutions
of the basic Eqs. (55).

As we have discussed above, the scattering of the bottom
quasiparticles on the parametric ones results only in replacing
of ν0 by 〈νω〉 in the rate Eq. (52) for Nbot. In dimensionless
units we need to replace λ0, given Eq. (55b), by 〈λx〉, given in
our exponential model by Eq. (57b):

〈λx〉 =
(

Npar

Ncr
par

)2

− 1 − Dbot

x0
. (61)

As before, the stationarity of the bottom quasiparticles re-
quires 〈λx〉 = 0, which can be achieved in the presence
of scattering for some Npar ≡ N st

par > Ncr
par. Denoting the
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stationary value of 〈μx〉 as 〈μx〉st, we can write

〈μx〉st =
(

N st
par

Ncr
par

)2

− 1 − Dbot

x0
= 0 (62)

or

N st
par = Ncr

par

√
1 + Dbot/x0. (63)

Now, to account for the scattering of the bottom quasiparti-
cles, we need to replace Ncr

p by N st
par > Ncr

par in Eqs. (45b) and
(45d) for the dependence of Npar and Nbot on hV . Considering
for concreteness the case Dpar = 15, we find λmod

0 = 0.26;
see Table I. In Fig. 4 (solid lines), we have plotted the total
number of the parametric Npar and the bottom quasiparticles
Nbot versus amplitude of the parametric pumping hV taking
for concreteness hcr = 10γpar.

We see that for large enough hV the number of the bottom
magnons can essentially exceed the number of the parametric
magnons. In this case, besides the scattering of the bottom
magnons on the parametric ones, one should also account for
the four-magnon scattering in the subsystem of the bottom
magnons and for the Kolmogorov-Zakharov cascade of the
top magnons down to the bottom ones. The corresponding
theory is beyond the scope of the present paper.

VI. EXPERIMENTAL RESULTS, DISCUSSION
AND COMPARISON WITH THEORY

In the preceding sections, we discussed possible regimes
of Bose-Einstein condensation for various intensities of the
energy input. In Sec. III, we studied the BEC scenario under
weak pumping, when quasiparticles (e.g., magnons) near the
bottom of their frequency spectrum are in local thermody-
namic equilibrium. In Sec. IV, we addressed Bose-Einstein
condensation in the case of strong pumping, when quasipar-
ticles are transferred from the pumping region to the BEC
region at the bottom of the frequency spectrum by a step-
by-step cascading Kolmogorov-Zakharov process. Section V
was focused on the situation of ultrastrong pumping, in which
there is a direct transfer of the pumped magnons to the
spectrum bottom due to the process of kinetic instability. In
particular, in Sec. V D, we developed a nonlinear theory of the
kinetic instability that allowed us to find the frequency distri-
bution of the bottom magnons and to estimate the number of
magnons in both the pump and BEC regions as a function of
pumping power.

The kinetic instability regime considered in Sec. V appears
to be the most interesting from both theoretical and practical
points of view. Being the physically most nontrivial regime, it
also allows the formation of the densest magnon condensates
suitable for practical applications. Therefore, in this Sec. VI,
devoted to the experimental results, we focus on the case of
ultrastrong parametric pumping of magnons. Here, we will
compare our theoretical conclusions with both existing and
new experimental data obtained in our work. Our main goal
is to determine the main factors contributing to the transition
of magnons toward the lower part of their frequency spectrum
in YIG films and to analyze their frequency distribution in the
BEC region.

FIG. 7. The spectrum of the fundamental magnon mode in a
5.6-µm-thick YIG film planarly magnetized by a magnetic field
H = 1500 Oe. The spectrum is shown for the wave vector k ‖ H ,
for k ⊥ H , and for several intermediate wave vector directions (gray
curves). The blue arrows and light blue shadow areas illustrate the
process of magnon injection by parallel parametric pumping with fre-
quency ωpump. The frequency of parametric magnons ωpar = ωpump/2
is marked with a dotted line. The red dots indicate the positions of the
frequency minima ωbot(+kbot ) and ωbot(−kbot) occupied by +k- and
−k-BECs of magnons. The two magenta squares show the magnon
pair with the lowest threshold of parametric instability [43].

A. Actual frequency spectrum in YIG films

Most experimental studies of the magnon Bose-Einstein
condensation, as in this work, have been carried out in tangen-
tially magnetized YIG films using parametric pumping and
Brillouin light scattering (BLS) spectroscopy. This is because
microwave parametric pumping is one of the most efficient
methods of magnon injection, and BLS spectroscopy allows
access to the broad frequency–wave-vector domain of the
magnon spectrum. The strong reduction of the BLS signal
upon transition to normal magnetization of a magnetic film
favors the use of tangential magnetization geometry. The low-
damping ferrimagnetic YIG films provide the highest possible
ratio between the spin-lattice relaxation time of the magnon
gas and the thermalization time of the pumped magnons,
which motivates the preference of these films over metallic
ferromagnetic films or Heusler compounds.

To start our analysis of the experiment, we performed
numerical calculations of the magnon frequency spectrum
corresponding to our experimental conditions, i.e., in a
5.6-µm-thick YIG film tangentially magnetized by the mag-
netic field H = 1500 Oe (see Fig. 7). This spectrum qualita-
tively corresponds to the spectra of all magnetic films with
thicknesses ranging from a few microns to tens of microns,
widely used in experimental studies of kinetic instability and
Bose-Einstein condensation of magnons. In an unbounded
film, the spectrum of magnon modes is discrete in the direc-
tion z normal to the film plane and continuous in its plane.
Magnons condense at the lowest-frequency (fundamental)
mode with the homogeneous or quasihomogeneous distribu-
tion of dynamical magnetization over the film thickness. This
mode ω(k‖, k⊥, kz = 0) is shown in Fig. 7.

Unlike the spectrum presented in Fig. 1, the spectrum
of magnons in tangentially magnetized films is strongly
anisotropic, being very different for k = k‖ ‖ H (lower part
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of the spectrum, magenta curves), and for k = k⊥ ⊥ H (upper
part, magenta curves). Gray curves show several intermediate
directions of in-plane wave vectors k = (k‖, k⊥, kz = 0). It is
remarkable that for k‖ ‖ H the spectrum has two equivalent
minima with k‖ = ±kbot (with kbot ≈ 4.5 × 104 cm−1). The
red dots indicate the positions of these frequency minima
ωbot(+qbot) and ωbot(−kbot) occupied by +k- and −k-BECs
of magnons.

Blue arrows and light blue shadow areas illustrate the
process of magnon injection by parallel parametric pumping
leading to filling by parametric magnons the entire surface
ω(k) = ωpump/2 for large pumping power [32].

Despite the significant difference between the spectra pre-
sented in Figs. 1 and 7, the qualitative results obtained in the
previous sections remain valid. Both cases can be described
by the same Gross-Pitaevskii equations with the position of
the frequency minima properly rescaled, as well as the scale
of wave vectors in their vicinity. The theory developed for the
isotropic dispersion law (1a) can be easily generalized to the
case of the real spectrum of a YIG film shown in Fig. 7. The
main reason is that the processes of BE condensation occur
in each frequency minimum independently and practically
identically, as is confirmed by our experiments. The number
of quasiparticles near each minimum is approximately equal,
N+

tot ≈ N−
tot and each of them (and not only their sum) is an

integral of motion [44].
For example, in the quasiequilibrium regime under weak

pumping, discussed in Sec. III, one should replace the simple
Eqs. (11a) and (12) for E

3D

tot and N
3D

gas obtained for the isotropic
dispersion law (1a) with a sum of two contributions, obtained
near each minimum of the “realistic in YIG” frequency spec-
tra. In this case, we do not have an equally simple expression,
and the integration should be performed numerically for the
actual frequency spectrum. However, the qualitative result
that BEC occurs only if the wave-number localization of the
quasiparticle influx kf is below some critical value kcr, which
is independent of the value of f , still holds. Similarly, in the
case of strong pumping, we cannot obtain analytical results
in the k ∼ ±k0 regions for the values and direction of the
energy and number of particle fluxes for the “realistic in YIG”
dispersion law. Nevertheless, for large enough k � k0, when
the exchange interaction dominates, the quadratic dispersion
law (1a) is recovered, and our results from Sec. (IV) are valid
directly. In this case, the particle flux goes down to the region
of small k and then separates into two equal fluxes going
to each minimum separately. Most of our theoretical results
for the case of ultrastrong pumping are not sensitive to the
particular form of the dispersion law and, as we will see below,
can be directly compared with experiments.

B. Experimental procedure

The experiments were performed using samples with a
YIG film of a thickness 5.6 µm and 6.7 µm. All samples were
grown by liquid-phase epitaxy in (111) crystallographic plane
on a gallium gadolinium garnet substrate.

To detect the magnons, we used Brillouin light scattering
spectroscopy that allowed us to obtain the frequency-, wave-
vector-, space-, and time-resolved spectra. It was equipped
with electromagnetic parametric pumping circuits.

FIG. 8. Schematic setup of the wave-vector-resolved BLS ex-
periment. The probing laser beam is focused on the parametrically
pumped area of the YIG sample by an objective lens. The laser
light incidence angle �q‖ is steered using a combination of three
dielectric mirrors mounted on a rotary stage (not shown), allowing
for a change in the incident angle from −90◦ to 90◦. The plane of
incidence is oriented along the direction of the bias magnetic field.
Therefore, the probed magnon wave vectors are also oriented in the
same direction. Light inelastically scattered by magnons propagates
along the backward path and is directed using a beam splitter (not
shown) to the Fabry-Pérot interferometer for frequency analysis and
photon counting.

The experimental setup is shown schematically in Fig. 8.
To achieve a large amplitude of the pumping magnetic field
and, thus, a high magnon density, microwave pumping is
supplied using half-wavelength microstrip resonators with a
quality factor of about 25. The samples were placed in the
middle of the resonators in the antinode of the microwave
magnetic field. Both 50-µm- and 100-µm-wide microstrip
resonators, with resonance frequencies of 13.2, 13.6, and
14.4 GHz were utilized. The pumping was performed with
1 µs long pulses with the peak power of up to 40 W. A repeti-
tion interval of more than 200 µs ensured that the spin system
is brought into equilibrium and that the thermal stability of the
sample is maintained from pulse to pulse. The bias magnetic
field H was oriented perpendicular to the longitudinal axis of
the resonators in the plane of the samples.

A probing laser beam of 532 nm wavelength is focused
onto a spot with a diameter of about 20 µm in the paramet-
rically pumped area of the YIG films. By setting the beam
incidence angle �k‖ in a plane perpendicular to the film sur-
face and oriented along the H bias field (see Fig. 8), one can
selectively detect magnons with wave vectors k‖ [45]. Varying
�k‖ from 0 to ±58◦ allows us to detect magnons with wave
vectors ranging from 0 to ±2 × 105 cm−1 with a resolution of
about 1.5 × 103 cm−1 [46].

In the backward Brillouin scattering geometry used, the
component of the wave vector of the probing light lying in
the film plane is reversed due to interaction with magnons.
The component perpendicular to the film plane reverses di-
rection by elastic reflection [43]. Thus, it is necessary to
ensure efficient and spatially homogeneous reflection of the
probing beam after it passes through the film. This is achieved
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by covering the surface of the 6.7-µm-thick films facing the
pump resonator with a thin dielectric mirror coating (<1 µm)
[45–47]. In the experiments with 5.6-µm-thick YIG films,
light reflection occurred from the surface of the microstrip
pumping resonator, which was in direct contact with the YIG
film [43,48]. The scattered light is sent to the Fabry-Pérot
interferometer to analyze the Stokes and anti-Stokes spectral
components, whose frequency shifts are equal to the magnon
frequencies and whose intensities are proportional to the cor-
responding magnon densities.

A temporal analysis of the magnon dynamics with a reso-
lution of up to 400 ps is achieved by recording the moments
of detection of the scattered photons relative to the moment of
application of the pump pulse [46,49]. The spatial analysis
is realized by moving the sample together with the pump
resonator relative to the BLS measurement point [46,49].

The automation system thaTEC:OS (THATec Innovation
GmbH) [50] was used to control the experimental setup and
to collect data.

C. Spatial distribution of bottom magnons
at various magnetic fields

Before proceeding to the experimental verification of the
obtained theoretical results, we need to clearly define the
region of experimental parameters at which one of the two
mechanisms of the transition of parametric magnons to the
bottom of the frequency spectrum prevails: the Kolmogorov-
Zakharov cascade described in Sec. IV and the kinetic
instability of bottom magnons analyzed in Sec. V. For this
purpose, we started with studying the spatial distribution of
the bottom magnons in the pumping area at different magnetic
fields H .

In these measurements, we employed a 100-µm-wide mi-
crostrip pumping resonator and a 6.7-µm-thick YIG film. The
dielectric mirror coating of this sample allowed us to make
measurements not only directly above the resonator but also
in the surrounding regions of the YIG film. Owing to this
mirror coating, the intensity of the back-scattered light is
independent of the reflectivity of the microstrip material and
its dielectric substrate and thus reflects the magnon density
distribution well. The pumping frequency, determined by the
length of the microstrip resonator, was 14.4 GHz. The maxi-
mum available pumping power in our experiment was applied,
which was 40 W.

The incident angle �k‖ was set to 11◦, which corresponded
to the detection of magnons with wave numbers around
4.5 × 104 cm−1. Therefore, only magnons from the bottom
part of the spectrum (see Fig. 7) were registered. The spatial
distribution of the BLS intensity plotted in Fig. 9 consists
of the integrated anti-Stokes parts of two different spectra of
inelastically scattered light measured for angles �k‖ = ±11◦.
Thus, the ±k bottom magnons are shown simultaneously in
this figure.

At the longitudinal axis of the resonator, where the mi-
crowave pumping magnetic field is parallel to the bias field H ,
the conditions for the parallel pumping [51,52] are realized. At
the edges of the resonator, where the pump field is perpendic-
ular to the field H , perpendicular pumping occurs [51,52]. In
the latter case, the direct pumping source is not the external
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FIG. 9. Spatial distribution of the bottom magnon density across
a 100-µm-wide microstrip pumping resonator measured for different
magnetizing fields H . The pumping frequency is 14.4 GHz.

electromagnetic field itself but the dynamic magnetization
nonresonantly driven by this field.

At a field H = Hcr, corresponding to the minimal threshold
of parametric instability, a blue region of low concentration of
near-bottom magnons is well visible above the resonator. In
this case, under the conditions of parallel pumping, parametric
magnons with relatively small wave vectors k⊥ ⊥ H and a
frequency close to the ferromagnetic resonance frequency are
excited, as schematically shown in Fig. 7 by the two magenta
squares. For this magnon group, the process of kinetic insta-
bility is forbidden by the laws of conservation of energy and
momentum [22,35]. The BLS intensity increases for lower
and higher magnetic fields since the kinetic instability process
allowed here leads to a higher magnon density at the bottom
of the spectrum.

At the same time, for perpendicular pumping, when
magnons with large wave vectors directed at an angle of 45–
55◦ to H are excited [51], there is no such strict prohibition.
Consequently, no such significant difference in the bottom
magnon density is observed at the sides of the microstrip
resonator over the entire range of the bias magnetic fields.
Moreover, the magnons excited by perpendicular parametric
pumping propagate at nonzero angles to the resonator axis
over quite considerable distances, thus expanding the spatial
region of the overpopulated magnon gas. As a result, the area
populated by bottom magnons born from the kinetic instabil-
ity process is also expanded.

The conducted measurements allow us to determine the
regions of the film in which the physical mechanisms of
injection, thermalization, and spectral transfer of magnons
analyzed in the previous sections are realized in the best and
simplest way. Based on our findings, we can distinguish re-
gions with parallel and perpendicular pumping of parametric
magnons. Going forward, we will concentrate on the most
effective and well-researched case of parallel pumping. In
doing so, we avoid the need to take into account the spatial
transport of parametric magnons and the associated effective
damping.
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FIG. 10. Panel (a): Measured parametric instability threshold (red squares) compared to the BLS signal from the bottom of the magnon
spectrum (blue empty circles). Areas with blue shading, in which KI processes are allowed by the momentum and energy conservation laws,
are marked as the “Kinetic instability area 1 and 2.” Panels (b), (c), and (d) show the temporal dynamics of BLS signals from bottom magnons
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D. From kinetic instability to BEC

In the previous section, we observed a distinct forbidden
area, surrounded by two regions of the allowed kinetic insta-
bility at lower and higher magnetic fields. To delve deeper
into this phenomenon and to reveal the connection between
the processes of kinetic instability and Bose-Einstein conden-
sation, we have conducted an extensive experimental analysis
of its properties under parallel parametric pumping.

To increase the amplitude of the pumping magnetic field,
we used a resonator of 50-µm width. The BLS measurements
were carried out in the 5.6-µm-thick film at a point on the lon-
gitudinal axis of this resonator, i.e., under the exclusive action
of parallel pumping. The pumping frequency of 13.6 GHz was
determined by the resonator geometry. The obtained results
are presented in Fig. 10.

An analysis of the conservation laws in thin YIG films per-
formed in Ref. [35] for the same experimental conditions as in
the current work shows that the kinetic instability is allowed in
two ranges of magnetic field: Area 1—from H1,min ≈ 1100 Oe
to H1,max ≈ 1600 Oe; and Area 2—from H2,min ≈ 1750 Oe to
H2,max ≈ 2400 Oe.

In Fig. 10(a), the blue empty circles show the depen-
dence of the parametric instability threshold hth, introduced by
Eq. (45e), on the magnetic field. We see that in area 1, below
Hcr = 1700 Oe, the value of hth is practically independent
of H . Bearing in mind that with good accuracy ω0 ∝ H and
that the wave vectors of the parametric magnons kpar satisfy
the relation ωkpar = ωpump/2 decreasing to zero when H ap-
proaching Hcr, we conclude that in this area the damping of
parametric magnons γk ∝ hth is practically independent of k.
For many reasons not discussed here, the relationship between

γk and hth in area 2 is more complicated [51], and here we
leave the question about k-dependence of γk for H > Hcr

open.
In the same Fig. 10(a), we also show by red squares the

magnetic field dependence of the BLS signal intensity pro-
portional to the total number of bottom magnons. It can be
seen that in areas free from the kinetic instability, the number
of the BLS counts is about 250, while with the KI active
it jumps up to about 1800. As seen from the comparison
with Fig. 9, this dependence correlates well with the density
of bottom magnons on the magnetic field measured on the
longitudinal axis of a wide (100 µm) pumping resonator. The
difference in the value of the critical field Hcr in Figs. 9 and
10(a) is due to the difference in the frequencies of parametric
pumping. We interpret these observations as evidence that the
dominant contribution to the bottom magnons (above 80%)
comes from the kinetic instability and only a small part (below
20%) originates from the cascade processes.

The temporal dynamics of BLS signals from the bottom
magnons are shown in the presence [see Figs. 10(b) and
10(d)] and absence [see Figs. 10(c)] of the kinetic instability
process. In the latter case, one finds a significantly lower
density of the bottom magnons during the pumping action and
a jump-like increase in their density after turning off. This
jump is the result of the effective population of the lowest
energy states by the Kolmogorov-Zakharov scattering cascade
after the pumping field is turned off and the disappearance of
frequency-localized dense groups of parametric magnons.

A similar but smaller jump in the magnon density can
be seen in Fig. 10(d). In this case, the parametric magnons
are excited closer to the bottom of the spectrum, and the
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Kolmogorov-Zakharov cascade plays a role comparable to the
kinetic instability process.

Concluding, we have to stress that when we compare our
theoretical results with experimental findings, we must keep in
mind that the pure impact of either the Kolmogorov-Zakharov
cascade or the kinetic instability on particle transfer down
to the BEC region is not fully realized. Instead, what we
typically observe is a combination of these two mechanisms.

E. Frequency–wave-number distribution of magnons

In Secs. VI C and VI D, we presented qualitative arguments
in favor of the important role of the kinetic instability process
in transporting parametrically injected magnons to the lower
end of their frequency spectrum. In this section, we share
our experimental data on the frequency–wave-vector magnon
distribution under microwave pumping. The analysis of this
distribution reveals several specific nonlinear processes, in-
cluding the four-wave scattering process (32) responsible for
the kinetic instability. This gives us greater confidence that
we are dealing with the kinetic instability phenomenon in our
experiments, allowing us to compare it with our theory given
in Sec. V.

Figure 11 shows the BLS intensity spectra I (ω, k‖) of
magnons with wave vectors k = k‖ ‖ H . I (ω, k‖) is propor-
tional to the density of the corresponding magnons n(ω, k‖).
The spectra I (ω, k‖) were measured during microwave pump-
ing at 13.2 GHz in a YIG film magnetized in plane by
the field H = 1885 Oe. The solid red line shows the calcu-
lated magnon frequency spectrum ωk‖ , which has two minima
ωbot ≡ mink‖ {ωk‖ } ≈ 4 × (2π ) GHz at k‖ = ±kbot with kbot ≈
4 × 103 cm−1. The two brightest spots in the vicinity of the
bottom of the magnon spectra ωbot, ±kbot originate from the
“bottom” magnons associated with the left and right BEC
states. They are spread around the bottom of the spectrum
due to the scattering of the bottom magnons on the parametric
ones ω(kbot + κ1) + ω(kpar + κ2) = ω(kbot + κ3) + ω(kpar +
κ4), which was discussed in Sec. V. Here, κ1 + κ2 = κ3 + κ4

and κ j � kbot.
Above these brightest spots we see three spots with ω ≈

2ωbot and kleft ≈ −2kbot, kcenter ≈ 0, and kright ≈ 2kbot. They
are related to the confluence of two bottom magnons, as
shown by green arrows in Fig. 11(a):

(i) left spot, ω−k‖ + ω−k‖ ⇒ 2ωbot and k = −2kbot;
(ii) central spot, ω−k‖ + ω+k‖ ⇒ 2ωbot and k = 0;
(iii) right spot, ω+k‖ + ω+k‖ ⇒ 2ωbot and k = 2kbot.
Note that neither ω = 2ωbot with k = ±2kbot nor ω =

2ωbot with k = 0 are eigenmodes of the YIG film in our
magnetization geometry. Therefore, what we see are the off-
resonant waves driven by an appropriate nonlinearity, i.e.,
virtual magnons, called “double-bottom virtual magnons” in
Ref. [53].

In Fig. 11(a), the BLS spectra I (ω, k‖) are supplemented
by two down-pointing orange arrows showing the process
of parametric pumping by the external quasihomogeneous
microwave field with wave vector kpump ≈ 0 and frequency
ωpump. Precisely at this position, we see a rather bright spot,
indicating virtual “pumped” magnons [53]. At the same time,
at the frequency of the parametrically pumped real magnons
ωpar = ωpump/2 we see no BLS response because the wave

FIG. 11. Frequency- and wave-vector-resolved BLS intensity
spectrum of real and virtual magnons. The spectra were measured
during the action of 13.2 GHz microwave pumping on a YIG film
magnetized in plane by the field H = 1885 Oe. The BLS intensity is
proportional to the magnon density. The experimental intensity spec-
trum is shown together with the calculated magnon dispersion curve
and diagrams showing the relevant quasiparticle scattering processes
in the system: (a) Orange arrows show the process of parametric
pumping. The signal of virtual “pump” magnons is visible at the
pumping frequency ωpump. (b) The four-magnon kinetic instability
processes leading to the appearance of virtual “top” magnons at ωtop

frequency are shown by pairs of solid and dashed blue and cyan
arrows. (c) Virtual “double-bottom” magnons at the frequency 2ωbot

arise due to the confluence of the bottom magnons at ωbot. Upward
green arrows show the relevant confluence processes.

numbers of the parametric magnons are pretty large and lie
outside the sensitivity range of our BLS setup.

Two more spots visible at ωtop = 2ωpar − ωbot and ktop =
±kbot indicate magnons with frequency of the top magnons
involved in the kinetic instability process [see Eq. (32)].

If so, then the top magnons must have wave vectors ktop =
k1 + k2 ∓ kbot, where k1 and k2 are the wave vectors of the
parametric magnons with ω(k1) = ω(k2) = ωpump/2. Assum-
ing for a rough estimate that ωtop > ωbot, we conclude that
ktop � k1 and ktop � k2, meaning that the top magnons lie
outside the sensitivity region of our BLS setup, i.e., they are
invisible in Fig. 11. The origin of the two spots in Fig. 11(b)
at frequency ωtop = ωpump − ωbot, which is consistent with
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Eq. (32), but with wave vectors ktop = ±kbot was clarified in
Ref. [53]. It was stressed that the theory of kinetic instability is
formulated in the framework of the weak-wave kinetic equa-
tion, which assumes weak correlations of the wave phases. As
a result, the scattering (43c) of real magnons has a stochastic
nature and appears only as the second-order perturbation of
the four-wave interaction amplitudes W 3,4

1,2 , Eq. (24b). Nev-
ertheless, in our particular case with a large population of
parametric and bottom magnons, there are strong, externally
determined, phase correlations of the scattering waves. In
particular, the full phase correlation in the pairs of paramet-
ric waves with ±kpar arises due to their interaction with the
space-homogeneous pumping field [32]. Given this correla-
tion, |〈akpar a−kpar exp[iωpar]〉| = 〈|akpar |2〉 ≡ nkpar . This allows
us to consider a pair of parametric magnons (akpar a−kpar ) as
a “single,” coherent wave object with the frequency 2ωpar =
ωpump and phase being the sum of the phases of the waves
composing the pair. Therefore, four-wave scattering (43c)
with k1 = −k2, k3 = ±kbot, due to its dynamic nature, ap-
pears much stronger than stochastic scattering with k1 �= −k2,
being now proportional to the first power of the interaction
amplitude W 3,4

1,2 , and producing the driving force [53]

F =
∑
kpar

T
kpar,−kpar

±kbot,∓kbot
a∗

2akpar a−kpar . (64)

This force has the same frequency (32) as that of real top
magnons [see Eq. (61)] but with the different wave vector
qtop = ∓qbot. This force excites off-resonant magnons, seen
in two bright spots, as discussed earlier.

F. Pumping power dependence of the parametric and bottom
magnon numbers

In Fig. 4, we plot theoretical predictions for the dependence
of the total number of parametric and bottom magnons, Npar

and Nbot as a function of the relative amplitude of the mi-
crowave pumping field hV

γpar
= h

hth
. Our theory considers only

the kinetic instability mechanism of the transfer of paramet-
ric magnons to the lower magnon region and does not take
into account the mechanism of the step-by-step Kolmogorov-
Zakharov cascade. Therefore, for the comparison of theory
and experiment, we have to choose the range of bias magnetic
fields H , where kinetic instability is allowed, see Fig. 10. In
the range of lower magnetic fields H , denoted “kinetic insta-
bility area 1,” the wave numbers of the parametric magnons
are large and cannot be detected by BLS spectroscopy. For
this reason, we have chosen for the comparison the magnetic
field range designated as “kinetic instability area 2,” taking for
the sake of concreteness H = 1885 Oe as in Fig. 11.

In Fig. 12, one can see the numbers of BLS counts Npar

and Nbot obtained from the parametric and bottom magnons at
different pumping supercriticalities h/hth and represented by
blue circles and red squares, respectively. Assuming a smooth
dependence of Npar and Nbot on h/hth, we used the proce-
dure of interpolating the experimental data by a cubic spline,
which resulted in the blue and red solid lines. Moreover, we
used the available data to extrapolate the desired dependence
of Npar and Nbot on h/hth to the region of low pumping
powers, where the low signal-to-noise ratio did not allow for
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FIG. 12. Dependence of the number of BLS counts from the
parametric magnons Npar (blue circles) and that from the bottom
magnons Nbot (red squares) on the pumping field amplitude h nor-
malized by the parametric instability threshold hth. H = 1885 Oe.
The pumping frequency is 13.2 GHz. The solid red and blue curves
represent an interpolation and an extrapolation of the corresponding
experimental data using cubic splines. The dashed lines are extrap-
olations of the experimental dependencies in the region of relatively
low levels of parametric pumping.

experimental observations. These results are shown by blue
and red dashed lines. By finding the value of h, at which
Npar → 0, we accurately estimated the threshold value hth for
parametric instability. This value was used to normalize the
scale of the abscissa axis in Fig. 12. Since the sensitivity of
the BLS setup to parametric and bottom magnons is different,
the ratio Npar/Nbot does not reflect the ratio of their occupa-
tion numbers Npar/Nbot. However, these experimental curves
correctly reproduce the dependence of Npar and Nbot on h in
units of the threshold field of parametric instability.

A comparison of the theoretically predicted dependencies
of Npar and Nbot on h/hth shown in Fig. 4 with the experimental
results shown in Fig. 12 demonstrates a fairly good qualitative
agreement. This is a strong argument for the validity of our
nonlinear theory of kinetic instability, which evidences that
this theory captures the essential physical mechanisms gov-
erning the phenomenon.

At the same time, the experimental data shown in Fig. 12
does not demonstrate a pronounced saturation of the depen-
dence Npar(h/hth ), as predicted by the theory. This may be due
to some secondary effects, such as the relatively small con-
tribution of the Kolmogorov-Zakharov cascade to the particle
flux towards lower frequencies, which is not yet considered
in our theory. Another possible origin of the discrepancy is a
change in the magnon excitation region caused by a downward
frequency shift of the magnon spectrum due to a decrease
in magnetization at high pumping powers and a consequent
increase in the efficiency of parametric pumping.

G. Time evolution at different magnetic fields

In Secs. VI C, VI D, and VI E, we theoretically analyzed
different aspects of the behavior of bottom magnons during
parametric pumping. We concluded that the kinetic instability
essentially contributes to the transfer of magnons to their
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FIG. 13. Distributions of the bottom magnons by wave numbers at different time delays after pumping was turned on. Panels (a), (b), and
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time axis). To improve the signal-to-noise ratio, we integrated the spectra in the time window of 100 ns and over the entire frequency range of
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frequency minimum. In addition, the nonlinear kinetic insta-
bility theory developed in Sec. V D also accounts for the scat-
tering of the bottom magnons on the parametric magnons and
shows that this scattering leads to a broadening of the near-
bottom magnon distribution in the vicinity of kbot, ωbot. If this
scattering ceases, we expect bottom magnons to evolve into
BECs, narrowing their frequency and wave vector spectra.

Fortunately, the theory of kinetic instability suggests how
to test this statement experimentally: one can study the evo-
lution of the distribution of the near-bottom magnons over
frequencies and wave vectors after turning off the parametric
pumping. The frequency of parametric magnons is higher than
that of the bottom magnons. Therefore, we can expect that
their relaxation γpar in the linear regime is larger than the lin-
ear relaxation γbot of the bottom magnons. When the number
of parametric magnons is very large, the kinetic instability
opens a very efficient additional dissipation channel for para-
metric magnons. This means that even if, in the linear regime,
the relaxation rates of parametric and bottom magnons are
approximately equal, in the nonlinear regime, the relaxation
rate of parametric magnons is much larger than that of the
bottom magnons. Consequently, after pumping is turned off,
there is a period during which parametric magnons are practi-
cally absent, while bottom magnons continue to exist, and the
expected narrowing of their spectrum can be detected.

According to Ref. [54], the distribution of magnons in a
system has been significantly narrowed down, as measured
by detecting electromagnetic radiation in the frequency do-
main. The resolution of BLS spectroscopy is not fine enough
to record this effect, but we have a good resolution in the
wave-number domain, as shown in Fig. 11. By integrating
the frequency distribution of the bottom magnons, in Fig. 13
we plotted the BLS intensity versus the magnon wave number
k‖ and time for different magnetic fields after turning on the
parametric pumping.

Examining the data, we can see that during the first 1 µ s
of the pumping pulse, the peak of the distribution of bottom
magnons in k-space has a relatively constant and broad shape.
However, after the pumping is switched off, this peak quickly
narrows, which aligns with our theoretical expectations.

Eventually, the peak width reaches the limit of the wave-
number resolution.

Figure 13(a) with H = 1200 Oe corresponds to region 1 of
the kinetic instability, see Fig. 10, while Fig. 13(c) with H =
1900 Oe corresponds to region 2 of the kinetic instability. In
these cases, the parametric magnons are transferred directly to
the bottom of the spectrum.

In Fig. 13(b), where H = 1500 Oe, the Kolmogorov-
Zakharov cascade plays an important role in the magnon
distribution process. This results in a significant portion of
magnons being distributed between the parametric and the
bottom parts of the k-space. When the pumping is switched
off, these magnons continue to move towards the bottom,
creating an intense hump that is clearly visible in Fig. 10(b).
Another perspective on the BLS spectra is shown in Fig. 14.
We now integrated them over wave number, obtaining fre-
quency spectra for different magnetic fields and times after
switching off the parametric pumping. In Fig. 14(a) we plot
the results for the small magnetic field H = 1200 Oe. The
value of ωbot/(2π ) ≈ 3.5 GHz is shown as a vertical black
dashed line, while 2ωbot/(2π ) is shown as a vertical black
dotted line. One sees an intense peak of the bottom magnons
and a much smaller peak (by about three orders of magni-
tude) of the double-bottom virtual magnons. The parametric
magnons with the frequency ωpar = ωpump/2, shown by the
vertical red dotted line, are not seen in this panel. They have
large wave numbers that are outside of the accessible zone for
our BLS setting. For a larger magnetic field, the wave num-
bers decrease and we see peaks of the parametric magnons
in Figs. 14(b) and 14(c). For the largest magnetic field H =
2050 Oe, shown in Fig. 14(d), the frequency of the parametric
magnons is very close to the very intense peak of the bottom
magnons. Therefore the peak of the parametric magnons just
slightly disturbs the peak of the bottom magnons.

In Figs. 14(b)–14(d) for H > 1200 Oe, the frequency 2ωbot

is outside the accessible zone and the peak 2ωbot seen in
Fig. 14(a) has disappeared. Instead, we see a peak at ωtop that
is exactly at the required position ωpump − ωbot. This is another
confirmation that the kinetic instability essentially contributes
to the population of the bottom magnons.
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FIG. 14. Frequency spectra at varios bias magnetic fields and
varios times after pumping is switched off. The pumping frequency
is 13.2 GHz.

As an additional support for the kinetic instability picture,
we note the absence of a continuous magnon distribu-
tion between ωpar and ωbot, expected in the case of the
Kolmogorov-Zakharov step-by-step cascade.

In summary, the experimental findings and discussions pre-
sented in this section lead us to conclude that the primary
cause of the transfer of magnons from the region of their
parametric pumping with the frequency of ωpar = ωpump/2 to
the bottom of their frequency spectrum ωbot is the kinetic in-

stability discussed in Sec. V. The experiments confirm that the
main mechanism that limits the number of bottom magnons is
their feedback effect on the parametric magnons, as described
in Section Sec. V B. Additionally, the experiments confirm
that the scattering of the bottom magnons on parametric ones,
described in Sec. V D, plays the leading role in widening the
bottom magnons’ distributions.

VII. SUMMARY

We presented a systematic and comprehensive description
of the physical mechanisms leading to the Bose-Einstein con-
densation of quasiparticles. Unlike the atomic BEC forming in
the thermodynamic equilibrium conditions, the quasiparticles
condense under conditions of flux equilibrium and represent a
nonlinear wave system with energy pumping and dissipation.
We find the conditions under which Bose-Einstein condensa-
tion of quasiparticles is possible. The first and obvious con-
straint that we took into account is the conservation (or almost
complete conservation) of the total number of quasiparticles
in the nonlinear processes. This means that the four-wave scat-
tering processes 2 ⇔ 2 must dominate over the three-wave
processes near the bottom of the frequency spectrum.

We started in Sec. III, with the pumping weak enough
to keep the wave system close to the thermodynamic equi-
librium. In this case, it is necessary to simply balance the
pumping and damping rates of the total number of quasi-
particles Ntot and the total energy in the system, giving the
conditions under which the total number Ntot of quasiparticles
in the system exceeds the number of quasiparticles Ngas. The
excess NBEC = Ntot − Ngas can occupy excited energy levels
and create a BE-condensate at the zero energy level.

The situation with strong pumping is less straightforward.
It is necessary to consider the kinetic wave equation to de-
scribe the transport of quasiparticles from the pumping range
to the lower part of the wave frequency spectrum. In Sec. IV,
we have done this under the assumption of the scale invariance
of the system. In this case, analytic solutions of the kinetic
equation are available. For the 2 ⇔ 2 scattering, the kinetic
equation can have two differently oriented solutions for the
energy and particle fluxes. We have specified the conditions
under which the particle flux is oriented toward small k, al-
lowing the creation of a BE-condensate.

An even more complicated scenario is realized by a super-
strong injection of quasiparticles into a narrow frequency
range, for example, by high-power parametric pumping. In
this case, the relaxation rate of quasiparticles becomes neg-
ative, first at small wave vectors k at the lower part of the
frequency spectrum. This leads to the phenomenon of expo-
nential growth of the number of quasiparticles with small k,
known as kinetic instability. In Sec. V, we developed a non-
linear theory of kinetic instability that considers the feedback
of unstable bottom quasiparticles on their source—the para-
metrically excited quasiparticles. This theory also accounts
for the 2 ⇔ 2 scattering of bottom quasiparticles on paramet-
ric quasiparticles, which broadens the bottom quasiparticle
packet.

In Sec. VI, we presented an experimental study of BE
magnon condensation in yttrium iron garnet thin films using
Brillouin light scattering spectroscopy. The theoretical and
experimental results are in qualitative agreement. Therefore,

014301-21



VICTOR S. L’VOV et al. PHYSICAL REVIEW B 109, 014301 (2024)

we conclude that, if allowed by conservation laws, the kinetic
instability serves as the dominant source of bottom magnons
in the vicinity of their BE-condensation points, and that the
nonlinear theory of kinetic instability developed in Sec. V
describes the main physical mechanisms of this process quite
well. The above comparison of our analytical findings and
experimental observations opens new directions for further
studies of this phenomenon.
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