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Short-range interactions are irrelevant at the quasiperiodicity-driven Luttinger liquid to
Anderson glass transition
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We show that short-range interactions are irrelevant around gapless ground-state delocalization-localization
transitions driven by quasiperiodicity in interacting fermionic chains. In the presence of interactions, these
transitions separate Luttinger liquid and Anderson glass phases. Remarkably, close to criticality, we find
that excitations become effectively noninteracting. By formulating a many-body generalization of a recently
developed method to obtain single-particle localization phase diagrams, we carry out precise calculations of
critical points between Luttinger liquid and Anderson glass phases and find that the correlation length critical
exponent takes the value ν = 1.001 ± 0.007, compatible with ν = 1 known exactly at the noninteracting critical
point. We also show that other critical exponents, such as the dynamical exponent z and a many-body analog of
the fractal dimension are compatible with the exponents obtained at the noninteracting critical point. Noteworthy,
we find that the transitions are accompanied by the emergence of a many-body generalization of previously
found single-particle hidden dualities. Finally, we show that in the limit of vanishing interaction strength, all
finite-range interactions are irrelevant at the noninteracting critical point.
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I. INTRODUCTION

There has been a continued interest in the effects of
quasiperiodicity on quantum many-body systems thanks to
their experimental accessibility in ultracold atoms and trapped
ions [1–10] and most recently moiré materials [11]. From a
theoretical point of view, the effects of interactions on Ander-
son insulating ground states is also of paramount importance
in the context of many-body localization, where random and
quasiperiodic systems have important and fundamental differ-
ences that are currently under intense scrutiny [12–15]. Of
paramount importance is understanding the nature of such
many-body localization phase transitions that take place at
finite energy density far away from the ground state [16–24].
However, even in the limit of the ground state, the nature of the
universality class of the interacting quasiperiodic electronic
glass transition has remained poorly understood.

A great deal of understanding has been achieved in
noninteracting quasiperiodic systems thanks to rigorous re-
sults on the paradigmatic Aubry-André model [25–28],
where an energy-independent delocalization-localization tran-
sition takes place, and on its generalizations to phase
diagrams that contain mobility edges and/or critical phases
[29–35]. However, the interplay between quasiperiodicity and

interactions has been less explored. Typically, the studies on
this interplay are in the context of many-body localization,
for highly excited states in the middle of the many-body
spectrum [16–24]. An equally interesting direction is the
study of ground-state localization properties [14,15,28,36–
44]. Deep enough in the localized phase, upon adding nearest-
neighbor interactions to Aubry-André model, the ground state
remains localized, giving rise to an Anderson glass (AG)
phase [28,37,40,45]. On the other hand, at weak interaction
strength the Luttinger liquid (LL) phase is stable towards
the inclusion of a sufficiently weak quasiperiodic potential
[40,46]. The gapless ground-state delocalization-localization
transition therefore persists in the presence of interactions,
corresponding to a transition between the LL and AG phases.
The critical properties of the LL-AG transition were studied in
detail for the noninteracting Aubry-André model [27,28,47],
and it was proposed in Ref. [28] that nearest-neighbor re-
pulsive interactions may be irrelevant at the critical point.
In more generic interacting models beyond the paradigmatic
Aubry-André model, the ground-state localization properties
remain largely unexplored.

In this paper we show that interactions are irrelevant
around quasiperiodicity-driven LL-AG transitions for a broad
class of noninteracting and interacting generalizations of
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FIG. 1. Quantum phase transition between Luttinger liquid (LL)
and Anderson glass (AG) phases. The variance of the position
operator λ2

xx , as given in Eq. (3) and computed using open bound-
ary conditions for different system sizes N , is plotted versus the
quasiperiodic potential strength V , for the model in Eq. (1) with
V2 = 0.25, t2 = 0.2,U = 0.5, and U2 = 0.4. The scaling of the φ-
averaged charge gap with system size [see Eq. (4) and Fig. 4(c) for
definition and additional details] in the LL phase (for V = 1.65)
and at the critical point (indicated by the vertical dashed line) is
shown in the inset, unveiling a non-Lorentz-invariant critical point
(with dynamical critical exponent z > 1). The blue and green dashed
lines show the scaling behavior known for the noninteracting Aubry-
André model, respectively, at extended and critical points, which
is compatible with the scaling behavior observed at the LL phase
and the interacting critical point. Below these figures, we show the
EGS(ϕ, κ ) contours for a periodic system with a threaded flux κ

(illustrated in the bottom left figure), for N = 41, at representative
points in the (a) LL and (c) AG phases, and at the (b) self-dual point
that approaches the critical point (whose estimation is shown by the
vertical dashed line) as N → ∞. (ϕ0, κ0) in these figures is chosen
so that EGS(ϕ0, κ0 ) is minimum.

the Aubry-André model, which include next-nearest-neighbor
hoppings and interactions and an additional quasiperiodic po-
tential. In particular, we show that the excitations become
effectively noninteracting around these transitions and pro-
vide solid evidence that the addition of interactions does
not affect any of the (infinite number of) critical exponents
obtained in the noninteracting limit, although they modify
nonuniversal properties, e.g., the location of the critical point.
Remarkably, we also find that many-body generalizations
of the single-particle dualities discovered for widely differ-
ent one-dimensional (1D) models [30,34,48] emerge around
criticality. We present a scaling argument based on the pertur-
bative effects of interactions at the Aubry-Andre critical point,
which demonstrates that short-range interactions are irrele-
vant. The same argument shows that long-range interactions
can become relevant.

Our main results are shown in Figs. 1, 2. In Fig. 1 we show
an example of a LL-AG transition, in which we set all the
couplings of our class of models [in Eq. (1) below] different
from zero. A way to capture this transition is with the variance
of the position operator [see Eq. (3) for definition] [49–51]
that diverges (saturates) at the LL (AG) phase due to the
extended (localized) nature of the many-body wave function.

FIG. 2. (a) δEκϕ defined in Eq. (2) (using δs = π/20) for
(A) model 1 [see main text below Eq. (1)], with U = −1;
(B) Aubry-André model (C) model 2 with U2 = −0.4, for L =
{17(red), 41(blue), 99(green)}. (b) Critical points for the LL to AG
transition for models 1 and 2 [see definitions below Eq. (1)], es-
timated through the strength of the quasiperiodic potential V =
Vc(N,λ) that satisfies the self-duality condition δEκϕ (N,λ) = 1, for
N = 99, where λ contains the model parameters. The critical point
in Fig. 1 (vertical dashed line) was estimated in the same way.
This estimation assumes that Vc(N = 99, λ) ≈ Vc(∞,λ). Its valid-
ity is confirmed by the small error bars (smaller or of the size of
the data points), computed through |Vc(99,λ) − Vc(41, λ)|. (c) Data
collapse of lnδEκϕ as a function of N1/νv(N,λ), using ν = 1, where
v(N,λ) = [V − Vc(N,λ)]/Vc(N,λ). The data was obtained across all
the LL-AG transitions shown in (b). The results for N = {17, 41, 99}
correspond to the red, blue and green markers, respectively. In cyan,
we show the result for the noninteracting Aubry-André model.

One of our main findings in this work is that this transition
can also be captured in a precise manner with minimal scaling
assumptions, using a many-body generalization of the single-
particle theory developed in Refs. [48,52]. This involves
considering periodic approximations of the quasiperiodic sys-
tem, as illustrated at the bottom left corner of Fig. 1, and
inserting a flux κ through the resulting ring. The localization
properties can then be inferred based on how the ground-state
energy (EGS) depends on these fluxes and on real-space shifts
between the lattice and origin of the potential that we encode
in the variable ϕ, as illustrated in Fig. 1(a), as the size of the
periodic approximation (N) is increased. The quasiperiodic
limit is approached for N → ∞. In Fig. 1, we show examples
of the energy contours for fixed N = 41, for different values
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of V . We can see that in the LL (AG) phase, there is a very
small dependence on ϕ (κ), while close to the critical point,
there is an equal dependence on both phases. We can make
a more quantitative analysis by computing the ratio between
the energy dispersions along κ and ϕ, respectively, δEκϕ [see
Eq. (2) for precise definition], for different N . Example results
are given in Fig. 2(a) for different models, where we can see
that δEκϕ diverges (scales to zero) at the LL (AG) phase. This
implies that the ϕ(κ) dependence becomes irrelevant with
respect to the κ (ϕ) dependence at the LL (AG) phases as N
increases, and the model flows to a delocalized (localized)
fixed point as defined in Ref. [52]. Remarkably, at the critical
point, δEκϕ approaches unity as N is increased, which implies
that the shift and flux dependencies become equivalent. The
self-dual point, defined here as the point for which δEκϕ = 1,1

therefore approaches the critical point as N → ∞, providing
a very precise way of estimating it.

With the ansatz δEκϕ ∝ e−N/ξ , where ξ ∼ |V − Vc|−ν is
the correlation length, we were able to collapse the results
for each model considered here into a single universal curve
using the correlation length critical exponent ν = 1 known for
the noninteracting Aubry-André model, as shown in Fig. 2(c).
The obtained scaling function near criticality is in excel-
lent agreement with the one obtained for the noninteracting
Aubry-André model, shown in cyan in Fig. 2(c). The good
quality of the collapse and further results on additional crit-
ical exponents presented throughout the paper support the
conclusion that around criticality, different interacting and
noninteracting models belong to the same noninteracting uni-
versality class.

II. MODELS AND METHODS

We study the class of models described by the Hamiltonian

H = −t
∑

i

c†
i ci+1 − t2

∑
i

c†
i ci+2 + H.c.

+
∑

i

(V cos(2πτ i + φ) + V2 cos[2(2πτ i + φ)])c†
i ci

+ U
∑

i

nini+1 + U2

∑
i

nini+2, (1)

where c†
i creates a particle at site i and we set t = 1 through-

out the paper. The first and third rows contain nearest- and
next-nearest-neighbor hoppings and interactions, respectively,
while the second row contains quasiperiodic potentials of
intensity V and V2, with τ being an irrational number and the
phase φ representing a shift of the potentials with respect to
the lattice sites. For the results presented in this paper, we set
τ = 1/

√
2 (to compare results with Refs. [28,40]) and work

at half-filling ρ = 1/2 (unless otherwise specified), choosing
a number of particles Np = �N/2	, where �x	 denotes the
integer part of x (the floor function). We have checked that
our conclusions do not rely on being at this particular filling,
see Appendix B. We choose the following sets of parameters:

1This matches the usual definition of a self-dual point, when an
exact duality transformations can be explicitly constructed.

Aubry-André model with nearest-neighbor interaction, V2 =
t2 = U2 = 0 (model 1); generalized Aubry-André model, with
U = 0.5,V2 = 0.25, t2 = 0.2,U2 
= 0 (model 2).

To study the models in detail, we computed several dif-
ferent quantities using the DMRG technique [53,54], as
implemented in the ITENSOR library [55,56], applying both
periodic and open boundary conditions. We required ITEN-
SOR’s truncation error to be less than 10−10 and only stopped
the sweeping procedure once some convergence require-
ments were satisfied, up to a maximum of 500 sweeps. In
particular, for twisted boundary conditions, we require the
energy variance, �H = 〈H2〉 − 〈H〉2, to be below 5 × 10−6;
the ground-state energy difference between two sweeps to be
below �EGS = 10−5; and the difference in the entanglement
entropy at the middle bond inbetween two sweeps to be below
�SGS = 10−3. For open boundary conditions, we require �H

at least below 10−6, �EGS � 10−7, and �SGS � 10−4.
In our finite-size simulations, we use rational approxi-

mants of τ , τc = p/N , with p and N coprime numbers. These
approximants were chosen to be exact convergents of the
continued fraction expansion of τ .

III. TWISTED BOUNDARY CONDITIONS

We consider a ring with N sites as illustrated in the bottom
left corner of Fig. 1 with twisted boundary conditions that
corresponds to threading a flux κ through the system. This
flux can simply be added to the model in Eq. (1) by making the
replacement t → teik and t2 → t2e2ik , with k = κ/N . For the
choices τ = τc, making shifts φ → φ + 2π/N simply corre-
sponds to a relabeling of the indices in this model [48], which
implies that the many-body ground-state energy is periodic
in φ with period �φ = 2π/N . With this in mind, we define
the rescaled variable ϕ = Nφ so that EGS(ϕ, κ ) has a period
�ϕ = 2π . We define the flux-shift sensitivity, δEκϕ , as

δEκϕ = lim
δs→0

EGS(ϕ0, κ0 + δs) − EGS(ϕ0, κ0)

EGS(ϕ0 + δs, κ0) − EGS(ϕ0, κ0)
, (2)

where (ϕ0, κ0) are defined so that E (ϕ0, κ0) is minimum
to ensure that δEκϕ = 1 at self-dual points.2 Note that the
values of (ϕ0, κ0) can depend on N and on the number of
particles Np. For the system sizes used in the calculations
with periodic boundary conditions and Np = �N/2	, we found
(ϕ0, κ0) = (0, π ) for N = 17, 41 and (ϕ0, κ0) = (π, 0) for
N = 99. δEκϕ is the many-body generalization of a similar
quantity already introduced for the single-particle eigenener-
gies of noninteracting quasiperiodic models in Ref. [48]. In
the LL (AG) phase, we expect δEκϕ → ∞ (δEκϕ → 0) for
increasing N . At the critical point, we have δEκϕ → 1, as we
will see. The flux-shift sensitivity has some similarities with
the Drude weight/superfluid fraction [57]. However, the latter
only measures the variation of the ground-state energy with
respect to the flux κ , therefore missing important information
on the duality between κ and ϕ that exists for the models here
studied.

2Note that (ϕ0, κ0 ) should be chosen so that at self-dual points, the
energy dispersions are invariant under switching ϕ-ϕ0 and κ-κ0.
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It is clear from the EGS(ϕ, κ ) contour plots in Fig. 1 that
there is a duality between the LL and AG phases around crit-
icality under switching (ϕ-ϕ0) and (κ-κ0). The critical point
is the self-dual point of this duality, in which EGS is invariant
under this exchange. In Ref. [48] we have uncovered similar
dualities in the single-particle case and found that they could
be traced back to hidden duality transformations between the
single-particle wave functions. Remarkably, in the presence
of interactions, a many-body generalization of these duality
transformations can still be formulated. In Appendix D we
provide the precise definition and some examples.

IV. OPEN BOUNDARY CONDITIONS

We also employ open boundary conditions that allow us to
reach fairly large system sizes [55,56]. In order to carry out a
complete study of the LL and AG phases, and of the transition
between them, we compute several quantities that we detail
below.

The variance of the position operator shown in Fig. 1 can
be defined as [49–51]

λ2
xx = (〈| x̂2 |〉 − 〈| x̂ |〉2)/Np, (3)

where x̂ = ∑Np

i=1 x̂i = ∑N
i=1 xic

†
i ci is the many-body position

operator and Np is the number of particles. Since it measures
the variance of the position operator, it can distinguish be-
tween the LL and AG phases: it diverges (saturates) with N ,
due to the extended (localized) nature of the many-body wave
function at the LL (AG) phase.

To verify the gapless nature of the transition and obtain the
dynamical critical exponent z, we also computed the charge
gap, defined as

�c = EGS(Np + 1) + EGS(Np − 1) − 2EGS(Np) ∼ N−z, (4)

where EGS(Np) is the ground-state energy for Np particles.
In order to study the scaling of the entanglement in

different regions of the phase diagram, we computed the en-
tanglement entropy [58,59], defined as

S = −Tr[ρAlnρA], ρA = TrB |ψ〉 〈ψ | , (5)

where we choose the partition A containing the first NA sites
of the chain. For a 1D critical system whose continuum limit
is a conformal field theory with central charge c, we have that
[60]

S = c

6
ln

(
N

π
sin(πNA/N )

)
+ C′. (6)

This is the expected behavior at the LL phase (with c = 1),
while at the AG phase, S becomes nonextensive for large
enough NA.

To better understand the nature of single-particle excita-
tions we also introduce here the particle-addition correlation
matrix, that we define as

Ci j
e = 〈c†

i c j〉Np − 〈c†
i c j〉Np−1, (7)

where 〈〉Np denotes expectation value in the ground-state
with Np particles. The eigenvalues and eigenvectors of the
particle-addition correlation matrix, Ce |α〉 = δn̄α |α〉, with
α = 0, . . . , N − 1, correspond to the occupations and natural

orbitals. For a noninteracting system, only a single natural or-
bital corresponding to the Npth highest-energy single-particle
eigenstate labeled as |α = 0〉 is occupied (we have δn̄0 =
1; δn̄α>0 = 0). In contrast, in the presence of interactions, a
particle that is added to the system redistributes over dif-
ferent natural orbitals. Therefore, the deviations from the
expected behavior of a noninteracting particle can be quan-
tified by inspecting the occupations {δn̄α}. For this purpose,
we introduce the occupation inverse participation ratio defined
as P({δn̄α}) = (

∑
α |δn̄α|2)−2 ∑

α |δn̄α|4. For a noninteracting
(interacting) particle, P({δn̄α}) = 1 (P({δn̄α}) < 1). We there-
fore expect that P({δn̄α}) should approach unity whenever
interactions become irrelevant.

The nature of the low-energy excitations can also be
inspected by analyzing the long wavelength (small q) be-
havior of the static structure factor defined as S(q) =
N−1 ∑

j,l [〈n jnl〉 − 〈n j〉〈nl〉]eiq( j−l ). In the LL phase, the Lut-
tinger liquid correlation parameter K can be computed
through3 K = 2π limq→0 S(q)/q [61–64]. In a gapless non-
interacting and translationally invariant system, it is easy to
show that K = 1. Inside an (interacting) LL phase, however,
K 
= 1 in general.

To inspect the localization properties of the many-body
wave function, we also computed inverse participation ratios
(IPR) [65] for the density fluctuations δni ≡ Cii

e and for the
most occupied (with δn̄α closest to 1) natural orbital that we
write as |α = 0〉 = ∑

i ψ
(0)
i |i〉, where |i〉 = c†

i |0〉 and |0〉 is
the vacuum:

IPR({δni}) =
( ∑

i

∣∣δni

∣∣)−2 ∑
i

∣∣δni

∣∣2

IPRNO(q) =
( ∑

i

∣∣ψ (0)
i

∣∣2

)−q ∑
i

∣∣ψ (0)
i

∣∣2q
.

(8)

In the noninteracting limit it is easy to show that δni =
|ψNp

i |2 and ψ
(0)
i = ψ

Np

i , where ψ
Np

i is the amplitude of the
Npth single-particle wave function (ordered by increasing
eigenenergy) at site i. The quantities in Eq. (8) are therefore
many-body generalizations of the single-particle IPR [66]
used to study the localization properties of single-particle
eigenstates. For the conventional definition of the IPR [with
q = 2 in Eq. (8)], we have IPR ∼ N−D2 , where D2 is the
fractal dimension, with D2 = 1 for delocalized states, D2 = 0
for localized states and 0 < D2 < 1 for critical states. For the
generalized version, with q 
= 0, we have IPR ∼ N−τ (q), with
τ (q) = Dq(q − 1) and Dq = d (with d the system’s dimen-
sion) for fully delocalized single-fractal states, while Dq is a
nonlinear function of q for multifractal states.

V. UNIVERSAL DESCRIPTION AROUND CRITICALITY

As we previously stated, Fig. 2 shows that the results for
the quantity δEκϕ in significantly different models can be
collapsed into a single universal scaling function. To obtain

3Note that the factor of 2 is needed since we are working with
spinless fermions.
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TABLE I. System size approximants of τ = 1/
√

2 used for the
finite-size calculations.

N 17 41 99 239 577 1393 ∞
τc

12
17

29
41

70
99

169
239

408
577

985
1393

1√
2

the collapse in Fig. 2(c), we first defined the normalized dis-
tance to the critical point v(N,λ) = [V − Vc(N,λ)]/Vc(N,λ),
where λ = (V2, t2,U,U2) contains the model parameters
(other than V ) and Vc(N,λ) is the value of V at the self-dual
point [δEκϕ (N,V,λ) = 1]. The reason why we use Vc(N,λ)
and not Vc ≡ Vc(∞,λ) is that for smaller systems there can
be some dependence of Vc(N,λ) on N . Such dependence can
arise not only from finite-size effects, but also because in-
creasing N also slightly modifies the filling ρ = Np/N (due to
N being odd) and the value of τc (see Table I in Appendix A).

Further assuming that

δEκϕ ∼ e−N/ξ (9)

with ξ ∼ v−ν (N,λ) and extracting ν from a fit using all the
obtained data points, we get a critical exponent ν = 1.001 ±
0.007 (see Appendix A). Therefore, we set ν = 1 and obtain
an excellent collapse shown in Fig. 2(c), around the critical
point, i.e., around v(N,λ) = 0. In Appendix A we also show
that this collapse is not a special feature of half-filling by also
considering the case ρ = 1/3. We conjecture that the collapse
should be observed for any filling that is not commensurate
with τ as defined in Ref. [28], i.e., that does not satisfy ρ =
mod (nτc, 1), with n an integer that does not depend on system
size. At such commensurate fillings, single-particle gaps are
opened for any strength of the quasiperiodic potential.

VI. NONINTERACTING EXCITATIONS AND ADDITIONAL
CRITICAL EXPONENTS

We have seen from the quantity δEκϕ in Eq. (2) that
the effects of interactions on the scaling function and ν are
irrelevant. We now show that particles become effectively
noninteracting in this regime and that the critical properties
obtained at different critical points are identical. For the re-
sults that follow, we use open boundary conditions.

In Fig. 3(a), we show that the occupation inverse par-
ticipation ratio approaches 1 around the critical point. This
implies that the single-particle gapless excitations acquire a
noninteracting nature. The same conclusion can be drawn
by inspecting the behavior of the Luttinger parameter K , in
Fig. 3(b). At small V , K does not vary significantly (note that
when V = 0, K is known exactly for model 1 [61]). On the
other hand, as V gets closer to the critical point, K approaches
the noninteracting value K = 1. Exactly at the different crit-
ical points, the system is no longer a LL and at small q we
find log-periodic corrections S(q) ≈ 0.7q[1 + a sin(blnq +
α)] (see Appendix C). In the AG phase, S(δq)/δq, computed
for the smallest nonvanishing momentum δq, decreases since
S(q) ∼ q2 when q → 0 [see Appendix C for explicit plots of
S(q)]. In Appendix C we also show an example for attractive
interactions, in which case K > 1 for model 1 with V = 0,
in the Luttinger liquid phase. In this case, K decreases with

FIG. 3. Noninteracting excitations at the critical point. (a) Oc-
cupation inverse participation ratio P({δn̄α}) defined below Eq. (7),
and (b) slope of structure factor S(δq) for δq = 20π/N as a function
of V for model 1 with U = 1, φ = 1.123 (left) and model 2 with
U2 = 0.4 (right). The vertical dashed line corresponds to the critical
point estimated from δEκϕ and the horizontal dashed line is the slope
of the linear contribution to S(q) at the critical point (see text).

increasing V and approaches 1 close to the critical point, just
before S(q) again acquires the universal critical behavior, at
the critical point.

In Fig. 4(a) we show a representative example of the
quantities N IPR({δni}) and N IPRNO across the LL-AG
transition. We observe LL (AG) phase is characterized by
IPR({δni}), IPRNO ∼ N−1 (∼const.), which is confirmed by
the collapse (divergence) of the curves below (above) the
transition for different N , in direct analogy with the results for
the single-particle IPR in the noninteracting case. Note that
both quantities become almost quantitatively equal close to
the critical point and at the AG phase. At the critical point we
expect multifractal scaling with an infinite set of critical ex-
ponents (i.e., the multifractal spectrum). Averaging our results
over φ, we compute the exponent τq defined in Eq. (8), which
we show in Fig. 4(b). In this figure, we can see that in the LL
phase (Pe

1 and Pe
2 ), Dq ≈ 1, while at interacting critical points

(Pc
2 and Pc

4 ) we observe a multifractal behavior quantitatively
compatible with the one obtained at the noninteracting critical
points (Pc

1 and Pc
3 ), that is, Dq ≈ 1 − 0.227q.4 In Appendix C,

we show explicit data for 〈IPRNO(q)〉φ as a function of N ,
from which the exponents τ (q) were extracted.

4By fitting to the behavior Dq = c1 + c2q, we obtained c1 =
0.992 ± 0.005 and c2 = −0.227 ± 0.004 at the critical point of the
noninteracting Aubry-André model.
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ln
ln

FIG. 4. (a) NIPR({δni}) and NIPRNO as a function of V for
U = 1, φ = 1.123 and V2 = t2 = U2 = 0. The vertical dashed line
shows the critical point estimated from δEκϕ . (b) Exponent τ (q)
defined in Eq. (8) for different models with chosen parameters in-
dicated in table (e), where Pe

i (Pc
i ) denote extended (critical) points.

In table (e), Vc corresponds to the estimated critical point. τ (q)
was computed from linear fits to data points (lnN, 〈IPRNO(q)〉φ ),
where 〈〉φ denotes an average over different choices of φ. We took
φ j = 2π j/Nc, j = 0, . . . , Nc − 1 and Nc ∈ [100–300]. We used sys-
tem sizes N ∈ {99, 239, 577} for (interacting) points Pe

1 , Pe
2 , Pc

2 , Pc
4

and N ∈ {99, 239, 577, 1393} for (noninteracting) points Pc
1 , Pc

3 . (c),
(d) 〈�c〉φ and 〈S(NA)〉φ computed by employing the same averag-
ing procedure used in (b). In (c), the blue and green dashed lines
show the scaling behavior in the noninteracting Aubry-André model,
respectively, at extended and critical points. In (d), the calculation
is done for N = 577. The main figure shows a closeup at smaller
NA, while the inset shows the results for all possible NA. The ver-
tical dashed lines are guides to the eye for the maxima of the
log-periodic oscillations, given by N (n)

A = 116/pn, with n = 0, 1, 2, 3
and p = limm→∞ Nm/Nm+1 = 1 + √

2. The magenta and cyan curves
correspond to fits to Eq. (6) with c = 1 and c = 0.78, respectively.

We also computed the φ-averaged scaling of the charge
gap �c in Fig. 4(c), which allowed us to extract dynamical
critical exponents z. Remarkably, the scaling exponents are
compatible with the exponents obtained for the noninteract-
ing Aubry-André model. This, together with the multifractal
analysis, is a strong indication that the universality class of the
delocalization-localization transition is unchanged upon the
addition of interactions. An important remark is that, as seen
in Ref. [28], the dynamical exponent for the noninteracting
Aubry-André model can depend on ρ and τ . Since here we
are fixing the latter, a natural question is whether the inde-
pendence of the critical exponents on the model is a special
feature of our choice. In Appendix F, we argue that this is

not the case by obtaining compatible finite-size scalings of the
charge gap at critical points of different noninteracting models
for other choices of ρ and τ .

Finally, we also plot the φ-averaged entanglement entropy
as a function of the size of bipartition A, NA, in Fig. 4(d). In the
LL phase, S follows the behavior of Eq. (6) with c = 1, as in
the noninteracting delocalized case [67]. At the critical point,
the results are compatible with the noninteracting Aubry-
André model result, showing corrections to Eq. (6) in the form
of log-periodic oscillations, similarly with what was observed
for critical aperiodic spin chains in Ref. [68] (see Appendix C
for more detailed analysis of the log-periodic oscillations). A
fit to Eq. (6) neglecting these corrections yields c ≈ 0.78, in
agreement with Ref. [69] (note, however, that in this case c
cannot be interpreted as a central charge).

VII. GENERALIZED CHALKER SCALING AND
IRRELEVANCE OF GENERIC SHORT-RANGE

INTERACTIONS

We now provide a framework to understand why the
short-range interactions we have studied so far are irrele-
vant. Our argument relies on a tree-level scaling analysis
of the interaction at the critical point of the Aubry-André
model. For completeness, we extend our discussion to long-
range interactions, of the form r−w with w > 1, and show
there is a critical power law, wc, where they eventually
become relevant. We employ twisted boundary conditions
and choose the long-range interaction to be a periodized
form of the power-law potential U

∑
r, j j−wnrnr+ j , given

by U
∑N−1

j=1 N−wζ (w, j/N )
∑N

r=1 nrnr+ j , where ζ (w, y) =∑∞
k=0(k + y)−w is the Hurwitz zeta function and nr = n†

r+N
due to twisted boundary conditions. To compute the scaling
dimension of the interaction term, denoted as DU (w), we write
the interacting Hamiltonian on the single-particle eigenbasis
of the noninteracting Aubry-André model Hamiltonian, H0.
We label single-particle states with Greek indices, |α〉, and
single-particle energies by εα . In this base

H =
∑

α

εαc†
αcα −

∑
α,β,γ ,δ

V̄αβγ δc†
αc†

βcγ cδ, (10)

where V̄αβγ δ is the antisymmetrized version of the interaction
tensor in the eigenbasis of the Aubry-André model

Vαβγ δ = U

Nw

N∑
r=1

N−1∑
j=1

ζ

(
w,

j

N

)
〈α|r〉 〈β|r+ j〉 〈r|γ 〉 〈r+ j|δ〉

(11)
with 〈α|r〉 = 〈0| cαc†

r |0〉.
The leading contributions to the interacting term come

from states with energies around the Fermi level, EF . In the
following, we denote by ε0 the energy closest to EF and we
set ε0 = 0 for convenience. By the antisymmetry of V , the
lowest-order nonvanishing contributions involve setting two
indices to the Fermi level and varying the remaining, i.e.,
V̄α0β0. Among those, we find that the dominant contribution
arises for α = β (see Appendix E) and thus we may restrict
our analysis to an interaction tensor of the form V̄0α0α for small
|εα|.
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FIG. 5. Scaling dimension of long-range interactions. (a) Col-
lapses of 〈V̄0α0α〉φ,κ calculated at the critical point of the half-filled
Aubry-André model (V = 2) for τ = 1/

√
2 (that has z = 1.575), for

different system sizes and different energies, and for power-law in-
teractions with decay exponent w = 3. Twisted boundary conditions
are used and the results are averaged over 200 random configurations
of φ and κ , denoted by 〈〉φ,κ . (b) Finite-size results for DV̄ (N,w).
The dashed lines indicate DV̄ = z and DV̄ = 2z − 1. The black lines
indicate the expected thermodynamic-limit behavior. wc corresponds
to the critical value of the exponent w below which interactions
become relevant.

For the chosen model (half-filling, with τ = 1/
√

2), the
critical point of the (noninteracting) Aubry-André model un-
der a discrete scale transformation r → Nr is invariant under
the rescaling εα → Nzεα . The interacting term transforms as
V̄0α0α → NDV̄ (w)V̄0α0α , where DV̄ is the scaling dimension of
the interaction tensor that can be obtained by the data collapse
illustrated in Fig. 5(a). In this example, we take the half-filled
Aubry-André model with τ = 1/

√
2, that has z = 1.575, and

set w = 3, finding that DV̄ (w = 3) = 2z − 1. The relation
between the energy, εα , and the interaction strength, V̄0α0α ,
follows a generalized Chalker scaling [70–74]. However, a
significant difference to previous Chalker scaling analyses is
the full antisymmetrization of the interaction term that follows
from fermionic statistics.

By power counting, we find the scaling dimension of the
interaction to be DU = z − DV̄ , implying that interactions are
irrelevant if DV̄ > z (see Appendix E for details). To infer
DV̄ (w) in the thermodynamic limit, we studied the finite-
size dimension DV̄ (w, Nm) (where m labels the order of the
approximant size Nm), which satisfies DV̄ (w,∞) ≡ DV̄ (w),
and can be computed through DV̄ (w, Nm) = −(lnNm+1 −
lnNm)−1[lnV̄ m+1

0101 (w) − lnV̄ m
0101(w)], as depicted in Fig. 5(b).

As for the case w = 3 shown in Fig. 5(a), for sufficiently
large w > w0 = 2z − 1, DV̄ = 2z − 1. This scaling is also
retrieved for other types of short-range interactions (e.g., finite
range or exponentially suppressed), as we show in detail in
Appendix E. Since z > 1 at the critical point, interactions are
always irrelevant in this case. This justifies the findings of
previous sections near U = U2 = 0. For w < w0, the finite-
size results shown in Fig. 5(b) are compatible with DV̄ = w. In
this case, interactions become relevant for w < z since at that
point we start having DV̄ < z and thus DU > 0. The nature of
this interesting fixed point is left for future exploration.

VIII. DISCUSSION

For a broad class of quasiperiodic models, we provided
solid evidence that (i) short-range interactions are irrelevant

at the LL-AG transition, not affecting the noninteracting crit-
ical exponents; (ii) a many-body generalization of the theory
proposed in Ref. [52] can be formulated; and (iii) in the limit
of vanishing interactions, the noninteracting critical point is
robust to any short-range (and even some long-range) inter-
actions. Our work not only provides a unified understanding
of quasiperiodic-induced LL-AG transitions around criticality
in terms of flows to noninteracting fixed-points accompa-
nied by the emergence of many-body dualities in widely
different models, but it also offers a very precise way to
estimate the critical points. Our results contrast with the case
of one-dimensional particles experiencing regular Anderson
disorder. Differently from the quasiperiodic modulation, dis-
order is relevant even in the absence of interactions, sending
the system to an Anderson localized/glass phase [75,76]. For
sufficiently attractive interactions, however, a Luttinger liquid
phase survives at small disorder [76–80]. The delocalization-
localization transition between these phases occurs when the
Luttinger parameter takes the value of K = 3/2. For the model
in Eq. (1), it takes place at U = −t when only t,U 
= 0. This
is a Berezinskii-Kosterlitz-Thouless transition, in contrast
with the interacting quasiperiodic-induced localization transi-
tions studied here, which we found to be of second-order, as in
the noninteracting case. For bosons, there are also well-known
both disorder-induced [76,81–84] and quasiperiodic-induced
[7,38,85–88] transitions into Bose glass localized phases. It
would also be interesting to understand whether in this case,
where there is no longer a Fermi surface, an extension hidden
dualities also emerge around such transitions.

A future interesting question to address is the effect of
interactions on critical phases of noninteracting quasiperi-
odic models, which can arise in generalized Aubry-André
models [32,35,89] and in Fibonacci chains [90,91]. In fact,
it was recently shown that interactions can become relevant
in the critical phase of a generalized Aubry-André model
[92]. Further interesting questions include the nature of the
fixed point at which long-range interactions become relevant,
and the relevance of interactions in the presence of pairing,
where superconductivity was recently found to be enhanced in
multifractal critical points and phases of spinful quasiperiodic
models [93–95], as in disordered critical points [96–98]. In
fact, for the Kitaev chain with random nearest-neighbor hop-
pings, interactions between Majorana fermions were found
to be relevant at the noninteracting critical point [99], even
though interactions are irrelevant at the critical point of the
analogous spinless fermionic model [99–101]. Fundamental
differences of this type may be also present in the quasiperi-
odic case. Finally, it would also be interesting to see in the
future how/if the methodologies introduced here can be gen-
eralized to higher dimensions and to excited states, quantum
dynamics, and Floquet systems, where for the latter hidden
dualities were also recently found to exist at the noninteracting
level [102].
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APPENDIX A: SYSTEM SIZE APPROXIMANTS USED IN
FINITE-SIZE SIMULATIONS

In our finite-size simulations, we use rational approxi-
mants of τ , τc = p/N , with p and N coprime numbers. These
approximants were chosen to be exact convergents of the con-
tinued fraction expansion of τ . This can be done as long as the
unit cell defined by τc is equal to or larger than the system size,
which guarantees that the system remains incommensurate.
For our choice, the size of the unit cell is exactly the system
size N . We chose the series of approximants given in Table I.

APPENDIX B: ADDITIONAL SCALING COLLAPSES:
EXTRACTING ν AND GOING AWAY FROM HALF-FILLING

We start by extracting the critical exponent ν from the
raw data on δEκϕ , to validate our choice of ν = 1 in the
main text. Assuming the ansatz δEκϕ ∝ e−N/ξ and that ξ =
gv−ν (N,λ), we have �κϕ = lnδEκϕ = −Nvν (N,λ)/g (note
that δEκϕ = 1 for v = 0) and therefore, we have ln|�κϕ| =
lnN + νlnv − lng. We therefore carry out a linear multivari-
ate fit using the data points (lnN, ln|v|, ln|�κϕ|) to extract
ν and lng. The results are in Fig. 6, where we show the
fitting results as a function of the range |�v| below which
data points were selected. The final results ν = 1.001 ± 0.007
and g = 0.972 ± 0.033 were obtained by averaging the results
(and fitting errors) for ν and g, for all the considered windows
�v.

For the noninteracting Aubry-André model, we have that
|ξ | = |1/ln(2t/V )| and therefore for v → 0 we have |ξ | =
|v|−1 and |lnδEκϕ| = −N |v|. This is consistent with the fitting
results obtained for ν and g, which implies that close enough
to the critical point, the correlation length behaves in the
same way, irrespective of the considered model. Note that in
principle, g could depend on λ (the remaining parameters of

ln

ln

FIG. 6. (a) Raw data used for fits to extract ν. Each clus-
ter of points corresponds to a different system size, indicated
close to it. (b) Parameters extracted from a linear multivariate fit
to the model ln|�κϕ | = lnN + νln|v| − lng, by using data points
(lnN, lnv, ln|�κϕ |) selected for different windows �v [represented
in (a)].

the model), but we observed here for the studied models that
close enough to criticality, g ≈ 1.

We finally show that the data collapse here observed is
not a special feature of half-filling. For that purpose, we also
obtain results for a filling ρ = 1/3, again using models 1 and
2 defined in the main text. The results are in Fig. 7, showing
nice collapses around criticality.

APPENDIX C: ADDITIONAL RESULTS FOR OPEN
BOUNDARY CONDITIONS

1. Structure factor

We have seen in the main text that the Luttinger parameter
K approaches 1 in the Luttinger liquid phase close to criti-
cality, which implies that the small-q behavior of the static
structure factor S(q) is that of a noninteracting system. Here
we explore in more detail the S(q) behavior at the critical
point and in the localized phase. We will do so in the noninter-
acting (using the single-particle Hamiltonian) and interacting
(using DMRG) cases. Let us derive an expression for S(q) in
the former case, using the single-particle eigenstates. In the
noninteracting case, one can easily show that

S(q) = 1

N

N∑
i, j=1

[(��†)iiδi j − (|��†|2)i j]e
iq(i− j), (C1)

where � is a matrix containing the occupied single-particle
eigenstates in its columns and |.|2 squares all entries of matrix
��†.

In Fig. 8 we present results for the noninteracting Aubry-
André model. We see that at small q, (i) 2πS(q) = Kq and
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ln ln

FIG. 7. Results at filling ρ = 1/3 for (a) model 1 and (b) model
2 defined in the main text. The bottom panels contain the phase
transition points that we take to be Vc(N = 99, λ) (where λ contains
the model parameters) with an error computed through |Vc(99, λ) −
Vc(41, λ)| (the difference in estimates for the largest used system
sizes). Since the error is very small, Vc(N = 99, λ) already provides
a very accurate estimation of Vc(N = ∞, λ).

K ≈ 1 in the extended phase; (ii) 2πS(q) = Kq(1 + a sin[b +
cln(q)]) and K ≈ 0.7 at the critical point; (iii) S(q) ∼ q2 in
the localized phase. Interestingly, at the critical point, there
are clear ln(q)-periodic oscillations.

We now consider the family of interacting models given
by Eq. (1) in the main text. The results for different choices
of these interacting models are given in Figs. 9 and 10. In
Fig. 9, we can see that in the LL phase we still have S(q) ∼ q.
However, we have that 2πS(q) = Kq, with K 
= 1 sufficiently
away from the critical point since the system becomes a truly
interacting LL, as in the V = 0 limit. This was illustrated in
the main text for repulsive interactions in Fig. 3(b), and we
here illustrate for attractive interactions in Fig. 10(a). As the
critical point is approached, we have K → 1. Exactly at the
critical point, on the other hand, S(q) shows an identical be-
haviour as in the non-interacting Aubry-Andr model’s critical
point, see Fig. 10(b). It is remarkable to see that even though
there are significant differences for larger q for the different
considered (interacting and non-interacting) critical points,
the small-q behaviour is the same. Interestingly, the amplitude
of the log-periodic oscillations decreases in the interacting
critical points, as can be seen in Fig. 10(c). Finally, in the AG
phase we have S(q) ∼ qη with η → 2, compatible with the
behaviour in the non-interacting localized phase, as shown in
Figs. 9.

2. Natural orbitals

In the main text we have shown that the highest occupied
natural orbitals are extended and localized, respectively, at the
LL and AG phases, and critical at the critical point. Here we
show explicit plots, comparing the results with the density
fluctuations δni ≡ Cii

e . The results are in Fig. 11. We can see
that when the critical point is approached from the LL phase,

δni becomes very close to |ψ (0)
i |2, signaling the irrelevance

of interactions (in the noninteracting case, these quantities are
equal).

To finish this section and complement multifractal analysis
carried out in Fig. 3(b) of the main text, we show explicit
data for 〈IPRN0(q = 2)〉φ as a function of system size N , from
which the exponent τ (q = 2) was extracted. The results are
shown in Fig. 12.

3. Entanglement entropy

In the main text, we mentioned that the entanglement
entropy, S , shows log-periodic oscillations as a function of
the subsystem size, at the critical point of the noninteracting
Aubry-André model. In Fig. 13(a) we show the numerical
results supporting this claim in a log-linear plot. By averaging
S over a sufficiently large number of φ configurations, we see
that these oscillations are robust to increasing the system size.
In Fig. 13(b) we also show that these oscillations persist in the
presence of interactions, at the critical point.

APPENDIX D: DUALITY TRANSFORMATION

Here we build a many-body generalization of the duality
transformation introduced in Ref. [48]. We start by writing the
most occupied natural orbital as |α = 0〉 = ∑

i ψ
(0)
i |i〉, and

defining its Fourier transform as

ψ̃
(0),d
k = 1√

N

N−1∑
i=0

ei2πτckiψ
(0)
i . (D1)

The hidden duality transformations defined in Ref. [48]
map points (φ, k) = (φ0 + �φ, k0 + �k) to points (φ′, k′) =
(φ0 + �k, k0 + �φ), where (φ0, k0) is the center of the hid-
den duality transformation. Setting (φ0, k0) = (ϕ0, κ0), with
(ϕ0, κ0) given in the main text for the different used sys-

tem sizes yields a possible choice for which ψ(0) ∝ ψ̃
(0),d

at
the self-dual point of the noninteracting Aubry-André model
(V = 2). For more generic choices, we would need to compute
ψ

(0)
i at (φ, k) = (φ0 + �φ, k0 + �k) and ψ̃

(0),d
k at (φ′, k′) =

(φ0 + �k, k0 + �φ) to have ψ(0) ∝ ψ̃
(0),d

.

In Fig. 14(a) we computed FRK ≡ (ψ̃
(0),d

)∗ · ψ(0) using
(φ, k) = (φ0, k0) = (ϕ0, κ0) for model 1 with U = 0.5 as an
example. We see that FRK decreases with N , except when we
cross the critical point, where it becomes very close to 1. This

suggests that ψ(0) is almost equal to ψ̃
(0),d

at this point. We can
go one step further and define the duality transformation that

relates ψ(0) and ψ̃
(0),d

at self-dual points as in Ref. [48] (where
the natural orbital replaces the role of the single-particle wave
function).

From ψ(0) and ψ̃
(0),d

, we then define the duality matrix Oc

as in Ref. [48]:

Oc[T nψ̃
(0),d

] = T nψ
(0)
i , n = 0, · · · , L − 1, (D2)

where T is the cyclic translation operator defined as T ψ = ψ ′
with ψ ′

i = ψ mod (i+1,L). Since Oc is a circulant matrix, we
may write it as

Oc = U †WU, (D3)
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FIG. 8. Results for noninteracting Aubry-André model, at half-filling [ Np = �ρN	, where �x	 takes the integer part of x and ρ = 1/2
], using open boundary conditions. (a) Results for V = 1 (extended phase), V = 2 (critical point), and V = 3 (localized phase). (b) Low-q
behavior of S(q). The vertical dashed line denotes the largest q considered for the fits to the expressions: (i) 2πS(q) = Kqη in the extended
phase, where we obtained K, η ≈ 1; (ii) 2πS(q) = Kqη(1 + a sin[b + cln(q)]) in the critical phase, where we extracted K ≈ 0.7 and η ≈ 1;
(iii) S(q) ∼ qη in the localized phase, where we extracted η ≈ 2. Note that at the critical point, there are clear log-periodic oscillations. These
are not a finite-size effect, as can be seen in (c), where different system sizes were considered and the oscillations are robust. (d) Dependence
of S(q) on φ, for fixed N = 4181. The results for different choices or φ are essentially the same, except at the critical point for small q, where
there is a slight φ dependence, for fixed N .

ln
ln

FIG. 9. Results for interacting models, at half-filling, using open
boundary conditions. (a) S(q) for U = 1 and U2 = t2 = V2 = 0, φ =
1.123, for V in the LL/extended phase (V = 1), in the LL phase
but close to the critical point (V = 2.2), and in the AG phase (V =
2.5). (b) Assuming that S(q) ∼ qη, we extract η ≡ ∂lnS(q)/∂lnq by
making a linear fit to the lnS(q) vs. lnq data, from q = 0 up to q =
qmax (given in the x axis of the figure). We see that in the LL phase,
η ≈ 1, while in the AG, η → 2, as in the noninteracting case.

where U is a matrix with entries Ui j = e2π iτci j and W is a
diagonal matrix Wi j = w jδi j with the eigenvalues {w j} of Oc.
We can therefore write

ψ(0) = U †W ψ(0) ↔ ψ
(0)
i =

L−1∑
ν=0

e2π iτci jw jψ
(0)
j . (D4)

The eigenvalues w j are, as seen in Ref. [48], evaluations
of a function W (x), that has period �x = 1, at points x j =
mod ( jτc + φ

2π
, 1), j = 0, . . . , L − 1. This function is sam-

pled in the whole interval x ∈ [0, 1[ in the limit that τc → τ

(N → ∞) and encodes all the information on the duality
transformation W . We show an example of the duality func-
tion W (x) in Fig. 14(b), where we see that a complicated
function with features that are robust to the increasing of N
is formed. W (x j ) only has the meaning of a duality transfor-

mation if ψ(0) and ψ̃
(0),d

are computed at self-dual points (or
at dual points in the extended and localized phases, a case that
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FIG. 10. Results for interacting models, at half-filling, using
open boundary conditions. (a) Slope of structure factor S(δq) as a
function of V for model 1 with attractive interaction U = −1, and
φ = 1.123. (b) S(q) at critical points obtained with significantly dif-
ferent parameters indicated in the figure, including the noninteracting
case. We can see that in all cases, the small q behavior is very
similar. (c) Log-log plot for the data in (b), along with fits to the
expression 2πS(q) = Kqη(1 + a sin[b + cln(q)]) for the interacting
critical points, with the fit parameters given in the figure. Note that
the vertical dashed line in the right panel denotes the largest q
considered for the fits. Neglecting the log-periodic oscillations, we
get 2πS(q) = Kq, with K ≈ 0.7 in all cases.

was not considered here). We can, however, compute W (x j )

in the same way by using ψ(0) and ψ̃
(0),d

at any point, but in
this case, since there is no duality transformation connecting
the wave functions, we expect W (x j ) to be featureless and not
robust for increasing system size. This is clearly shown in the
insets of Fig. 14(b).

APPENDIX E: GENERALIZED CHALKER SCALING AND
IRRELEVANCE OF GENERIC SHORT-RANGE

INTERACTIONS

We show that generic short-range (and some long-range)
interactions are irrelevant at the critical point of the Aubry-
André model in the U → 0 limit, by unveiling the existence
of a generalized Chalker scaling [70–74] at this point. All the
results that we present in this section are for the parameters
studied in the main text, namely τ = 1/

√
2 and at half-filling,

with Np = �N/2	 particles. Nonetheless, the technology here
developed can be (and was) applied to more generic cases, as
we comment at the end of the section.

FIG. 11. Plots of the squared amplitudes of natural orbitals,
|ψ (0)

i |2, and of the density fluctuations δni for N = 577, with U = 1
and U2 = t2 = V2 = 0, and φ = 1.123, for different V .

We consider the periodized form of the power-law interac-
tions U

∑
j j−wnrnr+ j , given by

U
N−1∑
j=1

∞∑
k=0

( j + kN )−w
∑

r

nrnr+ j+kN (E1)

= U
N−1∑
j=1

N−wζ (w, j/N )
N∑

r=1

nrnr+ j, (E2)

ln
ln

FIG. 12. 〈IPRN0(q = 2)〉φ for different models with chosen pa-
rameters indicated in the table at right, where Pe

i (Pc
i ) denote extended

(critical) points. In the table, Vc corresponds to the estimated crit-
ical point. 〈〉φ denotes an average over different choices of φ. We
took φ j = 2π j/Nc, j = 0, · · · , Nc − 1, and Nc ∈ [100–300]. The
blue and green dashed lines in (c) shows the scaling behavior in
the noninteracting Aubry-André model, respectively at extended and
critical points.
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ln

ln

FIG. 13. (a) Entanglement entropy S as a function of the size
of subsystem A, consisting of the first NA sites, for the noninter-
acting Aubry-André model. We used different system sizes and
averaged over Nc configurations of φ given by φ j = 2π j/Nc, , j =
0, . . . , Nc − 1. The vertical dashed lines are guides to the eye, show-
ing the log-periodic maxima of the oscillations. (b) DMRG results at
different critical points obtained for the parameter choices given in
the table, averaging over Nc ∈ [100–300] configurations.

where ζ (w, y) = ∑∞
k=0(k + y)−w is the Hurwitz zeta function

and c†
r = c†

r+kN , k ∈ Z due to periodic boundary conditions.
For such interaction, we can write the path integral for the
Grassman variables c̄, c as

Z =
∫

D[c̄, c]e−(S0[c̄,c]+SU [c̄,c]), (E3)

where, writing in the single-particle eigenbasis of the nonin-
teracting Aubry-André model Hamiltonian H0 [Eq. (1) of the
main text, with t2 = V2 = U = U2 = 0] with eigenenergies

εα = Eα − μ (measured relative to the chemical potential μ),
we have

S0 =
∫ ∞

0
dτ

∑
α

c̄α (τ )(∂τ + εα )cα (τ ) (E4)

SU = −U
∫ ∞

0
dτ

∑
α,β,γ ,δ

V̄αβγ δ c̄α (τ )c̄β (τ )cγ (τ )cδ (τ ) (E5)

and where V̄αβγ δ = (Vαβγ δ − Vβαγ δ + Vβαδγ − Vαβδγ )/4 is the
antisymmetrized version of the interaction matrix elements

Vαβγ δ =
N∑

r=1

N−1∑
j=1

N−wζ (w, j/N ) 〈α|r〉

× 〈β|r + j〉 〈r|γ 〉 〈r + j|δ〉 . (E6)

We will now inspect the interacting part in detail. We
have a four-leg tensor on our hands. We want to study this
tensor close to α, β, γ , δ = 0, where 0 denotes the Fermi
level. Since the tensor is antisymmetric, V̄0000 = 0. We can
now inspect different combinations of indices to see how
the four-leg tensor behaves as the indices depart from 0. We
can start by fixing three of the indices to be 0 and varying
the remaining index. However, this yields zero due to anti-
symmetry. We can also now fix two indices to 0 and vary
the remaining two indices that we call α and β. The pos-
sible contributions are V̄0α0β, V̄α0β0 = V̄0α0β , V̄00αβ = V̄αβ00 =
0, and V̄α00β = V̄0αβ0 = −V̄0α0β . Therefore, the only contribu-
tion that we need to compute is V̄0α0β , as all the others are
either zero or can be obtained from this one. In Fig. 15 we
show that the most important contribution arises for α = β

(we show examples for w = 1.5 and w = 3, but this remains
true for other values of w). Therefore, we will focus on the
contribution V̄0α0α . Note that higher-order contributions in-
volve setting only one index to 0 and varying the others, but
is already a contribution involving three energies, which we
assume to be neglegible as α, β, γ , δ → 0. We then write the
interacting part of the action as

SU = −4U
∫ ∞

0
dτ

∑
α

V̄0α0α c̄0(τ )c̄α (τ )c0(τ )cα (τ )

+ O(εμ
α εx

γ ), (E7)

where we assumed that V̄0α0α ∼ εμ
α and γ denotes the addi-

tional index (or indices) that we choose to make finite in tensor
V̄0α0α [for instance V̄0αγα = V̄0α0α + O(εμ

α εx
γ )] and the expo-

nent x may depend on this choice of indices. This contribution
will therefore either be negligible or the same as of V̄0α0α , if
x = 0. The term V̄0α0α can be written explicitly as

V̄0α0α =1

4

N−1∑
j=1

N−wζ (q, j/N )

(
N∑

r=1

(| 〈0|r〉 |2| 〈α|r + j〉 |2 + | 〈α|r〉 |2| 〈0|r + j〉 |2)

−
N∑

r=1

〈0|r〉 〈r|α〉 〈α|r + j〉 〈r + j|0〉 −
N∑

r=1

〈α|r〉 〈r|0〉 〈0|r + j〉 〈r + j|α〉
)

. (E8)

In Figs. 16(a), 16(b) we show that it is possible to collapse
the results for V̄0α0α for different approximant system sizes

and different energies. The collapse becomes better as εα →
0. Furthermore, there are clusters of eigenvalues that form on
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W

FIG. 14. (a) FRK defined in the text for U = 0.5 and U2 = V2 =
t2 = 0. The dashed black line indicates V = Vc(N = 99). (b) Duality
function χ (x) introduced in Ref. [48] defined through the natural or-
bital at V = Vc(N ). The insets show the results if χ (x) was computed
at the points marked in (a), slightly away from the critical point: in
this case we obtain a featureless function, not robust to increasing N .
We use exactly the same scale in the insets that we use in the main
figure.

the ln|εα| scale, that we will call minibands in the following.
In Fig. 16(c) we can see that the number of states in each
miniband scales as Nmb(n) ∝ pn. By realizing that increas-
ing the order of system size approximant introduces a new
miniband, we can easily find that p = Nm+1/Nm → 1 + √

2
as m → ∞ where Nm is the mth order system size approxi-
mant for τ = 1/

√
2. By defining ε̄ (m)

n = N−1
mb(n)

∑
α∈mb(n) ε

(m)
α

[where the superscript (m) indicates the eigenenergies for the
m-th order size approximant], we also have that ε̄n ∝ pnz, as
indicated in Fig. 16(a), where z = 1.575 is the dynamical crit-
ical exponent. Naturally, the scaling collapse in this figure also
implies that ε (m−l )

α = pzlε (m)
α . These observations allow us to

write the following ansatz,

V̄0α0α = CN−DV̄
m (|ε (m)

α |Nz
m)μ

∑
n

fn([|ε (m)
α | − ε̄ (m)

n ]Nz
m), (E9)

where C is some constant independent of energy and Nm,
and fn are scaling functions. We note that, as shown in
Figs. 16(a), 16(b) and in the main text, DV̄ depends on w.
We will discuss this dependence in more detail below. At
this point we also note that when averaged over minibands,
V̄0α0α ∼ (|ε (m)

α |)μ, where μ > 0. This shows that there is a
generalized Chalker scaling [70–74] at the critical point of the
Aubry-André model, manifested by power-law correlations
(on average) between the single-particle eigenfunctions with
respect to their energy difference.

To carry out a power-counting analysis and inspect the
scaling dimension of the interactions, we take a large enough
system size to begin with so that the data collapse is quite good
for the relevant energies of choice and Eq. (E9) holds. In each
renormalization-group (RG) step, we throw away a miniband
and rescale the energies. Starting with an energy cutoff �k ,

lnln

FIG. 15. (a) 〈V̄0α0β〉φ,κ for N = 239, w = 1.5, and α, β =
0, . . . , 9, averaged over 200 random configurations of φ and κ . We
can see that the dominant contribution occurs for α = β. This can
also be seen in (b), where we make the cuts marked in (a) by the
dashed lines. The vertical dashed line in (b) indicates the diago-
nal contribution, which is much larger than the remaining ones. In
(c) we show that this conclusion is robust to increasing N . To do so,
we compute the average diagonal, OOD = 1

n2−n

∑n
α 
=β〈V̄0α0β〉φ,κ , and

off-diagonal, OD = 1
n

∑n
α=1〈V̄0α0α〉φ,κ , contributions (fixing n = 9,

independently of N). Results are shown for w = 3 (left) and w = 1.5
(right) as examples. OOD and OD scale identically with N , implying
that the diagonal contribution dominates for any N .

after l RG steps we end up with a cutoff �k+l = �k/pzl . We
also start with an initial system size Nm. The noninteracting
action S0, after introducing the cutoff, is given by

S�k ,Nm
0 =

∫ ∞

0
dτ

∫ �k

−�k

dε
∑

α

δ
(
ε − ε (m)

α

)
c̄

× (ε, τ )(∂τ + ε)c(ε, τ ). (E10)

After l RG steps, it becomes:

S�k+l ,Nm

0 =
∫ ∞

0
dτ ′

∫ �k

−�k

dε′ ∑
α

δ
(
ε′ − ε (m−l )

α

)
c̄(ε′, τ ′)(∂τ ′ + ε′)c(ε′, τ ′) = S�k ,Nm−l

0 , (E11)

where we used ε′ = pzlε, τ ′ = τ p−zl , ε (m−l )
α = pzlε (m)

α and defined c̄(ε′ p−zl , τ ′ pzl ) = c̄(ε′, τ ′); c(ε′ p−zl , τ ′ pzl ) = c(ε′, τ ′). The
new action after l RG steps therefore corresponds to the same action, but for a smaller system size Nm−l . For the interacting part,
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FIG. 16. (a), (b) 〈V̄0α0α〉φ,κ averaged over 200 random configurations of φ and κ (〈〉φ,κ denotes the average over φ, κ configurations)
for (a) w = 1.5 and (b) w = 3, where DV̄ (w = 1.5) = w and DV̄ (w = 3) = 2z − 1, with z = 1.575 being the dynamical critical exponent.
(c) Number of states in each miniband, Nmb(n). Note that the minibands are only well-defined (that is, there are clear clusters of states) for
n � 2, above which the scaling Nmb(n) ∝ pn is observed. The dashed lines in (a), (b) are separated by lnpz, implying that the average energy of
each miniband scales as pzn. (d) 〈V̄ ( j)

0α0α〉φ,κ for the interaction term in Eq. (E17), and for α = 1, as a function of system size N and averaged
over 4800 random configurations of φ and κ .

we have

S�k ,Nm
U = −UCN−DV̄

m

∑
α

∫ �k

−�k

dεδ
(
ε − ε (m)

α

)
(|ε|Nz

m)μ
∑

n

f
([|ε| − ε̄ (m)

n

]
Nz

m

)
c̄(0, τ )c̄(ε, τ )c(0, τ )c(ε, τ ), (E12)

where the factor 4 in Eq. (E7) was absorbed in the constant C. The full action for the interacting part after l RG steps is therefore

S�k+l ,Nm
U = − UCp−(DV̄ −z)l N−(DV̄ −z)

m−l

∫
dτ ′ ∑

α

∫ �k

−�k

dε′ δ
(
ε′ − ε (m−l )

α

)(|ε′|Nz
m−l

)μ

×
∑

n

f
([|ε′| − ε̄ (m−l )

n

]
Nz

m−l

)
c̄(0, τ ′)c̄(ε′, τ ′)c(0, τ ′)c(ε′, τ ′)

= p−(DV̄ −z)l S�k ,Nm−l
U . (E13)

In summary, after l RG steps we have:

S�k+l ,Nm =S�k+l ,Nm

0 + S�k+l ,Nm
U (E14)

=S�k ,Nm−l

0 + p−(DV̄ −z)l S�k ,Nm−l
U . (E15)

This implies that the scaling dimension of the interacting
part is DU = z − DV̄ , and therefore interactions are irrelevant
when DV̄ > z. In Fig. 4(b) of the main text, we have seen that
the thermodynamic-limit behavior of DV̄ (w) is compatible
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with

DV̄ (w) =
{
w, w < 2z − 1
2z − 1, w � 2z − 1 . (E16)

This implies that interactions are irrelevant for w > z,
marginal for w = z and relevant for w < z. The relevance
of interactions for w < z is left for future exploration. These
results also imply that even when long-range interactions are
considered, they can be irrelevant in the U → 0 limit if they
decay fast enough. On the other hand, it also follows that
short-range interactions have DV̄ = 2z − 1 and therefore their
scaling dimension is DU = 1 − z. Since z > 1 at the critical
point, short-range interactions are irrelevant. At the extended
phase, on the other hand, z = 1, which implies that interac-
tions are marginal, in agreement with the V = 0 results.

To show that short-range interactions are irrelevant in more
detail, we consider the following finite-range interacting terms
(again assuming periodic boundary conditions),

H ( j)
U = U

N∑
r=1

nrnr+ j (E17)

and compute the associated antisymmetrized interaction
V̄ ( j)

0101 ∝ N−DV̄ for each interaction term of this type, in
Fig. 16(d). We find that no matter the interaction range
j, if the system size becomes sufficiently larger than this
range DV̄ (N ) → 2z − 1. Therefore, any short-range function
of these interaction terms should also follow this behavior.
With this in mind, we expect that the universal behavior un-
veiled in this work is not restricted to the interactions studied
in Eq. (1) of the main text, but also holds for more generic
short-range (and even some long-range) interactions. Even
though in this section we focused on the choices of parameters
used in the main text, we checked that the same conclusions
can also be drawn for other fillings and other values of τ also
considered in Ref. [28].

We finish this section by showing that the short-range
dimension DV̄ = 2z − 1 can be understood from simple ar-
guments. We start by writing

V̄0101 = N−DV̄ h(εgNz ) (E18)

assuming that DV̄ is unknown, where εg is the energy gap for
a system size N , and h is a scaling function. Since we have
εg = ϒN−z, where ϒ is a constant, we know that V̄0101 =
N−DV̄ f (ϒ ) ∼ N−DV̄ and therefore

V̄0101 = εDV̄ /z
g . (E19)

On the other hand, we can write

V̄0101 =
N∑

r=1

V̄ r
εg
, (E20)

where

V̄ r
εg

= 1

4

(| 〈0|r〉 |2| 〈1|r + j〉 |2 + | 〈1|r〉 |2| 〈0|r + j〉 |2

−(〈0|r〉 〈r|1〉 〈1|r + j〉 〈r + j|0〉 + c.c)
)
.

(E21)
After averaging over φ and κ , translational invariance is re-
stored and V̄ r

ε becomes r independent. Furthermore, we know

TABLE II. Choices of sizes N , rational approximants τc, and
number of φ configurations Nc for τ = 1/

√
2 and τ = (

√
5 − 1)/2.

The different phases φ were chosen from a uniform grid given by
φ j = 2π j/Nc, j = 0, . . . , Nc − 1.

τ = 1/
√

2
N 41 99 239 577 1393 3363

τc
29
41

70
99

169
239

408
577

985
1393

2378
3363

Nc 500 500 500 500 500 300

τ = (
√

5 − 1)/2
N 34 55 89 144 233 377 610 987 1597 2584 4181
τc

21
34

34
55

55
89

89
144

144
233

233
377

377
610

610
987

987
1597

1597
2584

2584
4181

Nc 1000 1000 1000 1000 750 750 500 500 500 300 250

that V̄ r
εg

→ 0 as εg → 0. Expanding V̄ r
εg

in powers of εg, as-
suming it to be a regular function:

V̄ r
εg

= a1εg + a2ε
2
g + · · · . (E22)

We have that a1 = 0 since it can be easily shown that V̄ r
εg
�

0 for any εg. We therefore have

V̄0101 ∼ Nε2
g ∼ ε2−1/z

g . (E23)

By comparing with Eq. (E19), this therefore implies that
DV̄ = 2z − 1. Therefore, we conclude that the scaling dimen-
sion for short-range interactions simply follows from V̄ r

εg
being

a regular function of εg.

APPENDIX F: CHARGE GAP SCALING FOR
ALTERNATIVE CHOICES OF τ AND FILLING ρ

From the results that we obtained in the main text, we have
seen that the scalings of the charge gap (and other quantities
such as the fractal dimension) with system size obtained at dif-
ferent LL-AG transitions are compatible, no matter the chosen
parameters (hoppings, potential, interactions), at half-filling
(ρ = 1/2) and for approximants of τ = 1/

√
2 (Fig. 3 of the

main text). A natural question that arises is whether this is
a special feature of our choice of ρ and τ . In particular, we
know that the dynamical exponent z depends on both ρ and τ

in the noninteracting limit, for the Aubry-André model [28].
If we make other choices of ρ and τ , is the charge gap scaling
also independent on the remaining Hamiltonian parameters,
as long as we are at the critical point? Since this is a question
that we can already ask in the noninteracting limit, we will
take the class of models considered in the main text, in the
noninteracting limit, with Hamiltonian given by:

H = −
∑

i

c†
i ci+1 + t2

∑
i

c†
i ci+2 + H.c.

+
∑

i

(V cos(2πτci + φ) + V2 cos[2(2πτci + φ)])c†
i ci.

(F1)
For the finite-size scaling results that follow, we use open

boundary conditions and the sizes and rational approximants
τc given in Table II. The results are given in Fig. 17, where we
can see that the scalings obtained at critical points of widely
different models are very compatible for fixed ρ and τ . In
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FIG. 17. Scaling of the charge gap using open boundary conditions and averaged over φ, for different fillings and choices of τ and at
critical points of different models. The different critical points were estimated by imposing twisted boundary conditions and estimating the
value V = Vc for which �Eκϕ = 1 (leaving the remaining parameters fixed), for the largest used system size. We indicate all the relevant
parameters in the figure and also the number of scaling functions for the selected τ and ρ, that were obtained in Ref. [28]. The values of z
indicated are extracted from fits using sizes NN j+1, j = 0, . . . , jmax of the lists given in Table II, where N is the number of scaling functions.
In (a) we used the five largest sizes, in (c) the three largest sizes belonging to each scaling function and in (d) we used all sizes. The different z
estimates in (c), (d) for the same critical points were obtained from fits to sizes that belong to the different existing scaling functions.

some cases, there are more than one scaling functions, which
means that an accurate finite-size scaling analysis should
consider the system sizes that belong to the different scal-
ing functions separately [28]. Remarkably, even the scaling
features that arise due to the existence of multiple scaling
functions (e.g., the three-step scaling in Fig. 17 due to the

existence of three scaling functions) holds at different critical
points as long as ρ and τ are fixed. These results support
our claim that the scaling invariance that we observed at the
critical point is not a special feature of our choice of ρ and τ .
We checked for additional models, e.g., the model in Ref. [34],
and obtained compatible results.
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