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Topological invariants are global properties of the ground-state wave function, typically defined as winding
numbers in reciprocal space. Over the years, a number of topological markers in real space have been introduced,
allowing to map topological order in heterogeneous crystalline and disordered systems. Notably, even if these
formulations can be expressed in terms of lattice-periodic quantities, they can actually be deployed in open
boundary conditions only, as in practice they require computing the position operator r in a form that is ill
defined in periodic boundary conditions. Here, we derive a local Chern marker for infinite two-dimensional
systems with periodic boundary conditions in the large supercell limit, where the electronic structure is sampled
with one single point in reciprocal space. We validate our approach with tight-binding numerical simulations on
the Haldane model, including trivial/topological superlattices made of pristine and disordered Chern insulators.
The strategy introduced here is very general and could be applied to other topological invariants and quantum-
geometrical quantities in any dimension.
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I. INTRODUCTION

Topological order is defined by the existence of in-
teger topological invariants that globally characterize the
system and cannot be changed under adiabatic transforma-
tions. For condensed-matter systems, and electronic structure
in particular, topological invariants are often introduced as
reciprocal-space integrals of quantum-geometrical quantities
that become quantized over closed surfaces. The archetypal
topological invariant is the Chern number in two dimensions,
which can be written as the integral of the Berry curvature
over the Brillouin zone (BZ) torus and it is a Z integer [1,2].
Even for correlated systems, integer invariants can be obtained
by integrating over the boundary conditions, as for the many-
body Chern number [3]. Hence, topological invariants are
conventionally introduced as global quantities of the system,
where the latter is implicitly assumed to be homogeneous. A
number of strategies have been proposed to calculate topolog-
ical invariants in nonhomogeneous or disordered systems [4],
such as the switch-function formalism [5–7], methods based
on the scattering matrix [8,9] or on the noncommutative index
theorem [10–12], the Bott index [13–15], real-space formulas
[16,17], and local markers [18].

Notably, nontrivial topology has its most dramatic mani-
festation in the simplest, and most relevant, nonhomogeneous
setting: the interface between a topological phase and a trivial
phase, such as vacuum or a trivial semiconductor. For the
sake of concreteness, let us consider a quantum anomalous
Hall (also known as Chern) insulator in the absence of strong
electronic correlations, which is defined by a nonvanishing
Chern number, and we place it in contact with a vacuum
or with a trivial insulator. As topological invariants cannot
change under deformations of the Hamiltonian that do not
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close the band gap, metallic chiral edge states will appear at
the one-dimensional edge separating the trivial from the topo-
logical regions. This setting cannot be described at once by
any global topological invariant, as the system is clearly made
of two, topologically distinct, regions. On the other hand,
the locality (or “nearsightedness” according to Kohn [19]) of
the ground-state electronic structure hints that it must be pos-
sible to probe nontrivial topology, which is also a ground-state
property, locally in real space and by using only knowledge
from the neighborhood around the region of interest.

Indeed, it has been shown by Bianco and Resta [18] that
the Chern number C can be mapped to real space by deriving
a topological marker C(r). Notably, this is possible not only
for topological—i.e., quantized—properties of the electronic
structure, but also for the broader set of quantum-geometrical
quantities, where a corresponding local real-space marker
exists for both insulators and metals. Examples include the
geometrical intrinsic part of the anomalous Hall conductivity
[20,21], the orbital magnetization [22–25], and the localiza-
tion tensor [26] which is deeply connected to the quantum
metric [27]. Local topological markers can be related to local
circular dichroism, which can be experimentally measured
[28–30]. The strategy behind the Bianco-Resta marker relies
on rewriting the Berry curvature in terms of the operator
PrQ, where P and Q are the projector operators over the
occupied and empty orbitals, respectively. Several equivalent
formulations of the local Chern marker (LCM) are possible.
Here, we report the one developed in Ref. [20],

C(r) = −4π Im 〈r|PxQy|r〉 (1)

= 4π Im 〈r|P[x,P][y,P]|r〉 , (2)

where x and y are the Cartesian components of the position
operator r; the second line is reformulated to emphasize that
only occupied states are needed, hence being more suited to
numerical implementations. The local Chern number can then
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be obtained by calculating the macroscopic average of C(r),
essentially taking the trace per unit of area TrA in a neigh-
borhood around the region of interest. A key aspect of this
approach is that the Chern number can be expressed as a trace,
which can be evaluated locally in real space. At variance with
r, the operators PrQ and [r,P] are well defined and regular
even in periodic boundary conditions (PBCs) [18]. However,
in practice, such operators are not directly accessible and are
typically constructed by calculating first the position operator
r in a proper basis: Only after, r is multiplied with the projec-
tion operators to obtain Eqs. (1) or (2). Hence, the usual LCM
can only be applied to open boundary conditions (OBCs), i.e.,
for finite samples.

In this paper, we derive an LCM for extended systems
in PBCs. Our approach allows calculating space-resolved
Chern numbers from large-cell electronic structure simula-
tions, where the BZ is typically sampled with a single point,
usually the BZ center �. We validate the approach on homoge-
neous samples and trivial/topological superlattices based on
the Haldane model [31], where we examine both pristine and
disordered Chern insulating phases. In passing, we provide a
simple physical picture that connects the single-point Chern
number [32,33] with the Bott index [13–15], and demon-
strate that both methods measure the topological obstruction
to choose a periodic smooth gauge all over the BZ in the
large-cell (i.e., single k-point) limit.

II. LOCAL CHERN MARKER IN PERIODIC
BOUNDARY CONDITIONS

A. Single-point local marker

PBCs are often the method of choice for electronic struc-
ture calculations. Not only are they the most natural option to
study perfect crystals, but they also reduce finite-size effects
for noncrystalline systems, such as materials with defects,
surfaces, heterojunctions (e.g., in lead-conductor-lead geome-
tries), or amorphous materials. In the case of noncrystalline
structures, large periodic cells are used and results are typi-
cally checked for convergence with respect to the size of the
simulation cell. If the size is large enough, the sampling of
the BZ can be reduced to a single point in reciprocal space,
typically the � point. In this limit, the Chern number can
be calculated through single-point formulas as discussed in
Ref. [32], We report here the result derived therein,

C = − 1

π
Im

Nocc∑
n=1

〈ũnb1 |ũnb2〉, (3)

where b1,2 are the reciprocal lattice vectors, |ũnb j 〉 are the
“dual” states of the Hamiltonian eigenstates |un�〉, and rep-
resent, in the limit of a large supercell, the states obtained by
parallel transport. The sum runs over Nocc occupied dual states
defined as

|ũnb j 〉 =
Nocc∑
m=1

S−1
mn (b j )e

−ib j ·r |um�〉 , (4)

where we introduce the overlap matrix Snm(b j ) =
〈un�|e−ib j ·r|um�〉. The dual states enjoy the property
〈ũnb j |um�〉 = δnm and allow fixing a continuous gauge,

essentially adopting a discretized version of the covariant
derivative [34,35].

Now we rewrite Eq. (3) as a trace

C = − 1

π
Im Tr

{
Nocc∑
n=1

|ũnb2〉 〈ũnb1 |
}

, (5)

and we define

P̃b2,b1 =
Nocc∑
n=1

|ũnb2〉〈ũnb1 |. (6)

In general, P̃b2,b1 is not a projector but can be written in terms
of the projectors Pb j = ∑Nocc

n=1 |ũnb j 〉 〈ũnb j |,
P̃b2,b1 = Pb2P�Pb1 , (7)

where P� = ∑Nocc
n=1 |un�〉 〈un�|. We exploit the cyclic property

of the trace and write the single-point Chern number as

C = − 1

2π
Im Tr{[Pb1 ,Pb2 ]P�}. (8)

Finally, the LCM can be evaluated by taking the macroscopic
average (i.e., the local trace per unit of area) of

C(r) = − 1

2π
Im 〈r|[Pb1 ,Pb2 ]P�|r〉 . (9)

Equation (9) is manifestly gauge invariant and perspicuous: A
nonvanishing local Chern number arises when Pb1 and Pb2

locally do not commute. In fact, only in the trivial phase
is it possible to choose a periodic smooth gauge such that
Pb1 = Pb2 .

B. Relation with the Bott index

Notably, this brings some insights on the common ap-
proach of calculating the Chern number of noncrystalline
systems through the Bott index [15,36–40], which mea-
sures the commutativity of projected position operators U =
P�e

i2π
L xP� and V = P�e

i2π
L yP� . Indeed, if we take the Pb1

and Pb2 operators as defined above Eq. (7) but adopt a pe-
riodic gauge, we obtain the U and V operators appearing in
the Bott index, as by definition of the direct and reciprocal
lattice vectors ai · b j = 2πδi j . While Toniolo has mathemat-
ically demonstrated the formal equivalence between the Bott
index and the Chern number [40,41], Eqs. (8) and (9) provide
a more physical explanation for why the noncommutativity
of the projected position operators is related to the Chern
number of noncrystalline systems: These U and V operators
are essentially the ground-state projector transported from
the BZ center to the BZ boundary with the periodic gauge.
As said above for the Pb1 ,Pb2 operators, in the presence of
nonvanishing Chern numbers the gauge cannot be chosen to
be simultaneously periodic and smooth over all the BZ, hence
the two operators cannot commute. Hence, the single-point
Chern number and the Bott index ultimately measure the same
phenomenon: the topological obstruction to choose a periodic
smooth gauge all over the BZ in the limit where the BZ shrinks
to a single point.

In addition, Ref. [39] reports that performing singular value
decomposition (SVD) on the projected position operators im-
proves the numerical stability of the Bott index calculation
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and is hence adopted in their study; no theoretical justification
was provided therein, but from the point of view of Eq. (8)
that can be understood as a way to invert the overlap matrix
appearing in Eq. (4) and perform a single-point covariant
derivative. However, we emphasize that the formula for the
Bott index [see Eq. (4) of Ref. [39]] still differs substantially
from our PBC LCM introduced in Eq. (9), including the fact
that the Bott index calculates a logarithm and does not lead to
a space-resolved local marker.

C. Finite-sample limit

We now consider the limit of an infinitely large supercell
in PBC where a finite sample is surrounded by vacuum, so
x, y � L whenever the wave function is not zero and the
sample is centered in the middle of a square cell. We can
expand the projectors up to order L−2 in the supercell size

Pb j ≈ P� + 2π i

L
[P�, r j] − 2π2

L2
[r j, [r j,P�]], (10)

and use the expression in Eq. (9). Our PBC Chern marker es-
sentially converges to the Bianco-Resta OBC Chern marker of
Eq. (2) (for the full calculation, see the Supplemental Material
[42]):

C(r) =
x,y�L

−4π Im 〈r|P�x(I − P� )y |r〉 + O(L−3). (11)

D. Symmetric formula

Before discussing numerical results, we introduce a “sym-
metric” version of our PBC marker, where we start from the
corresponding “symmetric” single-point Chern number

C(sym) = −1

4π
Im

Nocc∑
n=1

(〈ũnb1 | − 〈ũn−b1 |)(|ũnb2〉 − |ũn−b2〉),

(12)

and define the operator

P̄ =
∑
σ1=±

∑
σ2=±

σ1σ2P̃σ2b2,σ1b1

= 1

2

⎛
⎝ ∑

σ1=±

∑
σ2=±

σ1σ2[Pσb1 ,Pσ2b2 ]

⎞
⎠P, (13)

where we generalize Eq. (6) as

P̃±b2,±b1 =
Nocc∑
n=1

|ũn±b2〉〈ũn±b1 |. (14)

Here, the term “symmetric” refers to the symmetric derivative
(as opposed to the right-hand, i.e., “asymmetric,” derivative)
used to calculate the Berry curvature when the single-point
limit is taken [32]. By performing similar steps as done for
Eq. (9), one obtains a symmetric marker:

C(sym)(r) = − 1

4π
Im 〈r|P̄|r〉

= − 1

8π
Im 〈r| ([Pb1 ,Pb2 ] + [P−b1 ,P−b2 ]

− [P−b1 ,Pb2 ] − [Pb1 ,P−b2 ])P� |r〉 . (15)

FIG. 1. Convergence of the local Chern marker in periodic
boundary conditions for the topological and trivial phase, compared
with the Bianco-Resta marker in open boundary conditions. Both
the asymmetric and symmetric formulas converge with the supercell
linear size L as a power law, where the symmetric version is notably
faster.

III. NUMERICAL RESULTS

We validate our approach with tight-binding simulations on
the Haldane model [31], which describes electrons hopping on
a two-dimensional (2D) honeycomb lattice with a staggered
magnetic flux. The parameters of the model are the nearest-
neighbor hopping t = 1, the on-site energy term ±� with
opposite signs on the two sublattices, and the second-nearest-
neighbor hopping term t2eiφ where t2 = 0.15. We release [43]
a PYTHON implementation of the LCM PBC in the STRAW-
BERRYPY [44] package, which is interfaced with two popular
tight-binding software engines such as PYTHTB [45] and TB-
MODELS [46,47], and it can be easily interfaced to other codes.

In Fig. 1, we report the convergence of our PBC LCM
calculated in a single cell (two sites) in the middle of the bulk,
in its symmetric [Eq. (15)] and asymmetric implementation
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FIG. 2. Local Chern marker for a 6000-site superlattice of the pristine Haldane model made of topological and trivial stripes in periodic
boundary conditions. The left and right regions are topological (Chern number C = 1) while the center is trivial (C = 0); one-dimensional
metallic edge states separate the regions with different Chern numbers. The inset displays the model parameters used for the trivial (red) and
topological (blue) regions.

[Eq. (9)], with respect to the supercell size. We also compare it
with the Bianco-Resta Chern marker [18] calculated on finite
samples within OBC corresponding to the same number of
sites. The convergence of the PBC LCM is described by a
power law: For this choice of the Hamiltonian parameters
the power is about −3.6 for the topological and about −2.7
for the trivial phase if evaluated via the symmetric formula
[Eq. (15)], while values are about half in the asymmetric
version [Eq. (9)]. The value of the power depends on the
magnitude of the gap, with larger gaps leading to faster con-
vergence; in general, small lattice sizes are sufficient to infer
the topological phase with accuracy. As for the single-point
Chern number [32,33], the symmetric formula [Eq. (15)] con-
verges much faster than the asymmetric version [Eq. (9)],
hence in the following we always use Eq. (15).

Then we consider the more challenging case of a
topological/trivial superlattice, where the system is perfectly
periodic along one direction while it is made of alternating
topological (� = 0.3) and trivial (� = 1.25) regions along
the other. The results for a 6000-site supercell are reported in
Fig. 2. The PBC LCM neatly charts the topological landscape
in real space and distinguishes the topological from the trivial
region, even close to the boundary of the cell where Eqs. (1)
and (2) would dramatically fail. The left and right boundaries
of the cell are connected by PBC and the marker is continuous;
topologically protected metallic 1D channels are present at
about 1/3 and 2/3 of the cell along the direction x, precisely
where the topological marker changes value. Last, we validate
our approach for a nonhomogeneous and disordered system.
We consider a 5000-site periodic supercell of the Haldane
model (� = 0.2, φ = 0.65π ) made of disks of radius R =
13 (in units of the lattice parameter) centered on the Bra-
vais lattice with strong (W = 10) Anderson disorder [48,49],
embedded in a weakly disordered (W = 1) matrix. Disor-
der is introduced through a random on-site term uniformly
distributed in [−W/2,W/2]. From single-point Chern num-
ber calculations we know that extended systems described
by those Hamiltonian parameters would be respectively in
the topological phase (C = 1) for weak disorder and in the
trivial phase (C = 0) for strong disorder: Hence, we expect
our inhomogeneous system to display topologically trivial
islands, embedded in a topologically nontrivial matrix. This
setting models topological insulators where the concentration

of impurities or defects is not homogeneous (local damage),
and locally sufficiently higher to drive the system to the trivial
phase. The presence of disorder and metallic interfaces may
lead to a gapless density of states over large areas, so we
adopt the usual smearing technique similarly to what has been
done in Ref. [20] to study the locality of the anomalous Hall
conductivity and improve the convergence with respect to the
system size. In the presence of smearing, the projectors Pb j

sum over all the Hamiltonian eigenstates with a Fermi-Dirac
occupation function f (εn, T, μ), where εn is the eigenvalue
corresponding to the nth eigenstate, T is a fictitious tem-
perature, and μ is the chemical potential. In addition, we
introduce an upper cutoff by discarding the empty states with
small occupations [for which f (εn, T, μ) < fc where we set
fc = 0.1], so that the projectors appearing in Eqs. (9) and (15)
take the form

P� =
∑

n: f (εn,T,μ)< fc

f (εn, T, μ) |un�〉 〈un�| , (16)

Pb j =
∑

n: f (εn,T,μ)< fc

f (εn, T, μ) |ũnb j 〉 〈ũnb j | . (17)

We report in Fig. 3 the numerical results: The PBC LCM is
equal to one in the low-disorder regions and vanishing in the
strong-disorder circular regions, where Anderson disorder is
sufficiently strong to locally destroy the nontrivial topology.
As the trivial islands are centered on the Bravais lattice, the
PBC marker correctly displays them at the four corners of the
supercell (a task that could not be achieved with the Bianco-
Resta OBC marker), hence demonstrating that it correctly
treats the position operator in PBCs while truly being a local
marker.

IV. CONCLUSIONS

In conclusion, we have shown that topological order can
be probed locally also in PBCs by means of a simple
space-resolved marker, that is capable of charting electronic
topology in inhomogeneous and/or disordered systems. Our
PBC LCM is based on the ground-state electron distribu-
tion only and is derived from the single-point Chern number
[32,33], hence being very suited to large-scale ab initio elec-
tronic structure simulations; that is, it is relevant for the study
of amorphous topological materials [4,50,51], quasicrystals
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FIG. 3. Local Chern marker for a 5000-site supercell of the
Haldane model with Anderson disorder W in periodic boundary
conditions. The system is made of disks of radius R = 13 in the
trivial phase (Chern number C = 0) centered on the Bravais lat-
tice, embedded in a topologically nontrivial matrix (C = 1); circular
metallic edge states separate the two regions with different Chern
numbers. The parameters of the Haldane model are constant ev-
erywhere (� = 0.2, φ = 0.65π ), while the topological and trivial
regions experience respectively weak (W = 1) and strong (W = 10)
Anderson disorder. The smearing temperature is set to T = 0.05 and
macroscopic averages are performed over a circular region of radius
r = 3.

[38,39], and in the presence of defects or interfaces. Crucially,
our formula contains the operator r only as an exponent in

eib1,2·r, which is known to be the correct approach to treat
the position operator in PBCs [52,53] and is related to the
modern theory of polarization based on the Berry phase [54].
We note that the PBC position operator has already proved to
be key in calculating topological invariants in real space [16],
also for interacting systems [55,56]. We have also provided
physical insights on the connection between the PBC single-
point/local Chern invariants and the Bott index: Measuring
the noncommutativity of the projected position operators is
essentially measuring the impossibility of choosing a smooth
gauge all over the BZ in the limit of a large supercell with
single-point sampling. Finally, we emphasize that our ap-
proach is potentially very general and could be applied to
any geometrical and topological quantity of the electronic
structure, in any dimension. The only requirement to develop
similar PBC local markers is that the given quantity must
be a ground-state bulk property of the system and admit a
single-point formula in the large supercell limit.
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