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Strong localization of microwaves beyond two dimensions in aperiodic Vogel spirals
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Despite extensive studies, strong localization of electromagnetic waves in three dimensions has never been
experimentally achieved. Stepping out of the paradigm of disordered systems, we carry out microwave transport
experiments in planar aperiodic Vogel spiral arrays of cylinders with high dielectric permittivity. We characterize
the electromagnetic modal structure in real space showing mixtures of long-lived modes with Gaussian, expo-
nential, and power-law spatial decay. This unique modal structure, which cannot be found in traditional periodic
or disordered photonic materials, is shown to be at the origin of strong localization of electromagnetic waves
that survives even in a three-dimensional environment.
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I. INTRODUCTION

A full understanding and control over electromagnetic
transport in photonic media is crucial for the efficient design
of optical structures, paving the way for many applications
[1]. Controlling light transport in photonic structures involves
the ability not only to understand but also to engineer the
electromagnetic modes that such structures can support. In the
case of traditional periodic and disordered optical structures,
light transport and the underlying electromagnetic modal
structure have been extensively investigated over the years.
In periodic photonic structures, the scattering of propagating,
extended electromagnetic waves from Bragg planes is related
to the opening of photonic band gaps at certain frequencies
[2]. In disordered optical systems, the interference of multiply
scattered waves may lead to the formation of exponentially
localized states and eventually to the breakdown of light dif-
fusion [3–5]. This effect, the optical counterpart of Anderson
localization for electrons in solids [6], strongly depends on
dimensionality [7], and, in three-dimensional (3D) dielectric
media, there is no unquestionable observation of light local-
ization transition so far for disordered systems (DSs) [8–11].
In two-dimensional (2D) media, when structural correlations
are introduced, as is the case for hyperuniform disordered
materials [12], a richer transport diagram exists that include
transparency, light diffusion, Anderson localization, or full
band gaps, depending on the frequency [13–22].

As an alternative to periodic and disordered photonic
structures, aperiodic metamaterials designed by means of de-
terministic mathematical rules have emerged as a material
platform for photonic devices [23–25]. Indeed, these struc-
tures exhibit unique optical properties that do not exist in
either periodic or disordered photonic media, such as frac-
tal transmission spectra [26,27], subdiffusive transport [28],
and light localization transition [29]. From a technological
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point of view, these unusual optical properties have fostered
the development of functionalities that also cannot be found
in conventional periodic or disordered structures, including
applications in lasing [30,31], optical sensing [32–34], pho-
todetection [35], and optical imaging [36]. Among various
classes of deterministic aperiodic photonic media, Vogel spi-
ral arrays single out for its versatility and the possibility to
tailor its structural order [37–39] and light-matter interactions
[40,41]. The unusual optical properties of aperiodic systems
are enabled by their unique electromagnetic modal struc-
ture. For instance, recently it was theoretically demonstrated
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FIG. 1. (a) Typical configuration of the experimental microwave
setup. Cylinders are placed between two parallel aluminum plates
separated by a distance h = 13 mm. A fixed antenna (2) is placed
at the origin of the reference system (x, y) = (0, 0) while an other
antenna (1) is positioned in the center of the movable top plate
(x, y). (b) Image of the 2D array of dielectric cylinders. The top plate
has been removed to reveal the details of the sample. (c) Reflected
|S11(ν )|2 (blue line) and transmitted coefficients |S21(ν )|2 (orange
line) for the GA spiral at a given distance d = √

x2 + y2 (x = 75 mm,
y = 75 mm) from the origin of the reference system.
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that aperiodic Vogel spiral arrays display a rich spectrum of
long-lived and spatially localized quasimodes with distinc-
tive spatial decay forms, namely, Gaussian, exponential, and
power law [42].

In the present paper, we not only experimentally demon-
strate that these characteristic types of electromagnetic modes
coexist in Vogel spirals but also that this unique electro-
magnetic modal structure leads to unusual wave transport
phenomena. Indeed, by conducting microwave transport ex-
periments in Vogel spiral arrays of cylinders with high
dielectric permittivity, we unveil the consequences of this
peculiar modal structure on wave transport and localization.
In particular, we show that the presence of long-lived quasi-
modes with exponential, power law, and Gaussian spatial
decays is at the origin of a very slow decay of the elec-
tromagnetic energy that propagates throughout the arrays.
Furthermore, we experimentally demonstrate that these lo-
calized modes satisfy the Thouless criterion for Anderson
localization in random systems, despite the fact that the prop-
agation medium is not disordered, and that the modes are not
necessarily exponentially localized in space. Finally, and this
is the main result of our paper, we demonstrate the robustness
of these long-lived modes against the change in the dimen-
sionality of the cavity, beyond the 2D limit, preserving their
spatial profiles and quality factors even when the homogene-
ity of the electric field in the z direction is broken. Strong
localization of light in 3D is a long-standing, sought-after
goal in the field of waves in complex media [9] that we
experimentally achieve not with uncorrelated disordered
structures, as has been unsuccessfully tried for many years,
but rather with deterministic aperiodic systems.

II. EXPERIMENTAL SETUP

Our main sample consists of N = 390 cylindrical scatter-
ers (dielectric permittivity ε � 45, radius 3 mm, and height
5 mm) disposed in a cavity made of two parallel aluminium
plates which are separated by a distance h = 13 mm [see
Fig. 1(a)]. Cylinders are placed following a Vogel spiral array
of 140 mm radius with a planar density ρ ≈ 0.65 cm−2 [see
Fig. 1(b)] and each of them is a Mie scatterer [18]. This lattice,
often called a golden-angle spiral (GA spiral), is defined in
polar coordinates (r, θ ), as rn = a0

√
n (a0 = 6.93 mm) and

θn linked to the golden number (see Appendix A). To ensure
homogeneous electrical contact between the scatterers and the
bottom plate and thus a good reproducibility, we covered the
bottom plate with a self-adhesive thin plastic film.

As sketched in Fig. 1(a), the electric field in the cavity is
mapped by the straight antenna (1) placed at the center of
the movable top plate. We measure all points on a 5×5 mm2

grid, covering the disk region occupied by the spiral plus one
corner of the embedding square [see, e.g., Fig. 2(a)], resulting
in ∼3600 measured points (see Appendix B). The presence of
the second straight antenna (2) at the center of the bottom plate
defines the origin of the system coordinates (x, y) = (0, 0)
and allows us to measure both the complex reflection and
transmission signals S11(ν) and S21(ν), respectively, using a
vector network analyzer. Note that both antennas are linear
and perpendicular to the plane of the cavity, thus imposing a
transverse magnetic (TM) polarization (electric field perpen-
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FIG. 2. Spatial modal structure and radial profile of repre-
sentative eigenmodes with characteristic (a), (b) power law; (c),
(d) exponential; and (e), (f) Gaussian decay. Amplitude maps are
normalized such that max(|Eν |) = 1. Radial decays (pink dots) are
obtained by performing an azimuthal average operation where r =√

(x + 5)2 + y2, i.e., r is measured from the geometrical center of the
spiral and expressed in mm. Different radial decays are discriminated
by minimizing the sum of squared residuals.

dicular to the plane of the cavity). For a height h = 13 mm,
the empty cavity can be completely considered as 2D below
the cutoff frequency νcut = c0/(2h) ≈ 11.5 GHz, where c0

is the speed of light in air. Beneath this threshold, just the
fundamental transverse magnetic mode TM0 can propagate
in air and the field is invariant along the z axis. Measured
positions are scanned in a frequency range between 5.5 and
15 GHz, meaning that both 2D and 3D regimes can be inves-
tigated. Examples of the measured spectra |S21|2 as well as
|S11|2 are shown in Fig. 1(c) for a given distance d between
both antennas, where the geometrical center of the spiral is
placed at (x, y) = (−5 mm, 0). Vanishing transmission values
(reflection values close to 1) at certain frequencies indicate
the presence of band gaps [43]. Outside of these gaps, the
transmitted signal is a superposition of peaks which are related
with the resonances of the system. The parameters of each
resonance (frequency ν, width δν, and complex amplitude)
are extracted by means of the harmonic inversion technique as
described in Refs. [44,45]. Later, by clustering the amplitudes
of the same resonance measured at all positions, the map of
the electric field amplitude Eν (x, y) is obtained revealing the
spatial structures of each eigenmode of the system [18].

III. CONDUCTANCE IN VOGEL SPIRAL

Figure 2 shows the spatial modal structure of three charac-
teristic eigenstates found in the same experimental GA spiral
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FIG. 3. (a) Evolution of the energy as function of time for three
different frequency centers f0 and �ω = 0.01 GHz. (b) Characteris-
tic decay time t0 as a function of the frequency. The total frequency
range have been mapped by 472 frequency filters spaced by � f =
0.02 GHz with �ω = 0.01 GHz. (c) Experimental density of states
(DOS). (d) Experimental Thouless conductance 〈g〉 as a function
of the frequency. The dotted line indicates 〈g〉 = 1. Frequency win-
dows with the analyzed long-lived states (exponential, power law, or
Gaussian) or band gaps have been highlighted (violet or grey stripes,
respectively). Solid (dashed) lines in (b)–(d) correspond to the case
h = 13 mm (h = 17 mm).

and their corresponding radial decay. Specifically, power-law,
exponential, and Gaussian radial decays have been identified
by minimizing the sum of squared residuals. Our experimental
results demonstrate that Vogel spirals support a rich vari-
ety of long-lived modes that exhibit different spatial extent
and radial decay profiles, hence confirming recent theoret-
ical predictions [42]. This can be contrasted to disordered
samples, where (Anderson) localized states are always char-
acterized by an exponential radial decay (see Appendix C).
The analyzed long-lived modes found experimentally in this
GA spiral sample are distributed in three frequency windows
around ν ∼ 6.6 GHz (exponential, power-law, and Gaussian
modes), ν ∼ 8.3 GHz, and ν ∼ 11.2 GHz (Gaussian modes),
and are characterized by high quality factors Q = ν/δν, i.e.,
low energy-loss ratios.

Dynamical electromagnetic transport properties can be
probed by measuring the temporal evolution of the en-
ergy carried by a certain superposition of modes by means
of the transmission spectra as E = ∑

all positions |F{S21 ×
Ff0,�ω(ν)}|2, where F{·} represents the Fourier transform and
Ff0,�ω(ν) a Gaussian band pass filter of bandwidth �ω cen-
tered around f0. Figure 3(a) displays the energy as a function
of time for three different filters centered around the frequency
of the modes extracted in Fig. 2 and with �ω = 0.01 GHz.
Within these frequency intervals, the presence of modes with

high quality factors leads to very slow energy dynamics. As-
suming an exponential decay of the energy with respect to
time, E ∼ exp(−t/t0), one can fit a characteristic decay time
t0 that is closely related to the average width of the modes
contributing to the transport 〈δν〉 ∼ 1/t0. Next, by repeating
the previous analysis in a systematic way, we compute the
characteristic decay time t0 as a function of the frequency
[see Fig. 3(b)]. We focus on frequency ranges where the
spatial structure of the eigenmodes can be properly charac-
terized by the harmonic inversion/clustering methods. Here,
t0 regions associated with frequency windows containing ex-
ponential, power-law, or Gaussian states (pink stripes) are
characterized by high peaks whose maximum values are of
the order of those found in DSs (see Appendix C), while t0
valleys correspond to short-lived, not spatially localized states
or band gaps.

The existence of band gaps can be investigated by experi-
mentally extracting the density of states (DOS) that is directly
accessible from the intensity of the reflected signal as DOS ≈
1 − 〈|S11|2〉all positions [46,47]. In Fig. 3(c), we plot the DOS,
where two band gaps are observed (grey stripes). The two
lower band edges are populated by Gaussian states [48], while
no modes are found by the harmonic inversion/clustering
methods in the band gaps, except for the peaks at the center
of the first band gap that are a signature of defect modes of
the system. Additionally, an increment in the number of states
supported by the system is observed above νcut.

The Thouless conductance, defined as g = δν/�ν (where
�ν is the spacing between consecutive resonances), is a key
quantity in localization theory and it is used as a fundamental
criterion for Anderson localization in DSs. Indeed, the Thou-
less criterion establishes that Anderson localization occurs for
g < 1 [49–51]. Using the two previously introduced quantities
(DOS and t0), we experimentally extract the average Thouless
conductance [see Fig. 3(d)] as 〈g〉 ∼ 〈DOS〉� f /(t0� f ), where
〈DOS〉� f is the average DOS over the frequency interval
� f . Figure 3(d) experimentally demonstrates that nonran-
dom systems can fulfill the Thouless criterion for Anderson
localization, originally conceived to characterize localization
in disordered structures, again confirming theoretical predic-
tions [29]. Our findings confirm that not only eigenmodes
characterized by an exponential spatial decay can satisfy
the Thouless condition, as occurs for DSs, but also other
modes with different spatial decay form, such as algebraic and
Gaussian decays. This result demonstrates experimentally the
unique modal structure that aperiodic Vogel spirals support,
leading to unusual properties of wave transport and localiza-
tion. The existence of long-lived modes with different decay
types in the same system means that these distinct classes of
modes will have a different sensitivity to the sample bound-
aries. As a result, these classes of modes exhibit a different
evolution of the transport quantities with respect to the system
size, as shown in the following section.

IV. SCALING ANALYSIS

To investigate how the transport quantities as well as the
modes are affected by the boundaries of the spiral, the ex-
periment is repeated for 12 different configurations, and for
each one of them, the number N of cylinders in the array
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FIG. 4. (a), (b) Characteristic decay time t0 as a function of the
frequency and of the number of cylinders. The total frequency range
has been mapped by 47 frequency filters spaced by � f = 0.02 GHz
with �ω = 0.01 GHz. (c), (d) Experimental normalized density
of states (DOS). (e), (f) Experimental Thouless conductance 〈g〉.
Spatial modal structure as a function of the number of cylinders
of modes with (g) power-law (ν = 6.586 GHz), (h) exponential
(ν = 6.646 GHz), and (i) Gaussian (ν = 11.357 GHz) radial decay.
The grey circles show the boundary of the samples.

is reduced according to N = 390 − 34 × i (i = 0, 1, . . . , 11).
In Fig. 4, we show [(a), (b)] the characteristic decay time
t0, [(c), (d)] the normalized DOS, and [(e), (f)] the average
Thouless conductance 〈g〉 as a function of the number of cylin-
ders and frequency in two frequency windows containing the
analyzed long-lived modes (from 6 to 7 GHz and from 10.5 to
11.5 GHz). The spatial structure of three different eigenmodes
with characteristic (g) power-law, (h) exponential, and (i)

Gaussian decays found by the harmonic inversion/clustering
methods are also shown in Fig. 4. Note that below a certain
threshold N [(g) N � 84, (h) N � 186, (i) N � 288], the
number of resonances recovered by the harmonic inversion is
found to be insufficient to form a cluster and subsequently to
reveal the spatial structure of the modes. Around ∼6.6 GHz,
Figs. 4(a) and 4(e) show that the localization signatures earlier
analyzed (high t0 values and 〈g〉 < 1) remain unperturbed
even for lattices with a reduced number of cylinders N � 84,
while Fig. 4(c) shows that the DOS starts to lose its structure
and becomes flat below N � 152. Here the leaking of the
wave out of the spiral is driven by the absence of certain
cylinders needed to support the long-lived modes. This fact
is illustrated by the power-law and exponential modes [see
Figs. 4(g) and 4(h), respectively] which cannot be recovered
by our analysis whenever the typical system size becomes
smaller than the noticeable modal size when N � 84 and
N � 186, respectively. At higher frequency, Gaussian modes
are found to have larger sizes and are therefore more sensitive
to changes in the system boundaries, so they can only exist
for larger systems N � 288. This value of N also determines
a critical value above which Gaussian modes with high t0
(〈g〉 < 1) values disappear [Fig. 4(b)]. Nevertheless, the DOS
remains unperturbed even for smaller systems (N � 186).

V. 2D/3D TRANSITION

It should be noted that, up to this point, all long-lived
modes shown have been found below the 2D cutoff fre-
quency in air (νcut ≈ 11.5 GHz), so the electromagnetic field
is confined in the plane of the array. To study the robustness
of GA spiral modes with respect to the dimensionality, the
distance between both aluminium plates is increased from
h = 13 mm to h = 17 mm, implying a new cutoff frequency
νcut ≈ 8.8 GHz. As a result, the electromagnetic field is actu-
ally three-dimensional beyond this frequency. Then previous
experimental procedure and data analysis are repeated, thus
the characteristic decay time t0, the DOS, and the average
Thouless conductance 〈g〉 are extracted and correspond to
the dashed lines depicted in Figs. 3(b)–3(d), respectively. t0
displays remarkable similarities in both cases, being just dif-
ferentiated by a decrease of the characteristic peaks related to
the first localization region (at ∼6.6 GHz) and the formation
of a new peak in the first band gap. The appearance of this
peak can also be observed in the DOS, where the size of
the first band gap has been considerably reduced in its upper
part. Additionally, the presence of new modes at lower fre-
quencies leads to the population of the second band gap that
has completely disappeared, confirming their 3D character.
Nevertheless, 〈g〉 still drops by around one order of magnitude
near ∼11.2 GHz, keeping its shape in all frequency windows
containing long-lived modes.

In the last section of this paper, we focus on the
highest-frequency window in which long-lived modes exist
(∼11.2 GHz), and which occur beyond the new cutoff fre-
quency. Here the presence of long-lived modes previously
predicted by the analysis of t0 and 〈g〉 is verified by the har-
monic inversion/clustering methods. Four different Gaussian
modes corresponding to this frequency band are shown in
Fig. 5 for both cavity sizes [(a)–(c) h = 13 mm and (b)–(d)
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FIG. 5. Spatial modal structure of two Gaussian long-lived
modes at ∼11.2 GHz with frequencies (quality factors) (a) ν =
11.346 GHz (Q = 5294), (b) ν = 11.396 GHz (Q = 3899), (c) ν =
11.35 GHz (Q = 5170), and (d) ν = 11.401 GHz (Q = 4159), and a
distance between plates (a)–(c) h = 13 mm and (b)–(d) h = 17 mm.
Amplitude maps are normalized such that max(|Eν |) = 1.

h = 17 mm]. High quality factors confirm the existence of
long-lived modes even in the case where the 2D confinement
of the electromagnetic field is not due to the geometry of the
cavity. Indeed, Fig. 5 experimentally proves the robustness
of Gaussian long-lived modes in Vogel spirals against the
situation in which the electric field is inhomogeneous in the
z direction. This result also experimentally confirms previ-
ous numerical findings [29] that demonstrate the existence
of localized, long-lived 3D electromagnetic modes supported
by 2D Vogel spirals arrays precisely for ρc2

0/ν
2 > 3.5, corre-

sponding to ν < 12.9 GHz in our experimental system.

VI. CONCLUSION

In conclusion, we have experimentally revealed the spatial
modal structure supported by quasi-2D arrays of dielectric
cylinders placed according to aperiodic Vogel spirals, and
its impact in wave transport. We showed that these lattices
support a unique modal structure where long-lived modes
with different radial decay types (exponential, power law, and
Gaussian) coexist, confirming recent theoretical predictions
[42]. We also investigate the impact of these peculiar modal
structures on microwave transport properties by means of the
temporal evolution of the energy as well as the characteristic
decay time t0 (related with the average resonance width
〈δν〉), the DOS, and the Thouless conductance. This analysis
reveals that Vogel spirals exhibit very slow energy dynamics.
Indeed, we show that in frequency windows containing
long-lived modes, the values of t0 are similar to those
found in the Anderson localized regime in traditional 2D
disordered systems. In these same frequency windows, the

Thouless criterion for Anderson localization is shown to
be fulfilled despite the lack of disorder and the presence
of nonexponentially localized modes. Long-lived modes
supported by Vogel spiral are also proven to be robust against
the change in the dimensionality of the cavity, from 2D to
3D, so they remain essentially unperturbed and preserve their
spatial profiles and quality factors even when the homogeneity
of the electric field in the z direction is broken. Thus, without
disorder, our results embark on the longstanding quest for
Anderson localization of light in 3D.
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APPENDIX A: DEFINITION OF VOGEL SPIRALS

Vogel spirals are defined by their polar coordinates (r, θ )
as

rn = a0
√

n,

θn = nα, (A1)

where n = 1, 2, . . . is an integer, a0 is a positive constant,
and α is an irrational number. The scaling factor a0 sets
the particle separation while α is the divergence angle and
determines the constant aperture between successive points.
Angle α is specified as a function of the irrational number ξ

as α = 2π [1 − frac(ξ )] where frac(ξ ) is the fractional part of
ξ . When α is irrational, point patterns are characterized by a
lack of both translational and rotational symmetries.

In this paper, we focus on the GA Vogel spiral, also
known as the sunflower spiral, which is obtained by
considering ξ as the golden number ξ = (1 + √

5)/2 leading
to α ≈ 2.4 (137.508◦), the GA. Experimentally, 12 samples
consisting of N = 390 − 34 × i (i = 0, 1, . . . , 11) cylinders
are placed and measured for different heights of the cavity
(h = 13 and 17 mm are presented in this paper). All samples
are characterized by the same scaling factor a0 = 6.93 mm
and their centers are always located at (x, y) = (−5 mm, 0),
where the central antenna sets the origin (x, y) = (0, 0).
Figure 6 shows the 12 different GA experimentally studied in
this paper.

APPENDIX B: EXPERIMENTAL MAP

Experimental measurements are carried out over a sur-
face determined by a circle of 160 mm radius centered
in the origin (x, y) = (0, 0). To observe the electric field
out of the lattice, we superimpose a 165-mm-size square
with corners at (x, y) = (0, 0), (x, y) = (165 mm, 0), (x, y) =
(0, 165 mm), and (x, y) = (165 mm, 165 mm). The resulting
area is mapped in a regular 5 × 5 mm2 grid unit cell. Figure 7
shows the experimental map used to scan the cavity where
each grey point represents a measured point and the orange
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FIG. 6. Golden-angle spiral arrays consisting of N cylinders cre-
ated with a0 = 6.93 mm and ξ = (1 + √

5)/2. The black dot sets the
position of the fixed antenna with respect to the cylinder pattern.

circle the space occupied for the array of cylinders (N = 390).
The total of measured positions is n = 3675.

APPENDIX C: DISORDERED SYSTEM

For the sake of comparison, besides the main analysis
carried out in the GA spiral, we also study the modal structure
and microwave transport in a traditional DSs. The disordered
point pattern is generated using the software developed in
Ref. [15] and considers a set of N = 388 packing hard disks of
radius R = 3.25 mm enclosed into a circle of radius 140 mm,
thus the planar density is constant with respect to the GA
spiral case (ρ ≈ 0.65 cm−2, see Fig. 8). Here, R = 3.25 mm
is the size of our experimental cylinders plus the size of the
tube used to place the cylinders. The cavity is mapped using
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FIG. 7. Experimental map used to scan the cavity (grey dots).
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spiral with N = 390).

FIG. 8. Image of the 2D disordered array of dielectric cylinders.
The top place has been removed to reveal the details of the sample.
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FIG. 9. Spatial modal structure, field amplitude spatial auto-
correlation, and radial profile of representative eigenmodes in a
DS. Amplitude maps are normalized such that max(|Eν |) = 1,
thus max[Cor(Eν )] = 1. Radial decays (pink dots) are obtained by
performing an angular average in the autocorrelation space (r is
measured from the well-defined autocorrelation center).
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the same experimental map (see Fig. 7) in the same frequency
range (from 5.5 GHz to 15 GHz) as the GA spiral case. Both
reflected and transmitted signals are measured. Data analysis
to obtain the eigenmodes of the systems (via the harmonic
inversion/clustering method), the characteristic decay time t0
(via the Fourier transform), the DOS (via the reflected signal),
and the Thouless conductance 〈g〉 (via t0 and the 〈DOS〉) is
performed as explained in the main text.

Figures 9(a), 9(d), 9(g), and 9(j) show four eigenmodes
found by means of the harmonic inversion/clustering algo-
rithms in the DS. Since DSs lack a center (in contrast to
Vogel spirals), their eigenmodes are not centered in the sys-
tem. This makes the field amplitude spatial autocorrelation
[see Figs. 9(b), 9(e), 9(h), and 8(k)], defined as

Cor(Eν ) = |F−1{|F{Eν}|2}|, (C1)

the most suitable quantity to study the radial decay [see
Figs. 9(c), 9(f), 9(i), and 9(l)] [5]. As can be observed, all
eigenmodes present large quality factors Q and a clear ex-
ponential radial decay of their autocorrelation functions no
matter their spatial extension, frequency, the position of their
center, or the amplitude distribution with respect to the cen-
ter of the mode, as expected. The localization length ξloc is
extracted by assuming Cor(Eν ) ∝ exp(−r/ξloc).

The characteristic time t0, the DOS, and the average
Thouless conductance 〈g〉 are computed and plotted in
Figs. 10(a)–10(c), respectively. Similarly to the GA spiral
case, t0 varies from flat valleys to high peaks. Nevertheless,
in contrast to the GA spiral case, no band gap can be clearly
observed in the DOS. The maxima t0 values found in the
GA spiral case are t0,M = 40.84 ns, t0,M = 33.02 ns, and
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FIG. 10. (a) Characteristic decay time t0 as a function of the
frequency. The total frequency range have been mapped by 472
frequency filters spaced by � f = 0.02 GHz with �ω = 0.01 GHz.
(b) Experimental density of states (DOS). (c) Experimental Thouless
conductance 〈g〉 as a function of the frequency. The dotted line
indicates 〈g〉 = 1.

t0,M = 30.11 ns for the first and second confined regions,
respectively, while in the disordered case t0,M = 40.58 ns.
Hence, we conclude that the characteristic energy decay time
in disordered and aperiodic Vogel spiral structures is of the
same order. Finally, the average Thouless conductance shows
a fast decay of around one order of magnitude in the frequency
windows where exponential eigenmodes are found by the
harmonic inversion/clustering method.
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