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Third-order topological insulator induced by disorder
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We have found the first instance of a third-order topological Anderson insulator (TOTAI). This disorder-
induced topological phase is gapped and characterized by a quantized octupole moment and topologically
protected corner states, as revealed by a detailed numerically exact analysis. We also find that the disorder-
induced transition into the TOTAI phase can be analytically captured with remarkable accuracy using the
self-consistent Born approximation. For a larger disorder strength, the TOTAI undergoes a transition to a trivial
diffusive metal that in turn becomes an Anderson insulator at even larger disorder. Our findings show that
disorder can induce third-order topological phases in three dimensions, therefore extending the class of known
higher-order topological Anderson insulators.
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I. INTRODUCTION

In symmetry-protected topological (SPT) phases of matter,
such as topological insulators (TIs), nontrivial bulk topol-
ogy leads to protected gapless excitations on the system’s
boundary [1–4]. These edge states have exotic, disorder-
robust properties with promising applications for quantum
computation [5–7]. SPT phases of matter are classified
in the tenfold way [8], based on the discrete symmetries
(time-reversal, charge-conjugation, and chiral) that constrain
the system’s Hamiltonian. Spatial symmetries of crystalline
nature may also be encountered, producing topological crys-
talline insulators (TCIs) [9,10]. Recently, TIs have been
generalized to higher-order topological insulators (HOTIs),
where the bulk-boundary correspondence applies to the
(d − n) dimensional boundary, for a d-dimensional, nth-order
topological insulator [11–16]. HOTIs were first demonstrated
in the Benalcazar-Bernevig-Hughes (BBH) models [17,18],
where the topological invariant corresponds to quantized bulk
quadrupole or octupole electric moments, respectively, in
a two-dimensional (2D) second-order topological insulator
(SOTI) and three-dimensional (3D) third-order topological
insulator (TOTI), with protected corner states. In the BBH
models, the topological properties are protected by spatial
symmetries, rendering them an extension of the TCIs.

Many experimental implementations of HOTIs have since
been found, first in classical metamaterial analogues like me-
chanical metamaterials [19], electric circuits [20,21], coupled
microwave resonators [22], photonic waveguides [23], and
later even in solid-state materials [24–26]. In any practical
realization of a system, disorder is present, e.g., due to defects
in manufacturing, and can even be tuned in metamaterials.
Disorder has a profound impact on quantum transport due to
Anderson localization of electronic wave functions [27,28].

This gives rise to Anderson insulators, which can have gapless
excitations in contrast with conventional (gapped) band insu-
lators [29]. It is generally known that TIs are robust against
symmetry-preserving disorder. Still, with enough disorder it
is possible to suppress topological phases. Remarkably, in-
creasing disorder can also induce topological transitions from
trivial to topological phases, giving rise to topological An-
derson insulators (TAIs) [30,31]. TAIs have been proposed
theoretically and recently realized experimentally in several
different platforms, including photonic systems, acoustic non-
Hermitian systems, amorphous systems, and electric circuits
[32–38].

The concept of TAIs was recently extended to higher-order
topological Anderson insulators (HOTAIs) in Ref. [39], where
a 2D SOTI was obtained by adding chiral-symmetric disorder
to the 2D-BBH model. This result establishes chiral symmetry
as a sufficient symmetry to protect the HOTAI phases, even
when the crystalline symmetries are broken by disorder. A
full phase diagram was obtained in Ref. [40] for a system that
can be mapped to the 2D-BBH model. It was found that the
disorder-induced SOTI comes in two varieties with increasing
disorder: The gapped and gapless HOTAI phases, followed
by a trivial Griffiths phase. Noteworthy, the classical analog
of a 2D HOTAI was recently experimentally observed using
electric circuits [41], where disorder can be tuned. A disorder-
driven 3D SOTI was also found in amorphous systems with
structural disorder [42–44].

In this work we find the first instance of a disorder-
induced third-order topological Anderson insulator (TOTAI).
Our conclusions are drawn from the numerical analysis of the
interplay between topology and chiral-symmetry-preserving
disorder in the 3D-BBH model. The TOTAI phase is gapped
and undergoes a transition into a trivial (gapless) diffusive
metal (DM) with increasing disorder. At significantly larger
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FIG. 1. Schematic phase diagram as a function of W for γ = 1.1.

disorder it turns into an Anderson insulator (AI). The gapless
HOTAI phase and the Griffiths phase are absent, in contrast to
the disordered 2D-BBH model [40]. The detailed topological,
spectral, and localization properties of the different phases
found are summarized in Fig. 1 and Table I and will be
justified in detail below. This paper is structured as follows.
In Sec. II we present the model and the topological invariants
that characterize nontrivial phases and which we compute nu-
merically. Detailed numerical results are presented in Sec. III,
which allowed for the full description of the phase diagram of
the model. We also analytically capture the disorder-induced
topological phase transition using the self-consistent Born
approximation. In Sec. IV we discuss our results and their
implications.

II. MODEL AND METHODS

Model. The model under consideration is the 3D-BBH
model [17], generalized with disorder in the intracell hopping
amplitudes, as illustrated in Figs. 2(a) and 2(b). The corre-
sponding tight-binding Hamiltonian is given by

Ĥ =
∑

r

⎡
⎣ĉ†

r�rĉr +
∑

i∈{x,y,z}
(ĉ†

r�iĉr+ei + H.c.)

⎤
⎦, (1)

where ĉ†
r = (ĉ†

r1 ĉ†
r2 . . . ĉ†

r8), ĉ†
rα creates a particle at the αth

site of cell r, and the hopping matrices are given by

[�r]i j = γ i j
r

[
σz ⊗ (

σx ⊗ 1 − σ⊗2
y

) + σx ⊗ 1⊗2
]

i j,

�x = λ

2
1 ⊗ (σx ⊗ 1 + iσy ⊗ σz ),

�y = λ

2
1 ⊗ iσy ⊗ (σx + iσy),

�z = λ

2
(σx + iσy) ⊗ 1⊗2, (2)

where {1, σx, σy, σz} is the set of 2 × 2 identity and Pauli
matrices. We set λ = 1 so that the energy is measured in
units of λ. The intracell hopping amplitudes are [up to a

TABLE I. Summary of all the phases observed in the model
for γ = 1.1: Trivial gapped insulator (GI), third-order topological
Anderson insulator (TOTAI), diffusive metal (DM), and Anderson
insulator (AI) with the respective topological, spectral, and localiza-
tion properties.

Phase I: GI II: TOTAI III: DM IV: AI

Topology Trivial Nontrivial Trivial Trivial
Spectrum Gapped Gapped Gapless Gapless
Zero-energy states Localized Localized Extended Localized
Wc − 2.55(20) 3.54(3) 24(2)

FIG. 2. (a), (b) Schematics of the 3D-BBH model with disorder.
In (a) only the intercell hoppings are shown, while in (b) the intracell
hoppings are presented. Dotted lines correspond to negative signs in
the clean hopping amplitudes. (c) Schematics of the full system with
bulk octupole moment oxyz, boundary quadrupole moments qi j , and
size Li in directions i, j ∈ {x, y, z}.

sign as indicated in Fig. 2(b) and Eq. (2)] γ
i j
r = γ + W �

i j
r ,

where W is the disorder strength and �
i j
r = �

ji
r are uniformly

distributed random variables in the interval [− 1
2 , 1

2 ] without
correlation. In our finite-size calculations, we consider cubic
systems of size Lx = Ly = Lz = L.

In the clean limit, W = 0, we have H → H0, �r → �0 and
translational invariance allows us to express the Hamiltonian
in reciprocal space as

H0(k) = σz ⊗ [σx ⊗ 1( cos(kx ) + γ ) − σy ⊗ σz sin(kx )]

− σz ⊗ σy ⊗ [σy( cos(ky) + γ ) + σx sin(ky)]

+ [σx( cos(kz ) + γ ) − σy sin(kz )] ⊗ 1⊗2. (3)

The topological properties depend on the value of the param-
eter γ , as discussed next.

Topological properties. When |γ | < 1 (|γ | > 1), the clean
Hamiltonian in Eq. (3) is in a topological (trivial) phase with
quantized octupole moment oxyz. In reciprocal space oxyz may
be computed by the nested Wilson loop method, where the
spatial reflection and inversion symmetries of the clean sys-
tem, along with time-reversal, charge-conjugation, and chiral
symmetries were shown to protect the topology [17]. In real
space, oxyz is computed through many-body electric multipole
operators [45–47]. Since this involves finding the ground state
of the system, it is computationally demanding to do it in 3D.
However, in the topological phase we also expect to find quan-
tized quadrupole moments qxy, qxz, qyz in the 2D boundaries
of the insulator, as illustrated in Fig. 2(c), allowing for the
definition of the topological invariant,

Q = 8|qxyqxzqyz|, (4)
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where each quadrupole moment is expressed as

qab =
[

1

2π
Im log〈
c|Uab|
c〉 − q(0)

ab

]
mod 1, (5)

with

Uab = exp

(
2π i

∑Nocc
j=1 r̂ j

a r̂ j
b

LaLb

)
, (6)

for c �= a �= b, where r̂ j
a is the position operator in direction

a = x, y, z for electron j and Nocc = 2LaLb the number of
occupied states in the boundary ab, with La the number of
unit cells in direction a. q(0)

ab = 1
2

∑Na
j=1 r j

ar j
b/(LaLb) is the

contribution from the positive background charge, taking into
account that the sample is electrically neutral with Na = 2Nocc

atomic orbitals in the boundary. |
c〉 is the boundary many-
body ground state obtained from the effective Hamiltonian
Hc = −Gc

Nc
(E = 0)−1, with Nc = 2Lc. Gc

Nc
is the boundary

Green’s function [48] that can be computed by dividing the
Hamiltonian matrix into 2D layers in the direction c and
solving the following Dyson equation:

Gc
n = (

E − hc
n − V c

n−1Gc
n−1V

c †
n−1

)
, (7)

where hc
n is the Hamiltonian of the nth layer, the (n − 1)th

layer couples to the nth layer through matrix V c
n−1, and Gc

1 =
(E − hc

1). Since the matrices V c
n are diagonal and hc

n is chiral
or sublattice symmetric, then chiral symmetry is preserved by
the effective boundary Hamiltonians Hc. The reduced Hilbert
space dimensionality of each layer allows for reaching far
larger system sizes when computing Q than by computing the
bulk octupole moment through many-body electric multipole
operators.

In the disordered system, spatial crystalline symmetries are
broken. Nevertheless, chiral symmetry is preserved since the
hopping terms do not couple different sublattices. Therefore
protected nontrivial topological phases are still possible. In
fact, the quadrupole moments are known to be quantized by
chiral symmetry [40], which is preserved in the boundary
Hamiltonians, meaning that, in each realization of disorder,
Q is quantized to 0 or 1.

Spectral properties. To study the spectral properties of
the different phases, we computed the energy gap using ex-
act diagonalization and the density of states (DOS), ρ(E ) =
1
D

∑D−1
k=0 δ(E − Ek ), where D is the Hilbert space dimen-

sion and Ek are the single-particle eigenenergies. For an
efficient calculation of the DOS, we employed the kernel
polynomial method (KPM) [49]. In the following KPM cal-
culations, traces are evaluated stochastically over a single
random state and used the Jackson kernel. A related quantity
that can also be computed with the KPM is the local density
of states (LDOS), ρ(E , r) = ∑D

k=0

∑
α |ψk (r, α)|2δ(E − Ek ),

where ψk (r, α) is the kth eigenfunction evaluated at unit cell
r and orbital α. We used this quantity to inspect the existence
of localized corner states, to complement the analysis on the
topological properties.

Localization properties. Finally, we also study the lo-
calization properties of the eigenstates by evaluating their
localization length, the average level-spacing ratio (LSR), the
inverse participation ratio (IPR), and the fractal dimension.

The normalized localization length � = λ/L, where
λ is the localization length along the z direction and
L = Lx = Ly, was computed using the transfer matrix method
(TMM) [50,51]. The TMM is self-averaging, and enough
steps of the method are performed in order to reach an error
of less than 1% in the localization length. For extended states,
� increases with L, while for localized states, � → 0, since
λ is finite. At critical points, λ ∼ L and therefore � ∼ L0.

The LSR is given by

LSR = 1

n − 2

n−2∑
i=1

min(δi, δi+1)

max(δi, δi+1)
, (8)

where δi = Ei+1 − Ei are the spacings between n eigenener-
gies Ei sorted in ascending order. The energy gap spacing
is not included. We expect the energy-level spacings of lo-
calized eigenstates to follow Poisson statistics, in which case
LSR ≈ 0.386. For diffusive extended states, the level spacings
follow the Gaussian orthonormal ensemble (GOE) probability
distribution, corresponding to LSR ≈ 0.530 [52].

The IPR [53] is expressed as

IPR = 1

n

n∑
i=1

∑
r

(∑
α

|ψi(r, α)|2
)2

, (9)

where ψi(r, α) is the amplitude of the ith eigenfunction at unit
cell r and orbital α. The IPR scales with system size as IPR ∝
L−D2 , where D2 is the (real-space) fractal dimension given by
D2 = 3 for extended states, D2 = 0 for localized states, and
0 < D2 < 3 for fractal or multifractal states [29].

III. RESULTS

Starting from a trivial insulator in the clean limit, γ = 1.1,
we found four different phases as a function of disorder
strength W , which are summarized in Fig. 1 and Table I. In
the next sections we detail the properties of each phase.

A. Topological phase diagram

In Fig. 3(a) the phase diagram for the topological invariant
Q is shown. Due to the large finite-size effects, extrapolations
to L → ∞ were performed. For the extrapolations, three lin-
ear fits were performed for Q(L−1), for the five largest values
of L (green), for the 10 largest values of L (orange), and also
for all values of L (red), as shown in Fig. 3(b). The extrapo-
lated value of Q(L−1 → 0) is the average result of the three
fits. Starting from a topologically trivial phase I, at the critical
disorder W II

c = 2.55(20) an abrupt increase in Q occurs, indi-
cating the start of phase II. W II

c is precisely determined by the
lowest W for which Q increases, and a relatively large error
is considered to take into account finite-size effects. For this
phase II, extrapolated values of Q are compatible with Q = 1
within the error bar, signaling a topologically nontrivial phase.
As shown in Fig. 3(c), the gap closes and reopens at W II

c ,
further pointing to a transition into a tropological phase. Since
this phase was induced by disorder, we dubbed it a TOTAI.
However, it is important to note that the system is gapped in
this phase, as is evident from Fig. 3(c).

Further increasing disorder, the system transitions to phase
III, where extrapolated values of Q are compatible with
Q = 0, indicating that it is topologically trivial. These results
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FIG. 3. (a) Topological phase diagram obtained from the topo-
logical invariant Q defined in Eq. (4) with respect to the disorder
strength W . For the lines with fixed size, Q was averaged with 40
disorder realizations. To compute the extrapolated points at some
selected values of W , Q was averaged over 400 disorder realizations.
In (b), an example of the extrapolation is shown for W = 3. (c) Bulk
energy gap computed from exact diagonalization for a system size
L = 20 and averaging over 200 disorder realizations, as a function
of W .

are also compatible with the zero-energy LDOS shown in
Fig. 4, revealing the existence of localized protected corner
states in the TOTAI phase II and their absence in the trivial
phase III. We estimated W III

c from the extrapolation to L → ∞
[analogously to Fig. 3(b)], of the crossing between the energy
gap and the mean level spacing (not shown) of the 50 states
closer to E = 0, resulting in W III

c = 3.51(3). In Sec. III C

FIG. 4. Local density of states at zero energy as a function of
unit-cell number r in a corner of a system with size L = 30. The
kernel polynomial method was used with a single random state trace
approximation and N = 210 moments, averaged over 200 disordered
samples with disorder weight (a) W = 3 (phase II) and (b) W = 4
(phase III).

we compare this estimation of W III
c with one obtained by

analyzing localization properties.

B. Density of states

In Fig. 5 we show the DOS for different disorder strengths.
We note that at the topological transition from phase I to II,
although the gap closes, ρ(0) is always zero [see Fig. 5(a)],
behaving as ρ(E ) ∼ E2 around E = 0 [see Fig. 5(c)], as it
would for a clean system with a Dirac cone (which is the
case of the clean 3D-BBH model in the topological transition
point). This was verified by performing a linear fit in a log-log
plot of the curves in Fig. 5(b) of positive E values close to
E = 0 for W ∈ {2.5, 2.6}, which rendered slopes compatible
with 2 (not shown). In phase III, the energy gap closes again
and ρ(0) becomes finite. The DOS starts to become peaked
at around E = 0 for large W . In the next section we discuss
whether the finite DOS at the Fermi level (E = 0) is associ-
ated with a diffusive metal or an Anderson insulator.

C. Localization properties

In Fig. 6(a) we plot the normalized localization length �

along the z direction at E = 0. The calculations of � along
other directions yielded quantitatively identical results. � de-
creases with L in phases I and II. This is because the system
is gapped and only localized modes with evanescent wave-
function amplitudes are present at E = 0. At the topological
phase transition, � becomes L independent, as expected. In
phase III, the system is gapless and has extended states at
E = 0 since � increases with L, as expected for a diffusive
metal. We also note that for energies where the DOS is finite,
the eigenstates are extended in phases I–III, as supported in
Figs. 6(b) and 6(c).

For large W we see another phase transition at W IV
c =

24(2) to a phase IV where � again decreases with L, Fig. 6(d).
In this case, even though the system is gapless, the bulk ex-
tended states become localized at E = 0. In fact, localization
occurs at all energies and corresponds to the standard Ander-
son transition [27–29].

In order to make an additional independent estimation of
the critical point for the transition from phase II to III, we
also analyze the crossing points between curves of adjacent L
in Fig. 6(a). Fitting the crossing points analogously to what
was done in 3(b), we extrapolate W III

c = 3.56(3) in the ther-
modynamic limit. This is compatible with the result obtained
in Sec. III A, and their average is presented in Table I.

We now turn to the LSR analysis. In Fig. 6(e) we present
the LSR for eigenenergies around E = 0, where we had to
disregard some abnormally large outlier spacings created due
to finite-size effects (they correspond to spacings between sets
of degenerate states in the clean limit). The LSR in phase III
follows GOE statistics, completing the proof that phase III
is a diffusive metal. In phases I and II, where we access the
statistics of the gap edge, the states mostly follow the GOE
ensemble for diffusive and extended states. However, as we
approach the transition point W III

c , there is a sudden decrease
in the LSR, especially at lower n (closer to the gap edge).
To better understand this result, we analyze the IPR and the
fractal dimension, which we discuss next.
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FIG. 5. Density of states ρ(E ), computed with the kernel polynomial method for a system size L = 80. (a) ρ(E = 0) as function of
disorder strength W . The two curves shown are for different choices of the number of Chebyshev moments N . (b) ρ(E ) computed with
N = 213 moments, for selected values of W , with a zoomed-in view around the zero-energy region in (c).

For the gapped phases, we computed the average IPR for
eigenstates at the gap edge, as for the LSR. In Fig. 6(f) we
can see that the IPR is small in phases I and III, which, in
combination with the obtained fractal dimension D2 ≈ 3 in
Fig. 6(g), indicates that the eigenstates closer to E = 0 are
extended. We also observe in Fig. 6(f) that the IPR becomes
larger in phase II, peaking close to the transition II → III. This
is concomitant with the fractal dimension results in Fig. 6(g),
where it can be seen that D2 ≈ 0 close to the transition, sug-
gesting the presence of localized gap-edge states right before
the gap closes. This correlates with the sudden drop of the
LSR. However, there are still some discrepancies between the
results for the LSR and fractal dimension (the LSR is still
significantly away from Poisson) that we attribute to strong
finite-size effects in phase II. Figure 6(h) further shows that in
phase III the states are extended for any energy, while in phase
II the states are only localized close to E = 0, at the gap edges.
These localized states are likely related with Lifshitz tails,
whose exponentially suppressed DOS in the thermodynamic
limit justifies the strong finite-size effects, especially for the
LSR results.

D. Self-consistent Born approximation

Disorder is introduced into the system in the form of added
intracell hopping amplitudes at each unit cell r, that is,

Vr =
12∑

α=1

Vr,αUα, (10)

where α(i, j) ∈ {1, . . . , 12} is a bijection between the index
of an edge α and the indexes i, j of the adjacent corners.
Vr,α(i, j) = W �

i j
r are the hopping strengths, and

[Uα(i, j)]mn = 1

γ
[�0]mn(δmiδn j + δm jδni ) (11)

are the matrix elements of each separate intracell hopping
term. Since the disorder is uncorrelated,

〈Vr,α〉 = 0, 〈Vr,αVr′,β〉 = W 2

12
δrr′δαβ. (12)

Under the self-consistent Born approximation (SCBA)
[31,40,54,55], the effective Bloch Hamiltonian at E = 0 is
Heff(k) = H0(k) + �(E = 0), where the self-energy � is

FIG. 6. Normalized localization length � from the transfer matrix method at (a), (d) E = 0 vs W for distinct L, and vs L for distinct
energies at (b) W = 3.4 and at (c) W = 5. (e) LSR, (f) IPR, and (g) fractal dimension D2 for n eigenstates at around zero energy from exact
diagonalization as a function of W . (h) D2 vs E for distinct W for n = 10 eigenstates around E . Averages were taken over 200 realizations of
disorder. In (e) and (f), L = 20. D2 was computed by fitting using the sizes L ∈ {10, 12, . . . , 20} in (f) and L ∈ {4, 6, . . . , 16} in (g).
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FIG. 7. Effective renormalized intracell hopping amplitude γ ′,
computed through the SCBA, as a function of the clean hopping
amplitude γ and the disorder strength W . The topological transition
curve at γ ′ = 1 is shown in red, and the transition numerically
extracted from the topological invariant Q is shown in the blue points.

computed self-consistently through the following equation:

�(E ) = W 2

12(2π )3

∫
BZ

d3k
12∑

α=1

UαGUα, (13)

where G = [(E + i0+)1 − H0(k) − �(E )]−1 is the Green’s
function. Numerically, we find that �(0) = −�0σ/γ , σ ∈ R.
In the effective Hamiltonian, this amounts to a normalization
of the intracell hopping strengths γ → γ ′ = γ − σ . Since
the effective model still corresponds to the 3D-BBH clean
model, the topological (trivial) phase occurs for γ ′ < 1(> 1).
In Fig. 7 we observe that the topological transition curve pre-
dicted by the SCBA agrees very well with the one computed
numerically from the topological invariant Q.

IV. CONCLUSIONS

In summary, we have reported an example of a third-order
topological Anderson insulator, induced by chiral-symmetry-
preserving disorder. The TOTAI phase is characterized by a

quantized quadrupole moment on the boundaries of the 3D
system that corresponds to a quantized bulk octupole mo-
ment, and by topologically protected localized corner states.
Remarkably, the topological transition to the TOTAI phase is
captured with great accuracy by the self-consistent Born ap-
proximation, up to very large disorder strengths. Our findings
can be tested experimentally in different metamaterials where
disorder can be tuned, such as mechanical metamaterials [19],
electric circuits [20,21,41], or photonic waveguides [23].

Finally, we note that in contrast to the disordered 2D BBH
model [40], we have not found a gapless HOTAI in 3D. This
raises an interesting open question for future research: Do
gapless TOTAIs exist?
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[42] A. Agarwala, V. Juričić, and B. Roy, Phys. Rev. Res. 2,
012067(R) (2020).

[43] J.-H. Wang, Y.-B. Yang, N. Dai, and Y. Xu, Phys. Rev. Lett.
126, 206404 (2021).

[44] T. Peng, C.-B. Hua, R. Chen, Z.-R. Liu, H.-M. Huang, and B.
Zhou, Phys. Rev. B 106, 125310 (2022).

[45] W. A. Wheeler, L. K. Wagner, and T. L. Hughes, Phys. Rev. B
100, 245135 (2019).

[46] B. Kang, K. Shiozaki, and G. Y. Cho, Phys. Rev. B 100, 245134
(2019).

[47] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
[48] Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143

(2017).
[49] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.

Phys. 78, 275 (2006).
[50] K.-H. Hoffmann and M. Schreiber, Computational Statistical

Physics: From Billards to Monte-Carlo (Springer Science &
Business Media, New York, 2002).

[51] B. Kramer and M. Schreiber, in Computational Physics: Se-
lected Methods Simple Exercises Serious Applications, edited
by K. H. Hoffmann and M. Schreiber (Springer, Heidelberg,
1996), p. 166.

[52] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[53] F. Wegner, Z. Phys. B 36, 209 (1980).
[54] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics: An Introduction (Oxford University
Press, Oxford, England, 2004).

[55] J. Mašek, Z. Phys. B 64, 145 (1986).

014204-7

https://doi.org/10.1103/PhysRevB.100.201406
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41563-022-01304-3
https://doi.org/10.1038/s41467-023-37482-0
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1063/1.3206091
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1103/PhysRevLett.103.196805
https://doi.org/10.1126/science.aat3406
https://doi.org/10.1038/s41586-018-0418-2
https://doi.org/10.1103/PhysRevLett.125.133603
https://doi.org/10.1103/PhysRevLett.129.043902
https://doi.org/10.1007/s11433-023-2159-4
https://doi.org/10.1103/PhysRevB.108.L081110
https://doi.org/10.1103/PhysRevB.100.184202
https://doi.org/10.1103/PhysRevLett.125.166801
https://doi.org/10.1103/PhysRevB.103.085408
https://doi.org/10.1103/PhysRevLett.126.146802
https://doi.org/10.1103/PhysRevResearch.2.012067
https://doi.org/10.1103/PhysRevLett.126.206404
https://doi.org/10.1103/PhysRevB.106.125310
https://doi.org/10.1103/PhysRevB.100.245135
https://doi.org/10.1103/PhysRevB.100.245134
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1007/BF01325284
https://doi.org/10.1007/BF01303695

