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We consider a one-dimensional system of spinless fermions with single particle and pair hoppings in a po-
tential on-site disorder. The pair hopping term violates integrability of the model and enhances superconducting
fluctuations in the bulk of the liquid. By means of the Abelian bosonization and extensive numerical density
matrix renormalization group calculations we provide evidence that sufficiently large pair hopping amplitude
guarantees the survival of the Tomonaga-Luttinger liquid phase at weak disorder. Large disorder drives the
system to the Bose-glass phase, realizing the Giamarchi-Schulz scenario in such a system.
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I. INTRODUCTION

An interplay between interparticle interactions and dis-
order in low-dimensional quantum many-body systems has
been extensively studied during the past decades [1–4] and
currently remains an active research frontier (for reviews, see,
e.g., Refs. [5,6]). At high energies many studies of interact-
ing quantum many-body systems support a strong indication
of a transition to the many-body localized (MBL) phase at
sufficiently strong disorder. In the MBL phase the eigenstate
thermalization hypothesis (ETH) is violated [7–12], which
leads to the protection of quantum states from decoherence.

Although studies of the MBL phenomenon are currently
under active research, an interplay between disorder and
interactions in the low-energy sector is still under investiga-
tion, especially in one-dimensional quantum systems, where
quantum fluctuations are the strongest. In the clean limit
in 1D, gapless phases are traditionally described within the
Tomonaga-Luttinger liquid (TLL) theory with algebraically
decaying correlations at large distances, controlled by the TLL
parameter K0. It is natural to expect that arbitrarily weak dis-
order drives the TLL to the Bose glass (BG) phase. However,
in their seminal paper based on perturbative treatment of dis-
order Giamarchi and Schulz (GS) [3,13] have shown that for
the TLL with the clean parameter K0 > 3/2 the Berezinskii-
Kosterlitz-Thouless (BKT) quantum phase transition to the
BG phase should occur for a small but finite disorder strength.
Two-loop calculations confirmed this picture, with a jump of
K to 0 at the BKT transition occurring at the critical value K =
Kc = 3/2 [14,15]. For TLL with K0 < 3/2, the superfluid
(SF) phase is destroyed in an arbitrarily weak disorder with
the resulting correlation length Lc = W −2φs , where W is the
disorder strength and φs = (3 − 2K0)−1. For strong disorder,

alternative scenarios with Kc > 3/2 were previously proposed
[16–23]. We further refer to them as weak link scenarios.
The recent numerical work [24] demonstrated the presence of
such a weak-link scenario at strong-disorder criticalities for
the disordered 1D XXZ model.

The traditional recipe to observe SF-BG transition in 1D
spin-1/2 quantum magnets is to include strong ferromagnetic
(FM) Ising interaction [24–31] (this term fermionizes to the
attraction between two neighboring fermions). In this case,
pairing fluctuations in the bulk can be strongly enhanced
with resulting K0 > 3/2, so that sufficiently weak disorder is
unable to localize the ground state. On the other hand, strong
Ising interactions are known to cause phase transition to the
ferromagnetic phase, limiting the region where the SF-BG
phase transition can be observed. For the 1D XXZ model this
region is bounded with −1 < � < −1/2 [25–28], where � is
an amplitude of the Ising interaction.

Enhanced superconducting correlations in the system of
spinless fermions have been studied in several lattice models
in 1D [32–35]. A standard way to introduce pairing correla-
tions is through density-density interactions as in the XXZ
magnet case. Alternatively, one can enhance these correlations
via pair hopping terms. Recently, a model with this feature
was studied in 1D by Ruhman and Altman [36]. Although
the Ruhman-Altman model is rather abstract, it got sufficient
attention and the phase diagram of this model was recently
studied numerically by means of the density matrix renormal-
ization group (DMRG) method [37,38].

In this work we study the model of 1D spinless fermions
with single particle and pair hoppings in a random potential,
which is dual to the model of hard-core bosons (maximum oc-
cupation is 1 boson per lattice site) with the nearest-neighbor
and the next-nearest-neighbor hoppings. The model of our
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FIG. 1. (a) Schematic representation of the fermionic model (1).
For J2/|J1| < 0 on top of single particle hoppings pair hopping events
are also favored, as sketched in (b).

study can be experimentally realized in several systems (us-
ing 3D transmon qubits on sapphire and also using ultracold
bosonic atoms in optical lattices), as suggested by recent pro-
posals [39,40]. The presence of the pair hopping term breaks
integrability of the model and shifts the TLL parameter K0

from unity.
In the clean limit, we first construct an effective low-energy

field theory via Abelian bosonization of the model, compare
analytical expressions with numerical results, and obtain the
phase diagram at T = 0. Following the GS method we show
that if pairing correlations are sufficiently strong, then the SF
phase survives in a weak disorder, whereas strong disorder
drives the system to the BG phase. We provide numerical
confirmation of these statements. Importantly, in contrast to
the weak-versus-strong disorder scenarios reported for the
disordered 1D XXZ (spin-1/2) model [24], in our model we
observe only the GS scenario with Kc = 3/2 for the con-
sidered parameter space. Our numerical results are based on
the DMRG method in its tensor-network formulation [with
conserved U(1) symmetry] [41–44].

The paper is organized as follows. In Sec. II we present
our fermionic model. To characterize the phase diagram of
the model in the clean and disordered cases we use a set of
quantities introduced in Sec. III. In Sec. IV we present the
low-energy TLL theory of the clean model obtained by a con-
structive bosonization procedure. Our numerical results are
demonstrated in Sec. V for the clean case and in Sec. VI for
the disordered case. Section VII is devoted to our concluding
remarks.

II. MODEL AND SYMMETRIES

We consider a 1D system of fermions with the single-
particle and pair hopping terms in the zigzag ladder of (even)
L sites with the periodic boundary condition (see Fig. 1). The
Hamiltonian

H = H1 + H2 + Hdis (1)

contains the single hopping H1 and pair hopping H2 terms:

H1 =
∑

β=1,2

L∑
j=1

Jβ (−1)β+1

2
(c†

i ci+β + H.c.), (2)

H2 = J2

L∑
i

(c†
i ci+1c†

i+1ci+2 + H.c.), (3)

where J1 and J2 are the single-particle and pair hopping am-
plitudes and we impose cL+1 = c1. As the disorder term we
consider a random on-site potential

Hdis =
∑

i

hi(n̂i − 1/2). (4)

The on-site potential realizations hi are drawn from the uni-
form distribution hi ∈ [−h, h]. We further refer to h as a
disorder strength/amplitude. For convenience we also intro-
duce a parameter κ = J2

|J1| and consider N/L = 1/2, where N
is the total number of fermions in the ladder (half filling).

In the presence of disorder Hamiltonian (1) conserves only
the particle number [U(1) symmetry]. If κ = 0 or κ = ∞,
the eigenstates are localized for an arbitrary h, since one
can map the model exactly onto the model of free disor-
dered particles in 1D. Thus, at these values of κ , the model
(1) is integrable in both the disordered and clean cases. For
κ � 1 the clean model is quasi-integrable, possessing quasi-
conserved charges, as was shown in recent works [45–48].
We consider only −1 < κ � 0.33, where, as shown below,
the TLL theory serves as a valid framework of T = 0 physics.
We emphasize that Hamiltonian (1) can be mapped exactly
via Jordan-Wigner transformation [49] onto the XY model
(s = 1/2) in the zigzag ladder in a random magnetic field [46]:

H =
∑

β=1,2

Jβ

L∑
i=1

[
Sx

i Sx
i+β + Sy

i Sy
i+β

] +
L∑

i=1

hiS
z
i . (5)

Notice that the the transformation Sx
i → (−1)iSx

i , Sy
i →

(−1)iSy
i , Sz

i → Sz
i changes the Hamiltonian parameters J1 →

−J1, J2 → J2, and hi → hi, so the sign of J1 is irrelevant.
Recently, it was shown in Ref. [46] that this model exhibits
the MBL transition guaranteed by the pair-hopping term (3).

At T = 0 one expects that for κ < 0 the SF phase is con-
served with the modified TLL parameter K0 > 1. Indeed, pair
hopping of fermions amplifies SF correlations, resulting in
a slower algebraic decay of these correlations. On the con-
trary, for κ > 0, one has dominating charge-density wave type
correlations, with K0 < 1. To highlight this, one can rewrite
Eq. (3) as a correlated hopping term −κ (c†

i ni+1ci+2 + H.c.):
hopping of fermions along a given leg pins fermionic density
on the other leg. If κ > 0 and is sufficiently large, then such
pinning can cause spontaneous dimerization onto the 2kF

bond-order density wave [50]. This phase transition was pre-
viously shown [50–55] to occur in the vicinity of the critical κ ,
which in the clean case is κc ≈ 0.33. In the following sections,
we first estimate the critical point κc using bosonization and
then use the DMRG method to locate the transition point with
an improved accuracy.

III. NUMERICAL METHOD
AND CALCULATED QUANTITIES

In this section we present details of our numerical cal-
culations and introduce necessary quantities to characterize
phases of the clean and disordered models. For numerical
convenience we considered the model in its spin-1/2 repre-
sentation (5). We used a variational two-site DMRG algorithm
to obtain accurate matrix product state representation of the
ground state in the half filled sector of the Hilbert space from
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a given product state. Due to the variational character of the
algorithm, the convergence to the ground state is not guar-
anteed, especially in the disordered case. Thus we introduce
a cascade of noise during the sweeping procedure with a
vanishing amplitude in each step of the cascade, as described
in Ref. [56]. We used a large number of sweeps and gradually
increased bond dimensions up to χ ≈ 3000 for the largest
considered system sizes in the clean case. For the disordered
case this value has reached χ ≈ 1200. These steps guarantee
the convergence to the ground state during the RG procedure.
Largest truncation errors in the last sweepings were of the
order of ε ∼ 10−10. For the disordered model, we averaged
quantities of interest over several hundreds of disorder real-
izations for all system sizes. For the purpose of the work we
use the following quantities to characterize phases of the clean
and disordered models.

Central charge in the clean case. Our model at κ = 0
is critical and belongs to the (1+1)-dimensional Gaussian
universality class with the central charge c = 1 [57]. The
latter quantity is kept fixed in the TLL phase, whereas for
the gapped (insulating) phase we have c = 0. We calculate
the central charge using the expression for the von Neumann
entanglement entropy (EE). EE of the subsystem with length
l is defined as SL(l ) = −Trlρl log ρl , where ρl = TrL−lρ is
the reduced density matrix of the subsystem and ρ is the
full density matrix of the whole system with length L. Using
the conformal field theory (CFT), EE of the subsystem with
length l was derived as [58–60]

SL(l ) = c

3
ln

[
L

π
sin

(
π l

L

)]
+ b, (6)

where the prefactor c is the central charge and b is a nonuni-
versal constant. This expression is useful for the estimation of
the central charge and, hence, it provides information on the
universality class of the underlying CFT. From Eq. (6) one can
easily obtain the following expression for the central charge
[61]:

c(L) = 3
[
SL

(
L
2 − 1

) − SL
(

L
2

)]
ln

[
cos

(
π
L

)] . (7)

Using this formula we can obtain the central charge for a 1D
system with a fixed length L in a ring geometry. We use the
calculated central charge to show the transition to the gapped
bond-order wave phase for κc ≈ 0.33.

TLL parameter K0 in the clean case. Although the central
charge correctly captures the transition to the gapped phase,
we exploit bipartite fluctuations of magnetization to evaluate
the critical κc with an improved accuracy. This quantity was
shown to be an efficient probe to capture quantum critical
points in low-dimensional quantum systems [61–63]. It is
related to the magnetization fluctuation of subsystem A with
length l , FL(l ) = 〈(∑i Sz

i − ∑
i S̄z

i )2〉, where i belongs to the
subsystem A with the average magnetization

∑
i S̄z

i , and the
fluctuation behaves as [64]

FL(l ) = K0

π2
ln

[
L

π
sin

(
π l

L

)]
− (−1)l b0[

L
π

sin
(

π l
L

)]2K0
+ b1, (8)

where b0 and b1 are nonuniversal constants. Bipartite fluctu-
ations FL(l ) behave similarly to SL(l ). Thus one obtains an

expression similar to Eq. (7) [61]:

K0(L) = π2
[
FL

(
L
2 − 2

) − FL
(

L
2

)]
ln

[
cos

(
2π
L

)] . (9)

In the derivation of Eq. (9) we took into account the fact that
for κ > 0 the O(L−2K0 ) correction given by the second term in
Eq. (8) oscillates on alternating sites. Thus FL( L

2 ) and F ( L
2 −

2) is a more relevant choice. The reason for using this formula
is to obtain an accurate estimation of the TLL parameter K0

within the parameter space −1 < κ � 0.33. It also allows one
to locate the critical value κc, where K0 = 1

2 .
TLL parameter K in the disordered case. For an accurate

estimation of the TLL parameter K for the disordered model,
we calculate the single-particle density matrix Gi, j = 〈S+

i S−
j 〉

and then extract the value of K from the expected algebraic
decay ∝r−1/2K in the SF phase, where r = |i − j|. To take
into account finite-size effects in the periodic boundary con-
dition setting, one replaces r with an effective r̃ = cr d (r),
where the chord function is defined as cr d (r) = L

π
sin(πr/L).

Then, using the fitting log(C) = − 1
2K ζ + const, with C(r) =

1
L

∑
j〈S+

j S−
j+r〉 and ζ = log(r̃), we extract the value of K . In

the GS case Kc = 3/2, whereas in the weak-link scenario
studied in Ref. [24] one has Kc > 3/2. To confirm the GS
scenario in the whole parameter space with Kc ≈ 3/2, we
assume that log(C) = 1

2K ζ − αζ 2 + const, with α > 0 in the
BG phase. The latter is guaranteed due to the exponential
decay of correlations and one can similarly extract the value
of α from the fitting procedure. The increase of α with h turns
out to be sharp in the vicinity of the transition with Kc = 3/2.
This method was successfully exploited to capture the SF-BG
transition in the disordered 1D Bose-Hubbard model [65].

IV. BOSONIZATION AND GS PROCEDURE

We follow a constructive bosonization procedure to
achieve an effective low-energy theory of the clean model. For
this, the clean Hamiltonian (1) is rewritten in the k space:

H̃ =
∑
k∈BZ

εkc†
kck + J2

L

∑
k1,k2,q

cos(2k1 + q)c†
k1+qck1 c†

k2−qck2 ,

(10)

where summation over the Brillouin zone (−π, π ] is as-
sumed. The single-particle dispersion relation is

εk = −
∑

β=1,2

Jβ cos(βk). (11)

In the weak-coupling regime, |κ| � 1, one starts with a lin-
earized spectrum of the free fermionic term (2) with the
corresponding left (L) and right (R) moving branches. The
first term of Eq. (10) can be rewritten as

H̃0 = πvF

L

∑
q,τ

ρ̂τ (q)ρ̂τ (−q), (12)

with τ ∈ [L(−1), R(+1)], where the Fermi velocity is vF =
∂εk
∂k |k=kF and the density plasmons for a given branch τ ∈ L, R
are defined as

ρ̂τ (q) =
∑

k

c†
τ,k+qcτ,k . (13)
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Canonical fermionic operators c(†)
k,τ

correspond to the τ

branch. The second term of Eq. (10) cannot be directly ex-
pressed in terms of these plasmons due to the k dependence of
the amplitude V (k, q) = cos(2k + q). However, for |κ| � 1
one can assume that V (k, q) ≈ V (q, kF ), since the momentum
of excitations q is close to zero for the forward scattering
and q ∼ 2kF for the backscattering processes. One is left
with the kF dependence of the scattering amplitudes V (q ∼
0) = cos(2kF ) and V (q ∼ 2kF ) = cos(4kF ). This is expected,
since if the density of particles (holes) exceeds half filling,
pair-hopping events are less probable and the effects of the
corresponding term are weak, i.e., the largest contribution
is expected at half filling. Within this approximation, one
can rewrite the second term of Eq. (10) in terms of plas-
monic excitations and fully bosonize the fermionic theory,
since [ρ̂τ (−q), ρ̂τ ′ (q′)] = Lqτ

2π
δτ,τ ′δq,q′ . One then follows the

standard bosonization scheme [57,66,67] by introducing the
conjugated bosonic fields

φ(x) = i
∑
q �=0

sgn(x)√
2|q|L (b†

qe−iqx − bqeiqx ) (14)

and

θ (x) = −i
∑
q �=0

1√
2|q|L (b†

qe−iqx − bqeiqx ), (15)

with [φ(x), ∂x′θ (x′)] = iδ(x − x′). As a result, the (1+1)-
dimensional sine-Gordon model is obtained:

H = v

2

∫ (
1

K0
(∂xφ)2 + K0(∂xθ )2

)
+ g cos(βsφ), (16)

where βs = √
16π and v is the excitation velocity. The cosine

term in Eq. (16) originates from the 4kF umklapp scattering,
since we consider the half filled sector of the Hilbert space.
Expressions for the TLL parameter K0(κ, kF ) and the excita-
tion velocity v(κ, kF ) have the following forms:

K0(κ, kF ) =
√

2π + 4κ[3 cos(2kF ) − 1]

2π + 4κ[cos(2kF ) + 1]
(17)

and

v(κ, kF ) = vF

√(
1 + 4κ cos(2kF )

π

)2

−
(

4κ sin(kF )

π

)2

.

(18)

At half filling (kF = π
2 ) the expression for K0 transforms to

K0 =
√

1 − 8κ

π
. (19)

For K0 < 1/2 the cosine term in Eq. (16) becomes relevant
in the RG sense and opens a gap in the spectrum via the BKT
transition. From Eq. (19) we find the critical value κc = 3π

32 ≈
0.295. As we show in the next section, the found estimate of
κc is in good agreement with the numerical DMRG result.

From Eq. (16) it is clear that in the gapless regime all theory
reduces to the theory of disordered TLL with the TLL param-
eters v and K0 given above. For weak disorder, we follow the
RG formulation of GS [3] and below in this section shortly

present the well-known results. Assuming weak disorder, one
rewrites the disordered part of the Hamiltonian as

Hdis = −
∫

dx

[
η(x)

1√
π

∂xφ +
(

ξ (x)
e−i

√
4πφ

2πa
+ H.c.

)]
,

(20)

where the introduced Gaussian complex fields η(x) and ξ (x)
correspond to the scattering with momenta q ∼ 0 and q ∼
2kF , respectively. Forward scattering is irrelevant within the
considered approximations, since the corresponding term in
the Hamiltonian can be eliminated completely by the redef-
inition of the phase field φ(x). Then, one is left with the
backscattering part of Eq. (20) with the momentum transfer
q ∼ 2kF and ξ (x)ξ ∗(x′) = D δ(x − x′). The disorder constant
is D = 〈h2〉 and the TLL constants v and K change under the
RG procedure. Following the RG formulation of GS [3], one
gets the following set of RG equations:

dD̃

dl
= (3 − 2K )D̃, (21a)

dK

dl
= −K2

2
D̃,

dv

dl
= −vK

2
D̃, (21b)

where l is the scaling RG parameter and D̃ = D 2a
πv2 . At finite

disorder there is a critical value Kh, such that for K < Kh the
disorder flows to the strong-coupling localized phase, whereas
for K � Kh the disorder flows to zero under the RG trans-
formation renormalizing the bare parameters v and K . The
critical value of the TLL parameter depends on the disorder,
but in the small disorder limit one has Kh(h → 0) = Kc =
3/2.

V. NUMERICAL RESULTS: CLEAN CASE

Central charge. Before considering the disordered case,
we show our results for the clean case. We first demon-
strate the results for the central charge in the parameter space
−1 < κ < 0.35, where the upper bound is chosen to be close
to the expected critical value κc = 0.33. For this purpose,
we performed DMRG calculations with the maximum bond
dimensions up to χ = 3000 and for the system sizes L =
{32, 64, 96, 128}. This allowed us to calculate the central
charge up to five digits using Eq. (7). Our results are shown
in Fig. 2. The obtained values of c for all system sizes are
close to unity, which signals the Gaussian universality class
of the current (1+1)-dimensional system. In this case the SF
phase is stable. An important peculiarity of the presented plot
is that for all system sizes one clearly observes a sharp peak
of c with an abrupt decrease in the vicinity of κ ≈ 0.33. This
feature arises because an otherwise irrelevant cosine operator
of Eq. (16) becomes marginal at this point (as we show in the
next section, one has K0 = 1

2 at the peak value). The cosine
term makes a contribution to the central charge c = 1 + O(g3)
and the pronounced peak value serves as an effective transition
point for the finite-size system. In the thermodynamic limit
the peak value cpeak → 1 as L → ∞, whereas κpeak → κc. As
shown in Fig. 2(c), the scaling of data at the peak position
does not follow c = 1 + O(1/L2), which implies that there
are usual logarithmic corrections ∝(−1)l

√
ln l/l for the TLL

parameter in Eq. (8) [61,64]. We thus perform an accurate
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FIG. 2. (a) Numerical DMRG results for the central charge c
versus κ . The results are obtained using Eq. (7) for the system
sizes L = {32, 48, 64, 96, 128}. The pronounced peak values of c are
represented in the subplot (b). In (c) the scaling of the peak values
cpeak as 1/L2 is plotted.

estimate of the critical parameter κc from the calculation of the
TLL parameter K0, which we present below. We note that an
abrupt decrease of the central charge from unity as a function
of κ > κc captures the transition from the TLL phase to the
bond-order gapped phase and hence the renormalization of c
to 0.

There is also an extended region of large values of c
for −1 < κ < −0.2. This feature also comes from irrelevant
contributions, not considered within the bosonized theory in
the previous section. As one increases the system size, the
central charge c(κ ) gets closer to c = 1, so that the system
renormalizes to the pure TLL.

Clean TLL parameter K0. The results of our calculations for
the TLL parameter K0 are presented in Fig. 3(a). Remarkably,

FIG. 3. (a) DMRG result for the TLL parameter K0 as a function
of κ for L = 128 (symbols). The solid line represents the bosoniza-
tion result of Eq. (19) for K0. The results for the other considered L
around the critical point are plotted in (b). The finite-size critical data
K0(L) obeys 1/ log2(L) scaling as demonstrated in (c).

the analytical result of bosonization (solid line) and DMRG
results (symbols L = 128) are in agreement in the parameter
range |κ| < 0.25. For larger values of |κ| the discrepancy
between the two is large and grows with κ , which arises due
to irrelevant terms excluded within our bosonization analysis.

For positive κ > 0 the TLL parameter has dominant bond-
order-wave correlations and K0 < 1. At K0 < 1/2 the cosine
term in Eq. (16) becomes relevant and opens a gap in the
spectrum. This is expected to occur at κ ≈ 0.295 from the
bosonization result of Eq. (19). To extract the numerical value,
in Fig. 3(b) we plot our numerical data around the expected
critical point K0(L) for all considered system sizes. Since this
phase transition belongs to the BKT universality class, in or-
der to accurately locate the critical point in the thermodynamic
limit we use the scaling argument κc − κc(L) ∝ [log(L)]−2,
where κc is the critical parameter in the thermodynamic limit.
The result of such a scaling is shown in Fig. 3(c). Numerical
data perfectly obey this scaling law and one extracts the value
κc = 0.3256(2) from the fitting procedure.

For κ < 0 the TLL parameter grows with |κ| (from unity at
κ = 0) and one has enhanced SF correlations. In this regime,
our results for K0 show that |K0(L = 96) − K0(L = 128)| ∼
10−4 and we accept the value K0(L = 128) as the thermo-
dynamic limit value. Remarkably, for κ < −0.541 (from the
bosonization result one obtains κ < − 5π

32 ≈ −0.49) the value
K0 > 3/2. One expects that at these values of κ the disor-
dered system keeps algebraic correlations at a finite disorder
amplitude h < hc, whereas for larger values h the power-law
decrease changes to an exponential one, which is the feature
of the BG phase. As we show in the next section, this is indeed
the case.

VI. NUMERICAL RESULTS: DISORDERED CASE

We first assume that the BKT transition at finite disor-
der strength hc(κ ) for κ < −0.541 obeys the GS scenario,
i.e., occurs at Kc = 3/2. For locating the critical line in the
κ − h space, we chose several values of κ and calculated the
h-dependent TLL parameter K (h). The results of the calcu-
lation for L = 96 and L = 128 are presented in Fig. 4. At
finite disorder h < hc the TLL parameter K (h) < K0(h = 0)
decreases from its clean value and crosses the critical line
Kc = 3/2 at h = hc. For the smallest considered κ = −0.6
the critical field hc/J1 ≈ 0.32. As expected, for larger values
of |κ| one needs larger values of the disorder strength hc,
reaching hc/J1 ≈ 0.95 at κ = −0.95. As one can see from the
plot, our results for the critical fields for L = 128 coincide
with the ones for L = 96 within the considered accuracy. We
also checked the consistency of these results using an open
boundary condition for the larger system size L = 384 (not
shown; see Ref. [24] for details of similar calculations). We
now justify the assumption that the considered BKT transition
indeed obeys the GS scenario. For this, we provide arguments
based on the following calculations.

Calculation of α. Our confirmation of the GS scenario is
based on the behavior of the disorder-averaged correlation
function at long distances. In the SF phase this quantity decays
algebraically with α = 0 (see the last paragraph of Sec. III
for the definitions of α and G), whereas in the BG phase
exponential decay with α > 0 is expected. Our results for α at
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FIG. 4. Disorder-averaged values of the TLL parameter K as
functions of the disorder strength h/J1 for several values of the
parameter κ . The critical point is determined from the crossing of the
K (h) curves with the value Kc = 3/2. The considered system sizes
are L = 96 and L = 128.

several values of κ are presented in Fig. 5. For all considered
values of κ , an increase of α with h is sharp and it occurs in the
vicinity of hc determined from the calculation of K (vertical
lines in the plot). These results imply that the transition indeed
occurs in the vicinity of K ≈ 3/2.

Critical distributions of G. To finalize our arguments,
we followed Ref. [24] and calculated the distribution of the
fluctuation of the correlator ln G̃ = ln G − ln G (· · · denotes
disorder averaging) at distances r ∈ [30 : 100] for the crit-
ical disorder and the system sizes L = 128, L = 256, and
L = 384 with open boundaries. In order to avoid finite-size
effects, we included in our analysis only 70% of lattice sites
from the middle of the chain and excluded the remaining
edge sites. We considered κ = −0.65 and κ = −0.95 with
hc/J1 ≈ 0.44 and hc/J1 ≈ −0.94, respectively. The results
are presented in Fig. 6. For both values of κ one observes

FIG. 5. Numerical values of α obtained using the fitting pro-
cedure as a function of the disorder strength h/J1. Vertical lines
represent the values of hc/J1 obtained from the criterion K (hc ) =
3/2. The results are presented for L = 128.

FIG. 6. Fluctuation distribution of the correlator ln G̃ = ln G −
ln G (fixed r ∈ [30 : 100]) at the critical disorder hc for κ = −0.65
(hc ≈ 0.44) and κ = −0.95 (hc ≈ 0.94). Distributions show self-
averaging behavior and no weak-link tails are observed.

self-averaging behavior: when the system size is increased
from L = 128 to L = 384, both distributions shrink. This is
in sharp contrast with the weak-link scenario, where a self-
similar behavior of the fluctuation distribution was observed
[24]. More importantly, the fluctuation distributions for both
κ do not possess exponential tails. The latter served as a
smoking gun for the weak-link scenario, reported in Ref. [24].
All these features support our assumption of the GS scenario
and the absence of weak-link physics in our model for all
values of κ .

The solely exhibited GS scenario in our model is in sharp
contrast with the case of the disordered 1D XXZ model.
In the latter model, the weak-link scenario was numerically
demonstrated when the critical disorder was larger than the
bandwidth (when the Ising anisotropy � > −1) [24]. The
absence of the weak-link scenario in our model can be qualita-
tively explained as follows. In the case of the 1D XXZ model
in the vicinity of the ferromagnetic phase transition one has
� > −1 and the clean TLL parameter K0 behaves as ∝ 1√

1+�
.

This shows that in this regime the model can be mapped onto
the model of weakly interacting Bose gas in the low-energy
limit, since for the free Bose gas one has K0 = ∞. Weak
short-range interaction between the bosons renormalizes the
TLL parameter to K0 < ∞ and introducing disorder in the
form of a random potential one achieves the model studied
in Refs. [16–19]. At strong disorder, bosons form localized
clusters within the Lifshitz tails. Since the density of states
in the tail is exponentially small, these clusters are well sep-
arated. They do not overlap with each other and one has the
insulating BG phase. When the disorder strength is compara-
ble to the hopping amplitude, these clusters merge and form
the SF phase. In the spin-1/2 notation, the clusters correspond
to the domains of parallel spins formed in the vicinity of
the ferromagnetic transition. We also note that there exists
exact mapping between the 1D XXZ model in the vicinity of
ferromagnetic phase transition and the integrable Lieb-Liniger
gas of bosons, obtained via the Bethe ansatz method [68,69].
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FIG. 7. Phase diagram of the model in the h − κ plane and the
exponent φ as function of κ (solid curve). The dashed vertical line
at κ ≈ −0.54 separates the exhibited two regimes: for −1 � κ �
−0.54 and h < hc the SF phase persists. At larger disorder strength
h > hc one enters the BG phase. In the second regime for κ > −0.54
arbitrarily weak disorder drives the system into the BG phase. The
solid strip serves as an eye guide.

In the model of our study, the clean TLL parameters in
the regime of dominant SF correlations are K0 ∼ 3/2 and the
mapping onto the weakly interacting Bose gas is violated.
Instead, dual bosons strongly interact and become localized at
finite disorder via the GS scenario and the weak-link scenario

is not exhibited. The phase diagram of our model is presented
in Fig. 7.

VII. CONCLUSIONS

In this work, we provided numerical evidence for the
TLL–BG phase transition in the 1D fermionic system with
pair hoppings. For sufficiently large pair hopping ampli-
tudes, SF correlations in the bulk of the liquid are strongly
enhanced with the clean TLL parameter K0 > 3/2. In this
regime, weak on-site disorder is an irrelevant perturbation
and the TLL phase with algebraically decaying correlations
persists at weak disorder. On the contrary, strong disorder
drives the system to the BG phase via the BKT mechanism.
We demonstrate that the transition follows the Giamarchi-
Schulz scenario at Kc = 3/2 in the thermodynamic limit. In
the regime of weak pair hoppings with the clean TLL pa-
rameter K0 < 3/2 arbitrarily weak disorder is relevant in the
RG sense and one enters the BG phase at any finite disorder
with the disorder-dependent correlation length Lc = h−2φs .
The exponent depends on the clean TLL parameter as φs =
(3 − 2K0)−1. The form of the exponent in the localization
regime together with the phase diagram of the model are
presented in Fig. 7.
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