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Hyperuniformity of quasiperiodic tilings generated by continued fractions
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Hyperuniformity is a property of certain heterogeneous media in which density fluctuations in the long-
wavelength range decay to zero. In reciprocal space this behavior translates into a decay of Fourier intensities in
the range near small wave numbers. In this paper, quasiperiodic tilings constructed by word concatenation are
under study. The lattice is generated from a parameter given by its continued fraction so that quasiperiodicity
emerges for infinity when irrational generators are taken into consideration. Numerical simulations show a quite
regular quadratic decay of Fourier intensities, regardless of the number considered for the generator parameter,
which leads us to formulate the hypothesis that this type of media is strongly hyperuniform of order 3. Theoretical
derivations show that the density fluctuations scale in the same proportion as the wave numbers. Furthermore, it
is rigorously proved that the structure factor decays around the origin according to the pattern S(k) ∼ k4. This
result is validated with several numerical examples with different generating continued fractions.
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I. INTRODUCTION

Hyperuniformity is a property of a spatial distribution in
which there are fewer density fluctuations at long length scales
compared to a random distribution with the same number of
points. In other words, hyperuniform systems have a more
ordered structure than a typical random system, while still
being statistically homogeneous. Quasicrystals (as crystals)
are hyperuniform [1]. For hyperuniform lattices, the structure
factor S(k) is a smooth function that tends to zero as the wave
number k tends to zero following a power law, according to
the equation

S(k) ∼ kγ . (1)

A consistent approach to standard cases characterized by
smooth S(k) and quasicrystals with dense but discontinuous
S(k) in one dimension (1D) can be achieved by defining γ

based on the integrated Fourier intensity

Z (k) = 2
∫ k

0
S(κ ) dκ. (2)

The integral is multiplied by 2 to be consistent with the def-
inition for higher dimensions, where κ is viewed as a radial
coordinate. For quasiperiodic lattices, Z (k) is monotonically
increasing, and for k sufficiently small it can be plotted as
bounded between two power-law curves, verifying that

d1 kγ+1 < Z (k) < d2 kγ+1 (3)

for some constant coefficients d1 and d2 and for some γ . In
such a case, γ is said to be an order of hyperuniformity, and
the cumulative intensity function obeys a power law of order
1 + γ , which is symbolized as

Z (k) ∼ kγ+1 as k → 0.
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Another measure of hyperuniformity is given by the local
number variance of particles within a window of radius R (an
interval of length 2R in the 1D case), denoted by σ 2(R) (order
metric context). If its growth is slower than the window vol-
ume (proportional to R in 1D) in the large-R limit, the system
is hyperuniform. For any 1D system, the scaling of σ 2(R) for
large R is determined by γ as follows: class I, γ > 1: strongly
hyperuniform; class II, γ = 1: logarithmic hyperuniform; and
class III, 0 < γ < 1: weakly hyperuniform. Finally, for γ < 0
we have the antihyperuniform class [2].

In recent years, there has been significant research in-
terest in hyperuniformity in quasiperiodic tilings, which are
complex arrangements of tiles with long-range order but no
translational symmetry. Studies have shown that certain types
of quasiperiodic tilings exhibit hyperuniformity [2,3], which
has important implications for the physical and mechanical
properties of these materials. Since hyperuniformity directly
invokes particle order in the long-wavelength range, the study
of tile density depends on the generation pattern of these
lattices. Thus, Oğuz et al. [3] have studied the hyperuniformity
order in quasiperiodic lattices generated by projection, show-
ing that it depends on the type of strip used. The so-called
ideal strips result in hyperuniformity exponents of γ = 3.
Other important cases of quasiperiodic 1D structures are those
generated by substitution rules (or inflation rules). It turns
out that there is a strong relationship between the scaling in
Fourier intensities and density fluctuations in the limit tiling
[4–6]. In particular, the eigenvalues of the substitution matrix
play an important role in this relationship [7,8]. The hyperuni-
formity of substitution-based quasiperiodic tilings has been
discussed in detail in Ref. [9], showing that the power-decay
law of Fourier intensities depends strongly on the nature of the
substitution matrix. Fuchs et al. [10] have found log-periodic
oscillations of the broadening of Landau levels in the pres-
ence of a potential with discrete scale invariance, determining
exactly the hyperuniformity exponent and the period of such
oscillations.
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FIG. 1. Tiling generation by concatenation for parameter α =
3/11 = [0; 3, 1, 2]. Convergents are α j = {1/3, 1/4, 3/11}. Numer-
ators and denominators of convergents match with the step number
of tiles of each type.

In this paper, we present a comprehensive analysis of the
hyperuniformity of quasiperiodic lattices based on word con-
catenation and generated by continued fractions. By making
use of the recursive nature of these systems, iterative expres-
sions for both Fourier intensities and density fluctuations can
be obtained analytically. Both are a function of the differ-
ent coefficients that form the continued fraction. Analytical
expressions for the decreasing pattern of Fourier intensities
with wave numbers for quasiperiodic tilings generated by so-
called metallic means and by periodic continued fractions are
derived in detail, showing good agreement with the numerical
examples. Furthermore, it is also proved that the global hype-
runiform behavior of the structure factor is S(k) ∼ k4.

II. QUASIPERIODIC TILINGS GENERATED
BY CONCATENATION

Let us consider two segments (tiles) of lengths A and B and
a real number α ∈ R defined in the range 0 < α � 1. Let the
sequence [0; a1, . . . , an] be the continued fraction of α, i.e.,
we can write

α = [0; a1, . . . , an] = 1

a1 + ···+ 1
an−1+ 1

an

, (4)

where a j > 0, for j � 1, are positive integer numbers.
Using the terms of this sequence, a word can be formed

from the alphabet {A, B} by concatenation. The recursive for-
mula is defined as

W j = Wa j

j−1 W j−2, 1 � j � n,

W−1 = A, W0 = B, (5)

where both the exponent and the product must be understood
as concatenations, for instance A3(B2A) = AAABBA. The pa-
rameter α plays the role of a generation parameter of the
quasiperiodic tiling. From the definition given above, if α

is a rational number, the word Wn corresponds to the last
iteration. The infinite word emerges as the periodic concate-
nation of Wn. Otherwise, if α is irrational, then it is known
that the sequence {an} becomes infinite and the associated
word has a purely quasiperiodic pattern given by the limit
limn→∞ Wn. We will refer to the algorithm given by Eq. (5) as
the concatenation algorithm, since the words at each step arise
from the concatenation of the previous ones. For instance, for
α = 3/11 = [0; 3, 1, 2], Fig. 1 shows the different words after
each step and the final tiling W3. The final goal is the word

Wn associated with the tiling generated by α. However, words
of previous steps are somehow approximations. In particular,
the number of symbols A and B at each step is given by the
sequences u j and v j , respectively, defined recursively as

u j = a j u j−1 + u j−2, u−1 = 1, u0 = 0, (6)

v j = a j v j−1 + v j−2, v−1 = 0, v0 = 1. (7)

Both u j and v j are the numerator and denominator of the jth
convergent α j = u j/v j [11], with α = αn. Thus

u1

v1
= 1

a1
,

u2

v2
= 1

a1 + 1
a2

,

un

vn
= 1

a1 + . . .+ 1
an−1+ 1

an

. (8)

Moreover, for two consecutive steps, the following identity
holds [12]:

v j u j−1 − u j v j−1 = (−1) j, 1 � j � n, (9)

which leads to the known distance between two consecutive
convergents,

α j−1 − α j = (−1) j

v j v j−1
.

For the tiling associated with the word W j , both the total num-
ber of points and the tiling length are then Nj = u j + v j and
Lj = u j A + v j B, respectively, which can also be determined
recursively as

Nj = a j Nj−1 + Nj−2, N−1 = 1, N0 = 1,

Lj = a j L j−1 + Lj−2, L−1 = A, L0 = B (10)

for 1 � j � n. Therefore, the total number of points N = Nn

and the final length of the tiling L = Ln are

N = (1 + α) vn, L = A un + B vn = (B + α A) vn. (11)

III. PROPERTIES OF THE STRUCTURE FACTOR

The pattern of points generated by the Sturmian word can
be considered as a distribution of local heterogeneities. Thus,
the density of the medium generated after n iterations of
Eq. (5) can be written in terms of Dirac δ functions as

g(x) =
N∑

j=1

δ(x − x j ), (12)

and its corresponding Fourier series representation leads to

g(x) =
∞∑

m=−∞
ĝ(km) eikm x, (13)

where the Fourier coefficients are

ĝ(km) = 1

L

∫ L

x=0
g(x) e−ikm x dx, (14)

where

km = 2πm

L
, m = 0,±1,±2, . . . . (15)
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The sequence {km} represent the reciprocal space positions,
and according to Eq. (12) the integral is∫ L

x=0
g(x) e−ik x dx =

N∑
j=1

e−ik x j . (16)

In general, evaluation of Eq. (16) requires first the concatena-
tion of the complete word Wn, and second the determination
of N real-space coordinates x j, 1 � j � N . Taking advan-
tage of the recursive formation of the words, we propose an
iterative approach to find the expression of Eq. (16), avoiding
computation of the N coordinates x j . This procedure is suit-
able for quasiperiodic 1D lattices generated by concatenation,
and it can turn out to be useful, especially when handling large
systems, which is necessary to simulate aperiodic media.

Consider any word U formed by U symbols taken from the
alphabet {A, B}, and real-space positions of points given by
{x j, 1 � j � U }. Let us define

F{U ; k} =
U∑

j=1

e−ik x j . (17)

As long as there is no room for confusion, we will henceforth
refer to those coefficients obtained by the above expression
(17) as Fourier coefficients. We are interested in evaluating
Eq. (17) for words generated by concatenation. Thus, let us
consider U and V as two arbitrary words formed with symbols
taken from the alphabet {A, B}, with lengths lu and lv and with
a total number of symbols equal to U and V , respectively. Let
us consider {x j, 1 � j � U } and {y j, 1 � j � V } to be the
local positions of tiles for both tilings, respectively, verifying
that

F{U ; k} =
U∑

j=1

e−ik x j , F{V; k} =
V∑

j=1

e−ik y j . (18)

Then the word UV obtained by concatenation has a length
lu + lv and U + V particles, whose coordinates with respect
to the origin of the concatenated word are

{x1, . . . , xU , lu + y1, . . . , lu + yV }. (19)

The Fourier coefficients of the new tiling are

F{UV; k} = F{U ; k} + e−ik lu F{V; k}. (20)

Given any integer number m and using the induction principle
from this result, it is straightforward that

F{Um; k} = (1 + e−i klu + · · · + e−i (m−1) klu )F{U ; k}
≡ P (m, lu; k)F{U ; k}, (21)

where

P (m, l; k) = 1 + e−i k + e−i 2 kl + · · · e−i (m−1) kl

= 1 − e−ik m l

1 − e−ikl
(22)

stands for the Fourier intensities of a periodic tiling of
m particles with separation l , that is, with coordinates
{0, l, 2l, . . . , (m − 1)l}. Making use of the properties given
by Eqs. (20) and (21) and denoting H j (k) = F{W j ; k} for

1 � j � n, we obtain

H j (k) = F
{
Wa j

j−1 W j−2; k
}

= F
{
Wa j

j−1; k
} + e−ik L j−1 F{W j−2; k}

= P (a j, Lj−1; k)H j−1(k) + e−ik L j−1 H j−2(k),

H−1(k) = e−ikA,

H0(k) = e−ikB. (23)

As this new recursive scheme shows, the Fourier coefficients
can be obtained just iterating n times Eq. (23). Thus, it is not
necessary to compute the N coordinates of the whole medium,
something remarkable from a computational point of view,
because in general N � n.

The Fourier coefficients define the properties of the
medium in reciprocal space. Media studied in this paper have
a discrete distribution of reciprocal space positions k given by
k = 2πm/L, with m = 0,±1,±2, . . . . If A/B is rational, any
system obtained by a finite number of interactions n will be
periodic having a bounded band of information in the recipro-
cal space. That is, the distribution of Fourier amplitudes will
be periodic. Given a medium of N particles within a length
L, let us see the period of this distribution. Indeed, the final
expression of Fourier coefficients is

∑
exp{ikx j}. Assuming

A/B = θA/θB is the irreducible fraction of the tiles lengths
ratio, then there exists a value of k for which the Fourier
coefficient is periodic. That period corresponds to

KP = 2πθB

B
= 2πθA

A
. (24)

If A/B is irrational, the numerator and denominator of the
rational approximation θA/θB approach infinity, making also
aperiodic the spectrum in the reciprocal space. This results in
the fact that the period derived in Eq. (24) is independent of
the iterations of Eq. (23), so that H j (k), j � 1 are periodic
with period k = KP. Let us illustrate these results graphically
with a numerical example. Let us consider the tiling asso-
ciated with the parameter α = √

3 − 1 = [0; 1, 2, 1, 2, . . .] =
0.732 050 8 . . . with tiles of lengths A = 1.25 and B = 1.00
(units of length), so that θA = 5 and θB = 4. According to
Eq. (24), the spectrum of the Fourier coefficients in reciprocal
space is periodic, with period KP = 8π . The magnitudes of
the Fourier coefficients corresponding to the sixth convergent
α6 = [0; 1, 2, 1, 2, 1, 2] = 0.731 70 are shown in Fig. 2(a).
The range has been extended to k/KP = 2 to show the peri-
odicity due to the rational nature of A/B. However, within the
range k/KP = [0, 1], the self-similarity of the patterns at dif-
ferent scales, typical of quasiperiodic structures, is observed.
In Figs. 2(b), 2(c), and 2(d) the image has been enlarged in the
range k/KP = [0, 0.5]. The three plots represent, respectively,
the Fourier intensities for convergents n = 4, 6, and 8. It is
observed that the limit quasiperiodic tiling presents decreas-
ing intensities as the wave numbers approach zero (k → 0),
showing evidence of hyperuniform behavior. Moreover, one
particular sequence of Bragg peaks, represented in red, shows
a more pronounced pattern, proportional to k2. In the next
section, the sequence of these characteristic wave numbers
(drawn in red in Fig. 2) will be derived.
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FIG. 2. Fourier magnitudes for the tiling associated with α =√
3 − 1 = [0; 1, 2, 1, 2, . . .]. (a) Fourier magnitudes of the sixth iter-

ation in the range 0 � k � 2KP. (b), (c), and (d) Fourier magnitudes
of the fourth, sixth, and eighth iterations, respectively, in the range
0 � k � KP/2. Blue dots: complete spectrum of Fourier magnitudes.
Red squares: Fourier magnitudes at the sequence of dominant wave
numbers {kν}n

ν=−1. Dashed lines: curve proportional to k2.

IV. SEQUENCE OF DOMINANT WAVE NUMBERS

Consider the tiling generated by α = [0; a1, . . . , an] =
un/vn, with length L = Ln = Aun + Bvn. For each j with 0 �
j � n, we can define the parameter σ j obtained as the remain-
ing continued fraction after truncation of α up to position j,
i.e.,

σ j = [0; a j+1, a j+2, . . . , an] = 1

a j+1 + 1
a j+2+ 1

. . .+ 1
an−1+ 1

an

(25)

with σ0 = α and σn = 0. The number σ j plays a key role in the
subsequent developments, especially in the computation of the
so-called density fluctuations of the tiling. So, it is interesting
to derive two different ways of expressing its value, in addition
to the continued fraction given by Eq. (25). First, using the
properties of a continued fraction [12], it can be established
that

α = [0; a1, . . . , a j, a j+1, . . . , an]

= (a j + σ j )u j−1 + u j−2

(a j + σ j )v j−1 + v j−2
= u j + σ ju j−1

v j + σ jv j−1
, (26)

and solving for σ j ,

σ j = − α − α j

α − α j−1

v j

v j−1
. (27)

Secondly, let us express σ j in the form of an irreducible frac-
tion. For that, we invoke the following decreasing sequence:

ξ j = a j ξ j−1 + ξ j−2, ξ−1 = −vn, ξ0 = un (28)

with a general term [11]

ξ j = vn v j (α − α j ). (29)

Taking into account Eqs. (27) and (29), the sequence {ξ j}
presents alternating signs and approaches zero around the
limit value α. Moreover, in general,

σ j = − ξ j

ξ j−1
, 0 � j � n. (30)

Since the initial values are ξ−1 = −vn, ξ0 = un, then ξ j will
be negative for odd indexes and positive for even ones. Based
on this, the sequence c j = (−1) j−1 ξ j−1 for 0 � j � n + 1 is
formed by positive integer numbers and decreasing order from
c0 = vn up to cn = 1 and cn+1 = 0. The recursive relationship
between sequences {c j} and {σ j} is then straightforward and
given by

c j+1 = σ j c j, 0 � j � n. (31)

Such a set of numbers {c j} so formed will be used as a basis
to build a sequence of wave numbers associated with the
tiling αn. This sequence will be of special importance in the
forthcoming developments, and it is defined as

kν = 2π

Ln
cν, 0 � ν � n. (32)

Additionally, the term associated with ν = −1 as k−1 =
2πNn/Ln will be added at the beginning of the sequence. It
should be pointed out that this is a sequence of positive and
decreasing numbers, since according to Eq. (31) each term is
obtained by multiplying the previous one by σ j , which is less
than unity. In Figs. 2(b), 2(c) and 2(d), the Fourier intensities
at these n + 2 coordinates have been highlighted in red. As
observed, the number of terms of this sequence increases as
the corresponding convergent αn does. The Fourier intensities
at these locations reveal strong periodic patterns in direct
space, closely related to the formation of the tiling. Taking a
closer look at these wave numbers for the three systems shown
(n = 4, 6, and 8), it becomes clear that their positions fit quite
accurately as higher convergents are considered. Each column
of Table I shows the numerical results of the n + 2 wave

014202-4



HYPERUNIFORMITY OF QUASIPERIODIC TILINGS … PHYSICAL REVIEW B 109, 014202 (2024)

TABLE I. Each row shows the value of kν/KP for different tilings αn, with n � ν, generated by the convergents of the number
[0; 1, 2, 1, 2, 1, 2, . . .]. The theoretical results show that after a few iterations, the value of kν stabilizes showing that kν (αn−1) ≈ kν (αn) for
n � ν.

Tiling associated with nth convergent, αn

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

k−1 0.222222 0.227273 0.225806 0.226190 0.226087 0.226115 0.226107 0.226109
k0 0.111111 0.136364 0.129032 0.130952 0.130435 0.130573 0.130536 0.130546
k1 0.111111 0.090909 0.096774 0.095238 0.095652 0.095541 0.095571 0.095563
k2 0.045455 0.032258 0.035714 0.034783 0.035032 0.034965 0.034983
k3 0.032258 0.023810 0.026087 0.025478 0.025641 0.025597
k4 0.011905 0.008696 0.009554 0.009324 0.009386
k5 0.008696 0.006369 0.006993 0.006826
k6 0.003185 0.002331 0.002560
k7 0.002331 0.001706
k8 0.000853

numbers kν/KP, −1 � ν � n associated with each generating
parameter αn (including the added wave number for ν = −1,
introduced above). If, on the other hand, we focus on a row,
say the νth one, the different values represent how the value of
kν changes as the tiling increases. Here is where the results of
the table become interesting. Thus, let us consider for instance
the values of the wave numbers k0 (ν = 0), which are listed in
the second row. As shown above, c0 = vn, yielding

k0 =
{

2πv1

L1
,

2πv2

L2
, . . . ,

2πv8

L8

}

=
{

2π

B + Aα1
,

2π

B + Aα2
, . . . ,

2π

B + Aα8

}
. (33)

In general, we can denote by k0(αn) = 2π/(B + αnA) the
wave number for ν = 0 calculated for the tiling αn =
[0; a1, . . . , an]. From the definition of convergents, we can
conclude that if n � 1, then it is expected that

k0(αn) ≈ k0(αn+1) ≈ k0(αn+2) ≈ · · · . (34)

After a quick inspection of the numerical values shown in the
second row of Table I, we note that the first four decimal
positions of k0 stabilize from the sixth convergent (n = 6)
onwards.In general, let us prove that the following expression
approximately holds provided that n � ν � −1:

kν (αn−1)

kν (αn)
≈ 1. (35)

Indeed, from Eqs. (31) and (32) it can be established that

kν (αn) = σν−1(αn) kν−1(αn)

= σν−1(αn) σν−2(αn) kν−2(αn)

= · · ·
= σν−1(αn) σν−2(αn) · · · σ0(αn) k0(αn), (36)

where the dependence on the associated convergent αn has
been highlighted using the notation kν (•) and σν (•). This
detail of the notation is important at this stage since the quo-
tient of Eq. (35) is the result of evaluating Eq. (36) for two

consecutive convergents, αn−1 and αn. Indeed,

kν (αn−1)

kν (αn)
= σν−1(αn−1)

σν−1(αn)
· · · σ1(αn−1)

σ1(αn)

σ0(αn−1)

σ0(αn)

k0(αn−1)

k0(αn)

= [0; aν, aν+1, . . . , an−1]

[0; aν, aν+1, . . . , an]
· · · [0; a2, . . . , an−1]

[0; a2, . . . , an]

× [0; a1, . . . , an−1]

[0; a1, . . . , an]

B + Aαn

B + Aαn−1

≈ 1 × · · · × 1 × 1 ≈ 1, n � ν � 1. (37)

The values of each of the fractions σ j (αn−1)/σ j (αn) for 0 �
j � ν − 1 are approximately unity since it is assumed that
n � ν � 1. Moreover, for ν = −1 and 0, we also obtain

k−1(αn−1)

k−1(αn)
= 2πNn−1

Ln−1

Ln

2πNn
= 1 + αn−1

1 + αn

B + Aαn

B + Aαn−1
≈ 1,

k0(αn−1)

k0(αn)
= 2πvn−1

Ln−1

Ln

2π vn
= B + Aαn

B + Aαn−1
≈ 1. (38)

These Bragg peaks in reciprocal space have consequences on
the behavior of the medium in the long-wavelength range.
The recursive expression of the Fourier intensities will help
to show why this sequence of wave numbers has dominant
magnitudes. Indeed, using Eq. (23), the Fourier magnitude as-
sociated with the tiling αn at the wave numbers k = kν (αn) ≈
kν (αn−1) is

Hn[kν (αn)] = P[an, Ln−1; kν (αn)]Hn−1[kν (αn)]

+ e−i kν (αn ) Ln−1 Hn−2[kν (αn)]

≈ P[an, Ln−1; kν (αn−1)]Hn−1[kν (αn−1)]

+ e−i kν (αn−1 ) Ln−1 Hn−2[kν (αn−1)]

= an Hn−1[kν (αn−1)] + Hn−2[kν (αn−1)]

for n � ν � −1, (39)

where the last step P[an, Ln−1; kν (αn−1)] = an holds because
P (m, l; k) = m when kl/2π is a integer number. Following
the recursive scheme, and as long as j is sufficiently far from
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ν, we can approximate

P[a j, Lj−1, kν (α j )] ≈ P[a j, Lj−1, kν (α j−1)] = a j,

e−i kν (α j ) L j−1 ≈ e−i kν (α j−1 ) L j−1 = 1,

n � j � ν, (40)

i.e., they take their maximum values. The Fourier intensities
Hn(k) at wave numbers k = kν , with n � ν, turn out to be
maximized with respect to other wave numbers in their neigh-
borhood. This explains why their intensities are several orders
of magnitude larger than the rest. Furthermore, in Fig. 2 it can
be observed that the law of the form |Hn(k)| ∼ k2 seems to fit
more accurately at the Bragg peaks of the sequence {kν}.

The approximation of Eqs. (37) and (38) gets worse as the
value of kν (αn−1) differs from kν (αn), which becomes evident
as ν gets closer to n. However, recall that we can make n as
large as we want for a pure quasiperiodic tiling generated by
an infinite continued fraction. Thus, the Fourier intensities at
these Bragg peaks at the sequence {kν} decay towards k → 0
following a pattern stronger than the linear one. In fact, we
will see in the next section that, under certain assumptions
tested in previous works, we can predict analytically the
Fourier intensities in this sequence of wave numbers, which
will be called a sequence of dominant wave numbers.

V. HYPERUNIFORMITY EXPONENT

It is well known that the order of hyperuniformity of a
medium in reciprocal space is closely related to the limiting
values of density fluctuations in the physical space. In the par-
ticular case of quasiperiodic media generated by substitution,
it has been observed that the hyperuniformity and the limit
density fluctuations are closely related [2], and in turn the
latter are proportional to the ratio of the two eigenvalues of the
substitution matrix. Our goal is to extend these results to the
family of quasiperiodic systems generated by concatenation of
words using a continued fraction, as shown in Eq. (5). Let us
consider a tiling based on the convergent α = [0; a1, . . . , an, ],
with n � 1. As the words {W j, 1 � j � n} are generated,
both the number of tiles Nj and the length of the tiling Lj

become larger. The density of points associated with the jth
convergent α j = [0; a1, . . . , a j] = u j/v j can be determined as
ρ j = Nj/Lj . From Eqs. (10) and (11) and after j iterations, the
density of points yields

ρ j = Nj

L j
= u j + v j

Au j + Bv j
= 1 + α j

B + α jA
. (41)

Denoting by ρ̄ = N/L = (1 + α)/(B + αA) the limit density
of tile vertices, we can then write ρ j = ρ̄ + δρ j , where δρ j

stands for the deviations with respect to ρ̄, and they are given
by

δρ j = (A − B)(α − α j )

(B + α jA)(B + αA)
, 1 � j � n. (42)

This relationship exhibits decreasing amplitudes of density
fluctuations for large scales, characteristic of hyperuni-
form structures. From Eq. (42), the ratio between density

fluctuations for two consecutive iterations yields

δρ j

δρ j−1
= α − α j

α − α j−1

B + A α j−1

B + Aα j
. (43)

This expression reveals the close relationship between the
ratio of density fluctuations and the parameter σ j introduced
in the previous section. Furthermore, using Eq. (27) we can
rewrite the above equation as

δρ j

δρ j−1
= −σ j τ j, (44)

where the new parameter τ j = Lj−1/Lj denotes the relation-
ship between tiling lengths at two consecutive iterations. As
shown in Eq. (10), the sequence of tiling lengths obeys the
recursive scheme given by Lj = a jL j−1 + Lj−2. Therefore,
the parameter τ j can be expressed in another form as

τ j = Lj−1

Lj
= 1

a j + 1
a j−1+ 1

. . .+ 1

a1+ θA
θB

= [0; a j, a j−1, . . . , a1 + θA/θB]. (45)

Equation (44) reveals that density fluctuations decay
following an exponential-type law and alternating the corre-
sponding sign around the average density. It is known that
one-dimensional quasiperiodic media generated by substi-
tution rules exhibit density fluctuations that depend on the
eigenvalues of the substitution matrix [2]. Moreover, in such
media it has been found [13,14] that the Fourier intensities
are scaled under the same pattern as the density fluctuations.
Aperiodic tilings studied in this paper are built by means of
word concatenation, governed by a generic continued frac-
tion [0; a1, . . . , an]. Thus, each new word depends on a new
number a j given by the continued fraction, making them of a
special nature. After the definition of the sequence of domi-
nant wave numbers, see Eqs. (31) and (32), and considering
the derived expression for the density fluctuations ratio in
Eq. (44), two major facts have been identified:

(i) According to Eq. (40), the Fourier intensities are maxi-
mized at the dominant wave-number sequence kν+1 = σν kν .

(ii) The ratio of two consecutive density fluctuations is
proportional to the ratio between two consecutive dominant
wave numbers, i.e., δρν

δρν−1
= −σν τν .

For the purposes of this section, we can ignore the subscript
n since other convergents will not be of interest. Thus, for
convenience of notation, let us denote as H (k) = |Hn(k)| the
magnitude of the Fourier intensity of tiling generated by α =
[0, a1, . . . , an] at wave number k. Assuming the hypothesis
that Fourier intensities scale as density fluctuations, we can
establish the following relationship for each pair of consecu-
tive wave numbers within the sequence {kν}n−1

ν=0:

H (σν kν ) =
∣∣∣∣ δρν

δρν−1

∣∣∣∣ · H (kν ). (46)

Assuming a power law for the Fourier magnitudes, we find
that

H (kν+1)

H (kν )
=

(
kν+1

kν

)1+log τν/ log σν

, 0 � ν � n − 1, (47)
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FIG. 3. Fourier intensities for a quasiperiodic tiling generated by
α = [0; 1, 8, 1, 8, 1, 8, 2, 2, 2, 2, 2]. In red: intensities at the wave
numbers of the dominant sequence kν = 2πcν/L, 0 � ν � n. In
blue: Proposed model based on density fluctuations.

where both σν and τν can be written as the continued fractions

τν = [0; aν, aν−1, . . . , a1 + θA/θB],

σν = [0; aν+1, aν+2, . . . , an]. (48)

Therefore, the structure factor decays with wave numbers
according to the law

S(kν+1)

S(kν )
=

(
kν+1

kν

)2+2 log τν/ log σν

, 0 � ν � n − 1. (49)

As Eqs. (47) and (49) show, the scaling factor in the Fourier
intensities is variable for each step depending on the continued
fraction sequence {a j, 1 � j � n}. Thus, new higher terms of
the sequence {an} provide information on successive scales in
the large wavelength range, or in other words, in the different
small scales in the reciprocal space, around k → 0. Let us
illustrate the proposed model of Eq. (47) with an example.

Let us consider the tiling generated by

α = [0; 1, 8, 1, 8, 1, 8, 2, 2, 2, 2, 2, . . .] ≈ 0.898 978 9 . . . .

The Fourier intensities can be determined using the recur-
sive procedure proposed in Eq. (23) for each wave number
k = 2πm/L, m = 0,±1,±2, . . . . They have been plotted in
Fig. 3, highlighting in red the Bragg peaks at the dominant
wave numbers kν = 2πcν/L, 0 � ν � n, defined in Eqs. (32).
The first term of the sequence, for ν = 0, is also the highest
one, with the value k0 = 2πvn/L ≈ 2π/(B + Aα). As the in-
dex ν increases in the range 0 � ν � n, the value of kν decays
up to the last (and lowest) value kn = 2π/L. The subsequent
Fourier intensities H (kν ) from ν = n − 1 up to ν = 0 can
be obtained recursively from the previous ones by means
of the proposed approach of Eq. (47), starting from H (kn).

TABLE II. Values of the parameter σν = cν+1/cν for 0 � ν �
11 both in rational and decimal form, obtained from the continued
fraction α = [0; 1, 8, 1, 8, 1, 8, 2, 2, 2, 2, 2]. The last value for n =
12 is σ12 = 0.

σ0 σ1 σ2 σ3 σ4 σ5

cν+1/cν
140078
155819

15741
140078

14150
15741

1591
14150

1422
1591

169
1422

σν 0.8989 0.1124 0.8989 0.1124 0.8928 0.1188

σ6 σ7 σ8 σ9 σ10 σ11

cν+1/cν
70
169

29
70

12
29

5
12

2
5

1
2

σν 0.4142 0.4143 0.4138 0.4167 0.4000 0.5000

These values are shown with a blue-dashed line in Fig. 3.
The proposed method satisfactorily fits the exact results of the
spectrum in the reciprocal space at the coordinates given by
the dominant wave numbers {kν}n

ν=0. To obtain Fig. 3, the 12th
approximant of α (n = 12) has been considered. As is known,
the sequence kν follows the recursive scheme kν+1 = σν kν . In
the particular case of α = [0; 1, 8, 1, 8, 1, 8, 2, 2, 2, 2, 2], the
sequence of numbers {σν} has been listed in Table II, both in
rational and in decimal form. The generator parameter α in
this example has been carefully chosen with the first six terms
alternating between 1 and 8 and the second six terms constant
and equal to 2. This choice allows us to show the interesting
property demonstrated in Eq. (47): the Fourier intensities be-
have locally according to the pattern of the sequence {a j}n

j=1.
Indeed, the sequence of dominant wave numbers is obtained
from the values σν listed in Table II. Thus, the first of them
(ordered from highest to lowest) are

k1 = 0.8989 k0,

k2 = 0.1124 k1,

k3 = 0.8989 k2,

k4 = 0.1124 k3, . . . . (50)

It follows that k0 and k1 are quite close to each other, but k1 and
k2 are far apart. These distances between the wave numbers
are a reflection in the reciprocal space of the jumps between
the values 1 and 8 in the sequence. On the other hand, when
we evaluate the wave numbers from k7 onwards, we find

k7 = 0.4142 k6,

k8 = 0.4143 k7,

k9 = 0.4128 k8,

k10 = 0.4167 k9, . . . , (51)

i.e., from ν � 7, the wave numbers are equidistant (in loga-
rithmic scale), reflecting the constant behavior of the sequence
as a7 = a8 = · · · = 2. The behavior described here can be
clearly seen in the red-colored coordinates of the dominant
wave numbers in Fig. 3.

However, if we look at the overall order of decay of the
Fourier intensities as k → 0 in Fig. 3, on average it turns
out to be very similar to a quadratic law. Let us see in the
following sections some results that demonstrate indeed that
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the quasiperiodic tilings generated by continued fractions are
hyperuniform with an exponent equal to 3, i.e., S(k) ∼ k4.
Rigorous proofs will be carried out for the cases of metallic
means and for periodic continued fractions. Furthermore, we
will prove that for any other system, the order of decay of the
structure factor intensities along the whole sequence {kν}n

ν=0
is asymptotically a fourth-order power law.

A. Metallic means: α = [0; a, a, a, . . .]

This case collects the behavior of generalized Fibonacci-
type quasiperiodic media that could also be simulated using
the substitution rule A → B, B → BaA. The order of hy-
peruniformity has been studied in Refs. [2,3], resulting in
a structure factor decaying with the power law S(k) ∼ k4,
meaning that the Fourier intensities decay strictly quadrati-
cally. Let us see that this result can be derived from the model
presented in this work. As is known [15], the metallic means,
represented by the continued fraction α = [0; a, a, a, . . .], are
solutions of the quadratic equation α2 = 1 + a α. The first two
values of the sequences σν and τν are σ0 = α, τ0 = θA/θB.
Since a j is constant, after several steps σν and τν become
approximately equal. Assuming then n � ν � 1, it yields

σν = [0; a, a, . . .] = α, τν = [0; a, a, . . . , a + θA/θB] ≈ α

(52)

so that the relationship H (σνkν ) = σν τν H (kν ) can be approx-
imated by

H (αkν ) = α2 H (kν ). (53)

Therefore, the Fourier intensities at the wave numbers k = kν

can be simulated according to the quadratic law H (k) ∼ k2

(k → 0).
It is straightforward that this behavior towards k → 0

(long-wavelength range) is governed by the latest values of the
sequence {a j} (those with the highest values of the index j),
which, from the definition of the sequence {kν}, are associated
with the lowest values of the wave numbers. Therefore, it is
clear that the Fourier intensities will also decay quadratically
for tilings generated by continued fractions of the form α =
[0; d1, . . . , dm, a, a, a, . . .], such as the one shown in Fig. 3. In
Fig. 4, both the Fourier intensities and the cumulative function
Z (k), defined in Eq. (2), have been represented for the case
α = √

2 − 1 = [0; 2, 2, 2 . . .].
Since S(k) is formed by a set of singular peaks, it should

not be induced that the order of the cumulative intensity
function is one order higher. On the contrary, in these cases it
turns out that both S(k) and Z (k) share the same exponent [2].
In fact, numerical simulations carried out in this paper show
that, as for the Fibonacci projection cases [2,3], the scaling
of Fourier peaks and their locations produces the cumulative
function Z (k) to scale under the same power-exponent as S(k),
showing that this property also holds for quasiperiodic tilings
generated by continued fractions (see Figs. 4 and 5). There-
fore, it follows that Z (k) ∼ k4, which, according to Eq. (3),
immediately leads to an exponent of hyperuniformity γ = 3.
The discrete nature of the spectrum causes the function Z (k) to
behave like a cumulative stepwise function as shown in Figs. 4
(bottom) and 5 (bottom).

FIG. 4. Fourier intensities (top) and cumulative intensity func-
tion (bottom) for quasiperiodic tiling generated by the silver mean
α = √

2 − 1 = [0; 2, 2, 2, . . .]. Top plot: gray peaks represent the ex-
act Fourier intensities at wave numbers k = 2πm/L, m = 0, 1, 2, . . .

. Red peaks represent the exact Fourier intensities at dominant
wave numbers kν = 2πcν/L, defined in Eq. (32). Blue dots: Fourier
magnitudes at the sequence of wave numbers {kν} obtained by the
approximate model. Bottom plot: the black line represents the exact
cumulative intensity function, the red line represents the cumulative
function but obtained from the approximated Bragg peaks at the
dominant wave numbers, and the blue dashed line represents the
fourth power order envelope curves.

B. Periodic continued fractions: α = [0; a1, . . . , ap]

Figure 3 shows that the presence of certain repeating pat-
terns in the sequence {a j} makes the Fourier intensities also
reveal periodicity as smaller wave numbers k are considered.
Still, the decay rate of the intensities seems to be quadratic
globally, although locally they can be either higher or lower
than 2. In this section, it will be proved that, indeed, the global
decay order of the Fourier intensities for periodic continued
fractions of the form α = [0; a1, . . . , ap] is exactly 2. The
overline notation represents repetition, i.e.,

α = [0; a1, . . . , ap] = [0; a1, . . . , ap, a1, . . . , ap, . . .]. (54)

Considering n � ν � p, we can introduce the following val-
ues:

σ̂ = σν+1 · σν+2 · · · σν+p, τ̂ = τν+1 · τν+2 · · · τν+p. (55)
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FIG. 5. Fourier intensities (top) and cumulative intensity func-
tion (bottom) for quasiperiodic tiling generated by the periodic
continued fraction α = [0; 1, 1, 6, 2]. Top plot: gray peaks represent
the exact Fourier intensities at wave numbers k = 2πm/L, m =
0, 1, 2, . . . . Red peaks represent the exact Fourier intensities at dom-
inant wave numbers kν = 2πcν/L, defined in Eq. (32). Blue dots:
Fourier magnitudes at the sequence of wave numbers {kν} obtained
by the approximate model. Bottom: the black line represents the
exact cumulative intensity function, the red line represents the cu-
mulative function but obtained from the approximated Bragg peaks
at the dominant wave numbers, and the blue dashed line represents
the fourth power order envelope curves.

Since the assumed model is multiplicative for both the Fourier
intensities and the sequence {kν}, the value σ̂ = kν+p+1/kν+1

represents the global jump between the two wave numbers
kν+1 and kν+p+1, separated p steps from each other. Due to
the periodicity of the continued fraction, the value of σ̂ is
independent of the value of ν considered. With a sufficiently
high value of ν fixed, from kν+1 onwards, the relationship
between the Fourier intensities over p steps is

H (kν+p+1) = σν+p τν+p H (kν+p)

= [σν+p · · · σν+1] [τν+p · · · τν+1]H (kν+1)

= σ̂ τ̂ H (kν+1). (56)

Since the relationship between the wave numbers is

kν+p+1 = σν+1 · · · σν+p kν+1 ≡ σ̂kν+1,

we can write that

H (σ̂kν+1) = σ̂ τ̂ H (kν+1). (57)

Let us now see that the two values σ̂ and τ̂ are approximately
equal provided that n � ν � 1, where n represents the total
size of the sequence {a j}. In fact, in order to achieve this, we
will determine both σ̂ and τ̂ separately, finding for them more
compact expressions. From Eq. (30), it is

σ̂ = σν+1 · σν+2 · · · σν+p

=
(

−ξν+1

ξν

)(
−ξν+2

ξν+1

)
· · ·

(
− ξν+p

ξν+p−1

)

= (−1)p ξν+p

ξν

. (58)

Now, since σ̂ does not depend on ν, we can choose any index
ν to obtain its value. In particular, it is of interest to take ν = 0,
for which Eq. (58) is found to be σ̂ = (−1)pξp/ξ0. Using the
expression from Eq. (29), we can calculate ξp as

ξp = vn vp

(
α − up

vp

)
, (59)

where, as is known, α = un/vn, and up/vp = [0; a1, . . . , ap]
denotes the pth convergent. Additionally, ξ0 = un, so that the
value of σ̂ can be expressed finally as

σ̂ = (−1)p ξp

ξ0
= (−1)p vn vp

un

(
α − up

vp

)

= (−1)p
(
vp − up

α

)
. (60)

On the other hand, it turns out that the expression for τ̂

given in Eq. (55) can also be meaningfully abbreviated.
Each τ j, ν + 1 � j � ν + p, is defined as the ratio be-
tween two consecutive tiling lengths, that is, τ j = Lj−1/Lj =
[0; a j, a j−1, . . . , a1 + θA/θB], hence they are all finite contin-
ued fractions. However, since it is assumed that ν � p, then
for ν + 1 � j � ν + p, τ j can be approximated as

τ j = [0; a j, a j−1, . . . , a1, ap, . . . , a1, . . . , ap, . . . , a1+θA/θB]

≈ [0; a j, a j−1, . . . , a1, ap, . . . , a1], (61)

where the last expression is an infinite continued fraction.
Therefore, the above assumption allows us to write each τ j as
a function of the parameter β = [0; ap, ap−1, . . . , a1] obtained
from α by reversing the period. Indeed,

τ̂ = τν+1 · τν+2 · · · τν+p

≈ [0; a1, ap, . . . , a1][0; a2, a1, ap, . . . , a1]

× · · · [0; ap−1, . . . , a1, ap, . . . , a1] · [0; ap, . . . , a1]

= 1

a1 + β
· 1

a2 + 1
a1+β

· · · · · 1

ap−1 + 1
ap−2+ 1

. . .+ 1
a1+β

· β. (62)

The above expression shows that τ̂ is constant and indepen-
dent of ν when considering values ν � p, something that will
be used later. Using the definition given by τ j = Lj−1/Lj , see
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Eq. (45), one can simplify the value of τ̂ as

τ̂ = τν+1 · τν+2 · · · τν+p

= Lν

Lν+1
· Lν+1

Lν+2
· · · Lν+p−1

Lν+p
= Lν

Lν+p
. (63)

The tiling lengths obey the characteristic recursive sequence
Lj = a j L j−1 + Lj−2 as shown in Eq. (10). Since, as shown
above in Eq. (62), τ̂ is independent of ν, we can match the
latter with a value ν multiple of the period, i.e., ν = m p,
where m is some large natural number. The tiling length in
step ν + p can then be expressed in terms of the lengths of
the previous steps up to step Lν . Following the sequence and
using the properties of the corresponding sequences [11], we
have

Lν+p = ap Lν+p−1 + Lν+p−2

= (apap−1 + 1) Lν+p−2 + ap Lν+p−3

= (apap−1ap−2 + ap−2 + ap) Lν+p−3

+ (apap−1 + 1) Lν+p−4

= · · · == vp Lν + up Lν−1, (64)

where up/vp = [0; a1, . . . , ap] is the pth convergent of α.
Dividing by Lν , we obtain finally

Lν+p

Lν

= up
Lν−1

Lν

+ vp. (65)

Using again that we are considering ν = mp as multiple p
with ν � p, we can then approximate Lν−1/Lν = τν ≈ β,

Lν−1

Lν

= τν

= [0; ap, . . . , a1, ap, . . . , a1, . . . , ap, . . . , a1 + θA/θB]

≈ β. (66)

Plugging Eq. (66) into Eq. (65), the value of τ̂ is finally

τ̂ = 1

vp + β up
. (67)

To prove that σ̂ ≈ τ̂ , the ratio σ̂ /τ̂ will be calculated using the
derived forms above, (60) and (67),

σ̂

τ̂
= (−1)p

(
vp − up

α

)
(vp + β up)

= (−1)p

[
v2

p − u2
p

β

α
+ upvp

(
β − 1

α

)]
. (68)

This expression can be simplified even more making use of a
known result concerning periodic continued fractions. Indeed,
it can be proved [12] that the quadratic equation

X 2 + vp − up−1

up
X − vp−1

up
= 0 (69)

has X1 = β and X2 = −1/α as roots. Thus, using the relation-
ships between roots and polynomial coefficients, we have

β

α
= vp−1

up
, β − 1

α
= −vp − up−1

up
. (70)

Plugging this result into Eq. (68) and after some algebra, it
yields

σ̂

τ̂
= (−1)p(vp up−1 − up vp−1) = (−1)p · (−1)p = 1, (71)

where the identity of Eq. (9) has been invoked. With the fact
that σ̂ = τ̂ , we have finally from Eq. (57) that

H (σ̂ kν+1) = σ̂ 2 H (kν+1), (72)

which demonstrates the quadratic decay of the Fourier intensi-
ties considering the full period of p steps and thus S(k) ∼ k4.
As above, the fact that the spectrum is formed by a sin-
gular set of Bragg peaks causes the cumulative intensities
to behave under the same power-law, that is, enveloped as
Z (k) ∼ k4. Figure 5 show the Fourier intensities H (k) and
their cumulative function Z (k) for the system generated by
the periodic continued fraction α = [1, 1, 6, 2], with a pe-
riod of four digits. According to theoretical derivations, the
Bragg peaks associated with the sequence of dominant wave
numbers {kν, 0 � νn} are also arranged periodically on the
logarithmic scale. The Fourier magnitudes are scaled under
the same pattern as the density fluctuations every four steps,
something that is clearly reflected in both plots. It is observed
that the power law enveloping the Z (k) function is exactly of
order 4, validating the theoretical pattern derived in Eq. (72).

In the two previous sections, the cases of periodic irrational
numbers have been considered. The general case of a tiling
generated by any continued fraction is studied in the next
section, showing that the global asymptotic exponent of the
decreasing Fourier intensities towards k → 0 is demonstrated
to be quadratic.

C. The general case: α = [0; a1, . . . , an]

After studying the specific cases seen in the previous two
points, it is worth asking whether the detected behavior can be
generalized to any quasiperiodic medium generated by a con-
tinued fraction α = [0; a1, . . . , an], exhibiting hyperuniform
behavior and a structure factor that tends to zero according
to a quartic law, i.e., S(k) ∼ k4 as k → 0. It has been shown
that, locally, differences in the values of the sequence {aj}
are reflected in perturbations of the Fourier intensities, as ob-
served in the numerical examples in Figs. 2, 4, and 5. Thus, the
exponent 1 + log τν/ log σν , which affects the wave numbers
according to Eq. (47), may have high local values. However,
the structure of the parameters τν and σν themselves causes the
slopes to be smoothed out somewhat in subsequent steps as
the parameter ν progresses between 0 � ν � n. At this point,
we will see that indeed the relationship between the Fourier
coefficients at the first and last steps, i.e., ν = 0 and ν = n, is
approximately quadratic when n → ∞. That is,

H (kn)

H (k0)
≈

(
kn

k0

)χ

, n → ∞. (73)

Without loss of generality, we will name again

σ̂ = σ0 σ1 · · · σn−1, τ̂ = τ0 τ1 · · · τn−1, (74)

014202-10



HYPERUNIFORMITY OF QUASIPERIODIC TILINGS … PHYSICAL REVIEW B 109, 014202 (2024)

FIG. 6. Fourier intensities for three quasiperiodic tilings gener-
ated by α = { e−1

e+1 , log 2, 1/π}. The Fourier magnitudes have been
evaluated at the dominant sequence of wave numbers, which are not
necessarily equal for the three tilings.

so that

kn = σn−1 kn−1 = · · · = σn−1 · · · σ1 σ0 k0 ≡ σ̂ k0,

H (kn) = σn−1 τn−1 H (kn−1)

= (σn−1 · · · σ1 σ0) · · · (τn−1 · · · τ1 τ0)H (k0)

≡ σ̂ τ̂ H (k0). (75)

Using the expressions (30) and (45), the values of σ̂ and τ̂ can
be simplified as

σ̂ = (−1)n ξn−1

ξ−1
= 1

vn
,

τ̂ = L−1

Ln−1
= A

Ln−1
= A

τn Ln
= 1

τn(α + θA/θB)

1

vn
. (76)

Thus, we can then calculate the value of χ as

χ = log H (kn) − log H (k0)

log kn − log k0

= log σ̂ + log τ̂

log σ̂

= 2 + log [τn(α + θA/θB)]

log vn
≈ 2 (n → ∞). (77)

The above expression tends to 2 because the sequence vn of
natural numbers increases indefinitely, while τn in general
remains less than unity.

Several numerical examples have been carried out to verify
this property, all of them showing a quadratic exponent in the
trend toward the long-wavelength range. Three of them are
illustrated in Fig. 6, generated with the following irrational
numbers and their corresponding continued fractions:

α = e − 1

e + 1
= [0; 2, 6, 10, 14, 18, 22, . . .] = 0.461 171 5 . . . ,

α = ln 2 = [0; 1, 2, 3, 1, 6, 3, 1, 1, 2, . . .] = 0.693 147 18 . . . ,

α = 1

π
= [0; 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1]

= 0.318 309 88 . . . . (78)

Figure 6 reveals the asymptotic behavior proved in the theoret-
ical derivation. Although there may be significant fluctuations

locally, as, for example, in the case of 1/π , on average the
hyperuniformity coefficient is common and equal to γ = 3.

D. Relationship with substitution tilings

As pointed out in the Introduction, hyperuniformity of 1D
substitution tilings has been deeply studied by Oğuz et al. in
Ref. [2]. It is interesting to recall the concept of substitution
rule and substitution matrix. Considering a two-letter alphabet
{A, B}, a substitution rule g(·) is a transformation law that
generates a word from another, acting directly on each letter
as

A → g(A) = Aq Bs, B → g(B) = Ar Bt , (79)

where q, r, s, t are integer numbers. The substitution matrix
provides information about the number of A’s and B’s in the
transformed word emerging from the letters A and B of the
original one. In general, it has the form

M =
[

q r
s t

]
. (80)

Denoting by λ1 and λ2 the eigenvalues of M, with λ1 > λ2, it
turns out that they are closely related to the hyperuniformity
exponent of the tiling by means of the following expression
(see Ref. [2]):

γ = 1 − 2
ln |λ2|
ln λ1

. (81)

In the long-wavelength range, the recursive powers of matrix
M define the structure of the word. Since the entries of the
substitution matrix are constant, the fluctuations of density
can be expressed in terms of powers of its eigenvalues. De-
pending on the parameters q, r, s, t , a wide range of systems
with different hyperuniformity orders can be found. Com-
paring our current study of quasiperiodic tilings based on
continued fractions with those formed by substitution, two
relevant differences can be identified: (a) in the former case,
words are built by concatenation and not by substitution, and
(b) the pattern of construction changes at every step accord-
ing to the terms of the sequence of the continued fraction
{a j, 1 � j � n}. Despite these differences, there exist simi-
larities between both types of tilings in the particular cases of
periodic continued fractions, defined in Sec. V B, something
that allows us to invoke the results of Oğuz et al. [2] to validate
our achievements. The following two Propositions enable us
to relate both quasiperiodic patterns (proofs can be found in
Appendixes A and B).

Proposition 1. Let Wn be the word generated by the contin-
ued fraction α = [0; a1, . . . , an] using the recursive sequence
of words of Eq. (5), and let W∗

n be the word generated by the
composition of substitution rules,

W∗
n = (g1 ◦ · · · ◦ gn)(B), (82)

where the single rules g j (·) are defined as

A → g j (A) = B,

B → g j (B) = Baj A, 1 � j � n. (83)

Then Wn = W∗
n .

Proposition 2. Let α = [0; a1, . . . , an] be a continued frac-
tion and let αn−1 = un−1/vn−1 and αn = un/vn ≡ α be the last
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two convergents. The global substitution matrix associated
with the composition of rules g = g1 ◦ · · · ◦ gn is

Mn =
[

un−1 un

vn−1 vn

]
.

Using these two properties, we will see that the long-
wavelength range behavior of tilings generated by periodic
continued fractions can indeed be modeled by substitution
rules. Let us analyze first the case of metallic means. As
pointed out above (see Sec. V A), the word associated with
metallic means α = [0; a, . . . , a] becomes the same as that
generated by the substitution rule A → B, B → BaA. The
substitution matrix is then

M =
[

0 1
1 a

]
, (84)

whose eigenvalues are λ1 = α and λ2 = −1/α. According to
the analysis of Oğuz et al. [2], the hyperuniformity exponent
associated with this tiling is

γ = 1 − 2
ln |λ2|
ln λ1

= 3. (85)

Quasiperiodic tilings based on the metallic means but con-
structed by the cut-and-project method also behave as strongly
hyperuniform with exponent γ = 3, as highlighted in Ref. [3].

Considering now a periodic continued fraction α =
[0; a1, . . . , ap], we wonder whether (i) there exists a substi-
tution rule associated with α, and (ii) what is its substitution
matrix. From Proposition 1, we can choose a value of n pro-
portional to the period, say n = m p, with m an integer. The
number of A’s and B’s in the word W∗

n arises after repeating
m times the following block, each one of them constituted by
p steps:{

Mp(A)

Mp(B)

}
=

[
0 1

1 a1

]
× · · · ×

[
0 1

1 ap

]{
M0(A)

M0(B)

}

≡ Mp

{
M0(A)

M0(B)

}
, (86)

where M j (A) and M j (B) stand for the number of A’s and B’s
at step j, respectively, with 1 � j � p. Thus the number of
letters in the final word (step n = m p) will be{

Mn(A)

Mn(B)

}
= (

Mp
)m

{
M0(A)

M0(B)

}
. (87)

The behavior of the tiling for n → ∞ (m → ∞) is governed
by the relationship between the eigenvalues λ1 and λ2 of
matrix Mp. According to Proposition 2, det Mp = up−1vp −
upvp−1 = (−1)p = λ1λ2, then |λ1λ2| = 1, and hence using
Eq. (85) we find again a strongly hyperuniform pattern with
exponent γ = 3, consistent with the already proved result in
Sec. V B.

We observe that in the particular case of periodic continued
fractions, the general tendency of the Fourier intensities can
be reproduced by their equivalent substitution rules. Using
the substitution-based approach, we can estimate the over-
all pattern of decay given by the hyperuniformity exponent.
However, it does not provide an explanation of the local be-
havior, something that is indeed explained by the proposed

approach, summarized in Eq. (47). Finally, in the general
case (nonperiodic continued fractions), a constant substitution
matrix cannot be assigned to define the recursive process of
construction, and, therefore, the formalism of Oğuz et al. [2]
based on the study of eigenvalues is not strictly applicable.
However, according to Proposition 2, there exists a global
substitution matrix covering the n steps of the tiling, and this
matrix is still unimodular. According to the results of Oğuz
et al. [2], the fact that the product of both eigenvalues is
unitary seems to be closely related to strongly hyperuniform
behaviors with exponent γ = 3, something that would explain
the general pattern observed and demonstrated in Sec. V C.

Substitution tilings defined in a general way enable the
construction of a vast set of quasiperiodic lattices, covering
ranges of hyperuniformity between −1 � γ � 3 [2]; how-
ever, to the best of the authors’ knowledge, it is still unknown
what happens when the parameters of the substitution rule
q, r, s, t are variable associated with each step. In the current
paper, we have somehow approached this problem studying a
subset of such a family of lattices considering the case

q ≡ 0, r ≡ 1, s ≡ 1, t ≡ a j, j = 1, 2, . . . (variable).

But the problem remains of finding out the hyperuniformity
exponent for generalized substitution rules of the form g =
g1 ◦ · · · ◦ gn, where

A → g j (A) = Aqj Bsj ,

B → g j (B) = Arj Bt j , 1 � j � n, (88)

and {q j, r j, s j, t j}∞j=1 are sequences of integer numbers, which
may be associated with continued fractions.

VI. CONCLUSIONS

In this paper, the hyperuniformity of one-dimensional
quasiperiodic lattices generated by continued fractions has
been studied. Given any real number in the interval [0,1] as a
continued fraction, we can construct a word or sequence from
a binary alphabet, giving rise to quasiperiodic tilings. The
studied media are constructed by word concatenation as one-
dimensional quasiperiodic distributions of points. The Fourier
intensities in the reciprocal space are recursively determined,
thus exploiting the quasiperiodic nature of the tiling. Among
the entire spectrum of Bragg peaks, a sequence of wave num-
bers, called a dominant sequence of wave numbers, has been
identified, showing special properties related to the density
fluctuations of the tiling. It has been proved that the pattern
of decay of Fourier intensities at this sequence is quadratic
regardless of the continued fraction, meaning these media
are strongly hyperuniform with exponent 3. The theoretical
results have been validated and illustrated by means of several
numerical examples.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof. Consider a continued fraction α = [0; a1, . . . , an]
and the two words W−1 = A, W0 = B. From the sequence
(5) we know that the word associated with α is Wn, obtained
in a recursive way as concatenation,

W j = Wa j

j−1 W j−2, 0 � j � n. (A1)

The substitution rule g = g1 ◦ · · · ◦ gn is constructed by com-
position of the rule-sequence {gj (·) : g j (A) = B, g j (B) =
Baj A} and transforms the initial word W0 = B into another
word, say W∗

n = (g1 ◦ · · · ◦ gn)(W0). We will prove by induc-
tion that W∗

n = Wn. For n = 1, we have that α = [0; a1] and
W1 = Wa1

0 W−1 = Ba1 A. On the other side, g = g1, therefore
W∗

1 = g1(B) = Ba1 A. Let us assume that the cases n − 2 and
n − 1 are true, that is,

Wn−1 = W∗
n−1 = (g1 ◦ · · · ◦ gn−1)(B),

Wn−2 = W∗
n−2 = (g1 ◦ · · · ◦ gn−2)(B). (A2)

Let us prove that Wn = W∗
n . From the definition, it is known

that Wn = Wan
n−1 Wn−2. Thus, using the hypotheses for cases

n − 2 and n − 1 in Eq. (A2),

Wn = [(g1 ◦ · · · ◦ gn−1)(B)]an (g1 ◦ · · · ◦ gn−2)(B) (A3)

but B = gn−1(A), yielding

Wn = [(g1 ◦ · · · ◦ gn−1)(B)]an (g1 ◦ · · · ◦ gn−2)[gn−1(A)]

= (g1 ◦ · · · ◦ gn−1)[Ban A], distributive property

= (g1 ◦ · · · ◦ gn−1) gn(B), because gn(B) = Ban A

= (g1 ◦ · · · ◦ gn−1 ◦ gn) (B) = W∗
n . (A4)

APPENDIX B: PROOF OF PROPOSITION 2

Proof. The substitution rule g = g1 ◦ · · · ◦ gn is defined as
the composition of the n rules {gj (·), 1 � j � n} defined as

g j (A) = B,

g j (B) = Baj A. (B1)

Considering that M0(A) and M0(B) are the initial amount
of letters A and B in the initial word, then the number of
letters after applying the rule g(·) leads to the product of single
substitution matrices, yielding{

Mn(A)

Mn(B)

}
=

[
0 1

1 a1

]
× · · · ×

[
0 1

1 an

]{
M0(A)

M0(B)

}

≡ Mn

{
M0(A)

M0(B)

}
. (B2)

Thus, Mn can be defined in recursive form as

M j = M j−1

[
0 1
1 a j

]
, 1 � j � n, M0 =

[
1 0
0 1

]
.

(B3)

Denoting the four terms of matrix M j as q j, r j, s j, t j , then
from Eq. (B3) we can establish the recursive relationships[

q j r j

s j t j

]
=

[
q j−1 r j−1

s j−1 t j−1

][
0 1
1 a j

]
(B4)

resulting in

q j = r j−1,

s j = t j−1, (B5)

r j = a j r j−1 + r j−2, r−1 = 1, r0 = 0,

t j = a j t j−1 + t j−2, t−1 = 0, t0 = 1. (B6)

The sequences {r j} and {t j} reproduce the same pattern as
{u j} and {v j} in Eqs. (6) and (7), respectively (numerator and
denominator of convergents). Therefore, the elements of the
matrix Mn are

Mn =
[

un−1 un

vn−1 vn

]
. (B7)
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