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and their application to Josephson junctions
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We develop Green’s function formalism to describe continuous multilayered quasi-one-dimensional setups
described by piecewise constant single-particle Hamiltonians. The Hamiltonians of the individual layers are
assumed to be quadratic polynomials in the momentum operator with matrix-valued (multichannel) coefficients.
This, in particular, allows one to study transport in heterostructures consisting of multichannel conducting,
superconducting, or insulating components with band structures of arbitrary complexity. We find a general
expression for the single-particle Green’s function of the combined setup in terms of the bulk (translationally
invariant) Green’s functions of its constituents. Furthermore, we provide the expression for the global density
of states of the combined system and establish the bound state equation in terms of bulk Green’s functions.
We apply our formalism to investigate the spectrum and current-phase relations in ordinary and topological
Josephson junctions, additionally showing how to account for the effects of static disorder and local Coulomb
interaction.
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I. INTRODUCTION

Description of equilibrium and transport properties of lay-
ered quantum systems is a common problem in the domains
of quantum electronics and solid state theory [1,2]. Albeit
typically a single-particle quantum mechanical problem, its
solution is rarely simple due to the intricate band struc-
tures of the materials forming the layers. Most commonly,
nowadays, these systems are analyzed numerically within the
tight-binding approximation (like, e.g., in Ref. [3]), allowing
one to get a good grip on the low-lying excitations, as well
as to assess the effects of the static disorder. The main idea
behind this approach consists [4] in numerical studies of the
ballistic conductance in mesoscopic structures within a lattice
model, being expressed in terms of the lattice Green’s func-
tion. It can be equally well applied to the study of equilibrium
properties like Josephson current (JC) in Josephson junctions
(JJ) of arbitrary width, see, e.g., Refs. [5,6].

An alternative to the tight-binding numerics is the scat-
tering matrix approach [7,8] applied to continuum ballistic
models. One of its key early day achievements was the cal-
culation of the two-terminal conductance in terms of the
transmission probabilities. The microscopic justification of
this method relies either on taking the continuum limit of the
wavefunction matching (WFM) of Ref. [4] or on studying the
continuum limit of the atomistic Green’s function (AGF) as in
Ref. [9]. The equivalence of both WMF and AGF approaches
has been fully substantiated in Ref. [10]. The relation be-
tween transmission and reflection coefficients of the scattering
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matrix on the one hand and Green’s function, on the other
hand, is widely known as the Fisher-Lee relation [11]. Its
mode-resolved generalization has been recently proposed in
Ref. [12].

In application to superconducting systems, the scattering
matrix approach has been extended by Blonder, Tinkham,
and Klapwijk [13] (BTK) on the basis of solutions of the
Bogoliubov-de-Gennes equations. The BTK theory has been
further generalized by C. Beenakker to the multichannel case
in Ref. [14]. In this work, the compact equation for the subgap
Andreev bound states [15,16] (ABS) and the expression for
the continuous excitation spectrum of the JJ have been estab-
lished in terms of normal and Andreev scattering matrices. In
practice, however, these matrices are often treated in the so-
called Andreev limit �0 � μ, where �0 is the absolute value
of the superconducting order parameter and μ is the chemical
potential, essentially neglecting the normal reflection at the
superconducting interface.

An alternative theoretical description of the superconduct-
ing tunneling and proximity effects has been developed by
G. Arnold in Refs. [17,18] using standard nonequilibrium
Green’s functions. His approach is based on the theory of
Feuchtwang [19–21], which does not make use of the tunnel-
ing Hamiltonian. This theory shares many common features
with the AGF method of Caroli et al. [9] mentioned above, and
these techniques will serve as a starting point for our present
consideration.

Discussing the approaches to interface physics, one cannot
but mention that quasiclassical Green’s functions treated in
terms of the Eilenberger and the Usadel equations are also
traditionally used for describing superconducting proximity
effects and the JJs, see Refs. [22,23] for reviews.
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FIG. 1. Sketch of the model. A heterostructure consists of M + 1 layers described by individual matrix-valued Hamiltonians Hm, which
are consequently coupled with each other across matrix-valued tunneling barriers Um.

The goal of the present manuscript is to generalize and
further develop the Green’s function techniques of Arnold,
Feuchtwang, Caroli et al. mentioned above. The structure of
the manuscript is twofold.

First of all, we provide multichannel and multiinterface
generalizations of results in Refs. [9,17–21], essentially build-
ing upon the method of Ref. [9]. In particular, we derive a
compact closed-form expression for the composite Green’s
function G(x, x′) of a quasi-one-dimensional heterostructure
(sketched in Fig. 1) given merely in terms of the bulk Green’s
functions G(0,m)(x, x′) of its constituting layers (labeled by
m = 0, . . . , M). The knowledge of G(x, x′) is beneficial for
several reasons: It gives direct access to the system’s spec-
trum, allows for a calculation of various physical observables
(like, e.g., the density of states (DOS) and the current), may
serve as a starting point for low-energy approximations (like
e.g. the Andreev limit), as well as provides essential input
for a perturbative diagrammatic treatment of disorder and
many-body interaction effects. The bulk single-layer Green’s
functions G(0,m)(x, x′) are obtained by means of the standard
Fourier transformation and are computationally inexpensive.
For few-channel models, G(0,m)(x, x′) may often be calculated
analytically, as demonstrated in our examples below.

We shall point out that ideas of that sort, namely, the ex-
traction of the properties of inhomogeneous quantum systems
from their bulk counterpart, are traditional in solid-state the-
ory. This subject has a long history, and it often bears different
names: the quantum theory of surface states [24–28] or the
method of embedding [29–31], for example.

Secondly, we apply the derived expression for G(x, x′) to
the two paradigmatic examples: (1) Josephson model of a
tunneling barrier between two s-wave superconductors and
(2) the model of a JJ [32,33] between two semiconduct-
ing wires with strong spin-orbit interaction and proximity
induced superconductivity, submersed into the parallel mag-
netic field (each of which is capable of hosting a Majorana
zero mode [34,35]). In particular, we demonstrate that both
the excitation spectrum (i.e., the global DOS) as well
as the JC can be obtained in terms of a single matrix

d = ( G(0, 0) G(0,W )
G(W, 0) G(W,W ))

−1
for the finite-width junction (with

the two interfaces at x = 0 and W ), degenerating to

d = [G(0, 0)]−1 in the short junction limit (single interface
at x = 0). In particular, the correction to the global DOS
due to the tunneling between the layers is given by δρ =
− 1

π
∂

∂ω
Im ln det d , which resembles analogous expressions for

δρ in terms of the scattering matrix [36,37]. A general equa-
tion for the bound states acquires a particularly simple form
det d = 0, which is equally well applicable to all types of
heterostructures. The relation of our equations for the bound
states and for δρ to their scattering matrix analogs becomes
transparent on the basis of the Fisher-Lee relation [11]: the
matrix d−1 appears as a common factor in expressions for all
components of the scattering matrix, and it can be generally
interpreted as a core part of the T matrix in the coordinate
representation. The advantage of computing d directly from
the Green’s function G(x, x′) consists, though, in its additive
form, combining contributions from adjacent layers (and pos-
sibly from a local contact potential at their interface). This
property of d is thus analogous to that of self-energies.

Using our formulas, we study the excitation spectrum and
the JC in various parametric regimes of the two models dis-
cussed above, relaxing the Andreev approximation (which
might be essential for one-dimensional wires) and allowing
for arbitrary values of the junction’s width W . The knowledge
of the explicit form of G(x, x′) allows us to account for the
effects of random potential disorder and local Coulomb inter-
action at the interface of the JJ. We find that the effect of static
disorder arises only beyond the Andreev limit. Taking into
account the local Coulomb interaction, we predict a crossover
between the 0 and π junctions.

II. FORMALISM OF INTERFACE GREEN’S FUNCTIONS

A. Model and problem formulation

Let us consider a quasi-one-dimensional system that con-
sists of M + 1 layers (labeled by m = 0, . . . , M) subsequently
connected with each other across tunneling barriers (also la-
beled by m = 1, . . . , M) along the spatial x axis, see Fig. 1.
We further assume that m-th layer extends over the spatial
range (xm, xm+1), with x1 and xM being the coordinates of
the leftmost and the rightmost interfaces, respectively. The
leftmost boundary of the whole system is x0 and the rightmost
one is xM+1. An important class of models with semi-infinite
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leads is also included in the present consideration: They are
realized by setting x0 = −∞ and xM+1 = +∞. For the mth
subsystem we assume the Hamiltonian of the form

Hm = 1
2Am p2 + Bm p + Cm, (1)

where Am, Bm, Cm are constant Nc × Nc Hermitian matri-
ces, parametrically dependent on the conserved transverse
(quasi)momenta ky and kz, with Nc being the number of chan-
nels (e.g.. spin and/or orbital quantum numbers, etc.)1, and
p ≡ px = −i∂x is the momentum operator in the direction
along the system.

The tunneling barriers between the subsystems are mod-
eled by deltalike potentials at the corresponding interfaces:

U (x) =
M∑

m=1

Umδ(x − xm), (2)

where Um are generally considered as Nc × Nc Hermitian ma-
trices (which, in particular, allows us to treat magnetically
active contacts as well).

The Hamiltonian of the combined system is written as

H = 1
2 pA(x)p + 1

2 {B(x), p} + C(x) + U (x), (3)

where ⎧⎨
⎩
A(x)
B(x)
C(x)

⎫⎬
⎭ =

M∑
m=0

�(xm < x < xm+1)

⎧⎨
⎩
Am

Bm

Cm

⎫⎬
⎭. (4)

The eigenvalue problem for the Hamiltonian in Eq. (3) is
complemented by matching conditions for the wave function
and its derivative at each interface. While the wave function is
continuous,

	(x−
m ) = 	(x+

m ) ≡ 	(xm), x±
m = xm ± 0+, (5)

its derivative satisfies the following matching condition at the
mth interface:

Am	 ′(x+
m ) − Am−1	

′(x−
m )

2
=
[
Um − i

Bm − Bm−1

2

]
	(xm).

(6)

This condition is traditionally derived by integrating the
Schrödinger equation H	(x) = E	(x) over the infinitesi-
mally small region (x−

m , x+
m ) enclosing the contact’s coordinate

xm. Physically it expresses the conservation of the current
density across the interface.

The main goal of our present consideration is to find an
expression for the (retarded) Green’s function of the whole
system,2 which satisfies the equation

[z − H]G(x, x′; z) = δ(x − x′) (7)

1We assume however that the matrix structure of the considered
class of models does not originate from a sublattice structure of un-
derlying tight-binding models, since a presence of sublattice degrees
of freedom would lead to a different form of boundary conditions
than the presently discussed ones.

2Note that the heterostructural Green’s function G(x, x′) is a highly
nontrivial object, containing information about all possible multibar-
rier scattering phenomena and interface-localized bound states.

for arbitrary complex-valued spectral parameter z (with
Im z > 0, in particular for z = ω + i0+, in the case of
the retarded function). The differential equation in Eq. (7)
is complemented by the vanishing boundary conditions
G(x0, x′; z) = G(xM+1, x′; z) = 0 at the system’s ends. By the
virtue of the Lehmann representation, the Green’s function
G(x, x′; z) must also obey the matching conditions in Eqs. (5)
and (6) in the variable x. We note that G(x, x′; z) can be
alternatively defined as a solution of a reciprocal differential
equation with respect to the variable x′ equipped with the
boundary conditions G(x, x0; z) = G(x, xM+1; z) = 0, while
the corresponding interface matching conditions are obtained
by Hermitian conjugating Eqs. (5) and (6).

As an input we use the translationally invariant (aka bulk)
Green’s functions G(0,m)(x, x′; z) satisfying the equation

[z − Hm]G(0,m)(x, x′; z) = δ(x − x′) (8)

on the whole spatial axis. They are evaluated by means of the
Fourier transformation

G(0,m)(x, x′; z) =
∫ ∞

−∞

dk

2π

eik(x−x′ )

z − hm(k)
, (9)

where hm(k) is the Hamiltonian obtained from Hm in Eq. (1)
by the substitution p → k. Often the integral in Eq. (9) may
be evaluated analytically by means of the integration in the
complex k plane: To this end, one needs to establish the
complex-valued roots k(z) of the secular equation det[z −
hm(k)] = 0 with positive imaginary parts, Im k(z) > 0. Then
the result of integration in Eq. (9) is represented as a sum of
residua at the corresponding poles k(z) (see Appendix A 1
for details). For few-channel models, the equation det[z −
hm(k)] = 0 admits analytical solutions (some of them will be
demonstrated in the following examples), while in general the
roots k(z) have to be determined numerically. As it will be
demonstrated later, the root-searching routine is the only nu-
merical part in solving the problem of establishing G(x, x′; z),
and for this reason, the Green’s function approach developed
below should provide a considerable speed up in the study of
arbitrary heterostructures.

An opening move in establishing G(x, x′; z) is a determi-
nation of the set of Green’s functions Gm(x, x′; z) describing
every isolated layer m on the corresponding spatial interval
(xm, xm+1). The Green’s function Gm(x, x′; z) also satisfies
the differential equation in Eq. (8), but—in contrast to
G(0,m)(x, x′; z)—it vanishes at the interval’s ends, that is
Gm(xm, x′; z) = Gm(xm+1, x′; z) = 0.

Thankfully, the determination of Gm(x, x′) (the argument
z is omitted for brevity) is conveniently solved by the so-
called boundary Green’s function technique, allowing one
to write a simple relation between the propagators of in-
finite [G(0,m)(x, x′)] and bounded [Gm(x, x′)] systems (see
Appendix A 2, and references therein, for the summary of the
key results).

Next, we find out how the isolated layers are coupled with
each other. As such, this coupling is dictated by the matching
conditions in Eqs. (5) and (6). The key question is then how
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does one implement these requirements in terms of a local
potential? Once this is accomplished, a set of Dyson’s equa-
tions may be set up, relating the full Green’s function G(x, x′)
to those Gm(x, x′) of the individual layers. Furthermore, it is
expected that the set of these equations admits a closed-form
analytical solution, as by the locality of the coupling potential
the integral equations are expected to reduce to algebraic ones
for a finite number of unknowns.

To give an answer to the key question we underscore the
two approaches which we find especially useful in practice.

The first approach, inspired by the earlier ideas of the
seminal paper Ref. [9], is based on discretizing the Eq. (7)
on a lattice with the spacing a, solving the obtained tight-
binding counterpart, and taking carefully the continuum limit
a → 0. As in the tight-binding description the space consists
of discrete points, the tunneling between the disjoint parts
of the system may be defined unambiguously, and hence
the above-described program with a formal solution of the
corresponding Dyson equations can be successfully executed.
Further evaluation of the limit a → 0 allows us to recover the
complete Green’s function of the corresponding continuum
theory, expressed in terms of boundary Green’s functions of
the individual layers as well as their spatial derivatives up to
the second order. In this paper, we describe the major steps
of implementing this approach for the models of our present
interest.

The second approach is based on (the multichannel gen-
eralization of) the Sturm-Liouville theory for second-order
differential operators. It constructively exploits the matching
conditions in Eqs. (5) and (6) to recover G(x, x′) staying
within the paradigm of continuum models. The results of its
application naturally reproduce those described below in the
present paper. Further details of the second approach will be
reported elsewhere [38].

B. Single barrier

In this section, we extrapolate the construction technique
of the composite Green’s function of a double-layer system of
Ref. [9] to the multichannel case.

Let us start by considering the simplest case of a single bar-
rier separating left L (m = 0, x ∈ (x0, 0), x0 < 0) and right
R (m = 1, x ∈ (0, x2), x2 > 0) subsystems at x = x1 = 0.

We introduce the following lattice counterpart of the
single-barrier continuum model:

H = HL + HR + |0〉W0〈0| (10)

− |0〉tL〈−1| − | − 1〉t†
L〈0| − |1〉tR〈0| − |0〉t†

R〈1|, (11)

where the left and right disjoint subsystems are defined on the
lattice sites n0 � n � −1 and 1 � n � n2, respectively. They
are described by the Hamiltonians

HL = −
−1∑

n=n0+1

(|n〉tL〈n − 1| + |n − 1〉t†
L〈n|) +

−1∑
n=n0

|n〉WL〈n|,

(12)

HR = −
n2−1∑
n=1

(|n + 1〉tR〈n| + |n〉t†
R〈n + 1|) +

n2∑
n=1

|n〉WR〈n|,

(13)

with constant, matrix-valued (in the channel space) hopping
amplitudes tL, tR and onsite potentials WL,WR. The central cite
n = 0 is characterized by the onsite potential W0. It is coupled
to both subsystems by the same nearest-neighbor hopping am-
plitudes tL and tR as occur in the Hamiltonians in Eqs. (12) and
(13), respectively. We remark that the tight-binding Hamilto-
nians (12) and (13) do not have a sublattice structure (lattice
basis). This property is tightly connected with the intended
boundary conditions (5) and (6).

Treating the coupling term in Eq. (11) as a perturbation,
we set up the following Dyson equation in the coordinate
representation for the Green’s function G = 1

z−H of the full
system

Gn,n′ = GL
n,n′ + GC

n,n′ + GR
n,n′ − (GL

n,−1t†
L + GR

n,1tR
)
G0,n′

− δn,0GC
0,0(tLG−1,n′ + t†

RG1,n′ ) (14)

in terms of the Green’s functions GL = 1
z−HL

, GC =
|0〉 1

z−W0
〈0|, GR = 1

z−HR
of the three disjoint subsystems. The

Green’s function GL
n,n′ is nonzero only for n, n′ � −1, while

GR
n,n′ is nonzero only for n, n′ � 1. In the corresponding do-

mains, they are expressed according to Eq. (A6) in terms
of the Green’s functions G(L,0)

n,n′ and G(R,0)
n,n′ of the two aux-

iliary models defined on the whole lattice and using the
constant parameters from the left and the right subsystems,
respectively.

Due to the locality of the perturbation, the Dyson equa-
tion in Eq. (14) admits the explicit solution

Gn,n′ = GL
n,n′ + GR

n,n′ + FnD−1F̄n′ , (15)

where

D = z − W0 − tLGL
−1,−1t†

L − t†
RGR

1,1tR (16)

and

Fn = −δn,0 + GL
n,−1t†

L + GR
n,1tR, (17)

F̄n′ = −δ0,n′ + tLGL
−1,n′ + t†

RGR
1,n′ . (18)

We particularly note that

F0 = F̄0 = −1, (19)

G0,0 = D−1. (20)

On the basis of the solution in Eq. (15) it is straightforward
to compute the global DOS. Setting z = ω + i0+, we evaluate

n2∑
n=n0

tr
[
Gn,n − GL

n,n − GR
n,n

]

= tr

[
1

D

]
+

−1∑
n=n0

tr

[
1

D
tLGL

−1,nGL
n,−1t†

L

]
(21)

+
n2∑

n=1

tr

[
t†
RGR

1,nGR
n,1tR

1

D

]
, (22)

014201-4



GREEN’S FUNCTIONS OF QUASI-ONE-DIMENSIONAL … PHYSICAL REVIEW B 109, 014201 (2024)

where the trace operation is performed in the channel space.
Using the identities

−1∑
n=n0

GL
−1,nGL

n,−1 = −∂GL
−1,−1

∂ω
, (23)

n2∑
n=1

GR
1,nGR

n,1 = −∂GR
1,1

∂ω
, (24)

which are most easily proven in the Lehmann representation,
and the Jacobi’s formula tr [D−1 ∂D

∂ω
] = ∂

∂ω
ln det D, we estab-

lish that

ρ(ω) = ρL(ω) + ρR(ω) − 1

π
Im

∂

∂ω
ln det D(ω + i0+).

(25)

The last term in this expression represents a correction to the
global DOS due to the tunneling between the subsystems.
It has a form analogous to that of the familiar expression
in terms of the scattering matrix [37]. The terms ρL(ω) and
ρR(ω) represent the global DOS of the left and right disjoint
subsystems, respectively.

In order to derive the continuum limit of Eq. (15) we make
certain assumptions about the scaling of the Hamiltonian pa-
rameters with the lattice constant a. In particular, we define
for m = L, R

tm + t†
m = Am

a2
, (26)

i(tm − t†
m) = Bm

a
, (27)

Wm = Am

a2
+ Cm, (28)

where Am,Bm, Cm = O(a0) are constant matrices.

In addition, we choose

W0 = AL + AR

2a2
+ U1

a
. (29)

This choice of the leading O( 1
a2 ) term in Eq. (29) is important

[39] for ensuring the fulfillment of the matching conditions
in Eqs. (5) and (6) for the Green’s function in the continuum
limit [see also in the end of the section]. In turn, the subleading
O( 1

a ) term induces the impurity delta potential of Eq. (2),
which is generally matrix-valued.

It is important to emphasize that our limiting procedure es-
sentially differs from the one frequently used in the wide-band
limit treatment of the tunneling regime t ′

L,R � tL,R, where the
hopping amplitudes tL,R in the leads considerably dominate
over the hopping amplitudes t ′

L,R from the leads onto the
quantum dot at the site n = 0, and the characteristic tunneling
rates 
L,R = π (t ′

L,R)2/tL,R giving rise to (the imaginary part
of) the dot’s self-energy are then much smaller than the band-
widths of the leads ∼tL,R. Recall that in our treatment we set
t ′
L,R = tL,R.

Defining the continuous variable x = na in the limit a →
0, we recover the continuum analog form Eq. (1), of the lattice
Hamiltonians in Eqs. (12) and (13). Relating the continuum
and the lattice Green’s functions via

G(x, x′) = lim
a→0

1

a
Gn,n′ , (30)

we derive in Appendix B the continuum analog of Eq. (15). It
reads

G(x, x′) = GL(x, x′) + GR(x, x′) + F (x)d−1F̄ (x′), (31)

where GL(x, x′) and GR(x, x′) are the boundary Green’s func-
tions of the corresponding disjoint regions (x0, 0) and (0, x2)
which identically vanish outside of them, respectively. The
last term in Eq. (31) contains nondiagonal contributions in the
subsystem’s basis (i.e., it is generically nonzero for all x, x′ ∈
(x0, x2)), and thereby it mediates the coupling between the
subsystems. It is defined through the following objects:

F (x) = lim
a→0

Fn = −�(−x)
[
G(0,L)

2 (x, 0+) + GL
2 (x, 0−) − G(0,L)

2 (x, 0−)
]AL

2

+ �(x)
[
G(0,R)

2 (x, 0−) + GR
2 (x, 0+) − G(0,R)

2 (x, 0+)
]AR

2
, (32)

F̄ (x′) = lim
a→0

F̄n′ = −�(−x′)
AL

2

[
G(0,L)

1 (0+, x′) + GL
1 (0−, x′) − G(0,L)

1 (0−, x′)
]

+ �(x′)
AR

2

[
G(0,R)

1 (0−, x′) + GR
1 (0+, x′) − G(0,R)

1 (0+, x′)
]
, (33)

d = lim
a→0

a D = −U1 − 1

8
AL lim

x→0−

d2

dx2
GL(x, x)AL − 1

8
AR lim

x→0+

d2

dx2
GR(x, x)AR. (34)

Above we employed a set of compact notations for the coordinate derivatives of Green’s functions

Gm
1 (x, x′) = ∂Gm(x, x′)

∂x
, Gm

2 (x, x′) = ∂Gm(x, x′)
∂x′ , (35)

with analogous abbreviations for the translationally invariant propagators G(0,m)(x, x′).
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The obtained expressions represent a multichannel gener-
alization of Eqs. (22) and (30) in Ref. [9]. It is also worth
mentioning that similar expressions for the two-channel case
were previously derived in Refs. [17,18].

The expression in Eq. (31) can be interpreted in terms of
the T matrix. Formally rewriting it as

G(x, x′) = GL+R(x, x′) + 〈x|GL+Rl†d−1lGL+R|x′〉 (36)

= GL+R(x, x′)

+
∫

dy
∫

dy′GL+R(x, y)T (y, y′)GL+R(y′, x′),

(37)

where GL+R = GL + GR and l is the formally introduced
boundary Hermitian operator in terms of

〈x|GL+Rl†|y〉 = iδ(y)F (x), (38)

〈y′|lGL+R|x′〉 = −iδ(y′)F̄ (x′), (39)

we identify T (y, y′) = 〈y|l†d−1l|y′〉 with the T -operator in the
coordinate representation.

The functions defined in Eqs. (32) and (33) have the re-
markable properties

F (0+) = F (0−) ≡ F (0) = −1, (40)

F̄ (0+) = F̄ (0−) ≡ F̄ (0) = −1, (41)

which follow from the standard jump conditions[
G(0,m)

2 (0, 0+) − G(0,m)
2 (0, 0−)

]Am

2
= 1, (42)

Am

2

[
G(0,m)

1 (0+, 0) − G(0,m)
1 (0−, 0)

] = 1 (43)

for the Green’s function derivatives. The expressions in
Eqs. (40) and (41) thus appear to be consistent with their
lattice analogues in Eqs. (17) and (18), respectively.

By the virtue of GL(0, 0) = GR(0, 0) and Eqs. (40) and
(41), we recover

G(0, 0) = d−1. (44)

This result is also consistent with its lattice analog of Eq. (20).
Replacing D → d/a in the lattice version of the global DOS
in Eq. (25), we immediately obtain its continuum counterpart

ρ(ω) = ρL(ω) + ρR(ω) − 1

π
Im

∂

∂ω
ln det d (ω + i0+).

(45)

The global DOS ρm(ω) of the disjoint subsystem m (here m =
L, R) is generally given by

ρm(ω) = − 1

π
Im
∫ xm+1

xm

dx tr Gm(x, x; ω + i0+). (46)

Since d (ω) is Hermitian on the real frequency axis, its
determinant det d (ω) is real-valued. The real-valued roots of
the equation

det d (ω) = 0 (47)

determine energies EB of bound states induced by the tun-
neling between the two subsystems. Their contribution to the

global DOS, given by Eq. (45), naturally appears in the form∑
B δ(ω − EB).
In the infinite-space model (that is, when both the left and

the right subsystems are semi-infinite), the bound states found
from the Eq. (47) are localized near the interface of the two
subsystems, and their energies EB reside in the bandgaps of
the whole system. It is also remarkable that in this case the
matrix d can be alternatively written as

d = [G(0,L)(0, 0)]−1 − p0, (48)

and hence the bound state equation in Eq. (47) acquires the
form

det[1 − G(0,L)(0, 0; ω)p0(ω)] = 0. (49)

Here

p0 = U1 + 1

8
lim

x→0+

d2

dx2

× [
ARGR(x, x)AR − ALGL

0 (x, x)AL
]

(50)

is the (generally energy-dependent) term breaking the transla-
tional invariance of the auxiliary infinite-space model using
the parameters of the left subsystem, i.e., described by
G(0,L)(x, x′). In addition, we employed the auxiliary Green’s
function GL

0 (x, x′) which describes the model to the right from
the hard-wall potential at x = 0 but uses the parameters of the
left subsystem (see Appendix A 2 for its explicit expression
as well as for the adopted conventions regarding notations).
To establish Eq. (48), we used the identity

[G(0,L)(0)]−1 = −1

8
AL

[
lim

x→0−

d2

dx2
GL(x, x)

+ lim
x→0+

d2

dx2
GL

0 (x, x)

]
AL, (51)

which naturally arises in the translationally invariant case
U1 = 0 and (AL,BL, CL ) = (AR,BR, CR).

Reminding ourselves that the boundary Green’s functions
GL(x, x′) and GR(x, x′), entering Eqs. (31)–(34), admit a sim-
ple representation (see Appendix A 2) in terms of G(0,L)(x, x′)
and G(0,R)(x, x′), respectively, we assert that the above con-
struction completes our program of establishing G(x, x′) in
the special M = 1 case.

To verify that G(x, x′) given by Eq. (31) does provide the
solution of the Eq. (7) with the matching conditions in Eqs. (5)
and (6), we first note that both GL(x, x′) + GR(x, x′) and F (x)
satisfy the differential equation in Eq. (7). Second, on the basis
of the relations GL(0, x′) = GR(0, x′) = 0 and Eq. (40) we
establish the continuity of G(x, x′) at x = 0, i.e., the condition
in Eq. (5) is fulfilled. Third, we express the condition in Eq. (6)
for G(x, x′) in the form

AR

2

[
GR

1 (0+, x′) + F ′(0+)d−1F̄ (x′)
]

− AL

2

[
GL

1 (0−, x′) + F ′(0−)d−1F̄ (x′)
]

= −
[
U1 − i

BR − BL

2

]
d−1F̄ (x′), (52)

and check whether it is fulfilled for x′ �= 0 (i.e., for x′ >

0+ and for x′ < 0−). Under this condition we identify
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F̄ (x′) = 1
2ARGR

1 (0+, x′) − 1
2ALGL

1 (0−, x′), and it remains to
prove that

d = −U1 − AR

2
F ′(0+) + AL

2
F ′(0−) + i

BR − BL

2
. (53)

The fulfillment of this condition is shown in Appendix C.
Thus it is finally justified that the derived G(x, x′) satisfies the
both matching conditions.

It is remarkable that the formula of Eq. (53) along with
the expressions in Eqs. (C7) and (C8) for F ′(0+) and F ′(0−),
respectively, represent the simplest way of determining the
matrix d in the single-barrier case:

d = −U1 + LR − LL, (54)

LR = AR

2
G(0,R)

1 (0+, 0)[G(0,R)(0, 0)]−1 + i

2
BR, (55)

LL = AL

2
G(0,L)

1 (0−, 0)[G(0,L)(0, 0)]−1 + i

2
BL. (56)

In this setting, the relation of d to the matching condition in
Eq. (6), expressing the conservation of the current density,
becomes especially transparent. The importance of the objects
LR/L for the properties of the boundary charge in the half-
space models has been recently elucidated in Ref. [40].

C. Multiple barriers

A direct generalization of the single-barrier result in
Eq. (31) to the case of multiple barriers is given by the

expression (see Appendix D for its derivation)

G(x, x′) =
M∑

m=0

Gm(x, x′)

+
M∑

m,m′=1

Fm(x)(d−1)m,m′ F̄m′ (x′), (57)

where d is a block tridiagonal matrix, with the additional
barrier indices m, m′ labeling the blocks. The diagonal blocks

dm,m = −Um − 1

8
Am−1 lim

x→x−
m

d2

dx2
Gm−1(x, x)Am−1

− 1

8
Am lim

x→x+
m

d2

dx2
Gm(x, x)Am (58)

represent a generalization of Eq. (34): they are defined locally
at the interface positions xm. In turn, the off-diagonal blocks

dm,m+1 = 1
4AmGm

12(x+
m , x−

m+1)Am, (59)

dm+1,m = 1
4AmGm

12(x−
m+1, x+

m )Am (60)

describe the propagation between the two adjacent barriers
xm and xm+1 across the mth subsystem. These blocks thereby
account for the quantum interference effects.

The functions

Fm(x) = −�(xm−1 < x < xm)
[
G(0,m−1)

2 (x, x+
m ) + Gm−1

2 (x, x−
m ) − G(0,m−1)

2 (x, x−
m )
]Am−1

2

+ �(xm < x < xm+1)
[
G(0,m)

2 (x, x−
m ) + Gm

2 (x, x+
m ) − G(0,m)

2 (x, x+
m )
]Am

2
, (61)

F̄m′ (x′) = −�(xm′−1 < x′ < xm′ )
Am′−1

2
[G(0,m′−1)

1 (x+
m′ , x′) + Gm′−1

1 (x−
m′ , x′) − G(0,m′−1)

1 (x−
m′ , x′)]

+ �(xm′ < x′ < xm′+1)
Am′

2
[G(0,m′ )

1 (x−
m′ , x′) + Gm′

1 (x+
m′ , x′) − G(0,m′ )

1 (x+
m′ , x′)] (62)

generalize the expressions in Eqs. (32) and (33), respectively.
They also possess the properties

Fm(xm′ ) = −δm,m′ , (63)

F̄m′ (xm) = −δm′,m, (64)

analogous to Eq. (19) in the single-barrier case. On their basis
we establish that

G(xm, xm′ ) = (d−1)m,m′ , (65)

and thus reveal the physical meaning of the matrix d: It is the
inverse of the propagator between the contacts xm and xm′ .

The global single-barrier DOS, given by Eq. (45), has a
straightforward multibarrier generalization (see Appendix D)

ρ(ω) =
M∑

m=0

ρm(ω) − 1

π
Im

∂

∂ω
ln det d (ω + i0+), (66)

where the determinant of d (ω + i0+) is now evaluated for the
NcM × NcM matrix.

The bound state equation in Eq. (47) retains its form in
the multibarrier case. In the double-barrier case M = 2, we
can further simplify the matrix d . We assign the values x1 =
0 and x2 = W to the contact coordinates, such that W is the
width of the central (C) region. We also assume that both the
left (L) and the right (R) subsystems are semi-infinite, and in
the following we use the labeling of the regions m = L,C, R
instead of m = 0, 1, 2. Owing to the expressions in Eqs. (E5),
(E6), (E7), and (E10) derived in Appendix E, we state

d ≡
(

G(0, 0) G(0,W )

G(W, 0) G(W,W )

)−1

=
(

G(C,0)(0, 0) G(C,0)(0,W )

G(C,0)(W, 0) G(C,0)(W,W )

)−1

−
(

p0 0
0 pW

)
.

(67)
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The last term can be interpreted as the self-energy term break-
ing the translational invariance of the auxiliary infinite-space

model, which uses the parameters of the central subsystem. It
is expressed in terms of the energy-dependent matrices

p0 = U1 + 1

8
lim

x→0−

[
AL

d2

dx2
GL(x, x)AL − AC

d2

dx2
GC

0 (x, x)AC

]
, (68)

pW = U2 + 1

8
lim

x→W +

[
AR

d2

dx2
GR(x, x)AR − AC

d2

dx2
GC

W (x, x)AC

]
. (69)

Hereby we introduced the auxiliary Green’s functions
GC

0 (x, x′) and GC
W (x, x′) describing the models to the left from

the hard-wall potential at x = 0 and to the right from the
hard-wall potential at x = W , respectively, and both using the
parameters of the central subsystem (see Appendix A 2 for
their explicit expressions).

Applying the formulas in Eqs. (C1) and (C2), we further
simplify Eqs. (68) and (69) to

p0 = U1 + LL − LL→C, (70)

pW = U2 − LR + LR→C, (71)

where LR and LL are defined in Eqs. (55) and (56), and

LL→C = AC

2
G(0,C)

1 (0−, 0)[G(0,C)(0, 0)]−1 + i

2
BC, (72)

LR→C = AC

2
G(0,C)

1 (0+, 0)[G(0,C)(0, 0)]−1 + i

2
BC

= LL→C + [G(0,C)(0, 0)]−1. (73)

These formulas allow one to express the matrix d in the
double-barrier case given by Eq. (67) in terms of the objects L
containing only first derivatives of the translationally invariant
Green’s functions G(0,m).

III. APPLICATIONS TO JOSEPHSON SYSTEMS

To showcase our formalism, we find it instructive to con-
sider a number of standard-issue problems in the theory of
Josephson junctions (JJ).

By a JJ, one commonly understands a weak link between a
pair of superconductors. When two BCS condensates (labeled
by 1 and 2) are brought together and the tunneling of Cooper
pairs between them is then switched on, the combined system
finds a new ground state, in which the difference ϕ = ϕ1 − ϕ2

of the phases ϕ1, ϕ2 of the corresponding superconducting
order parameters �1,2 = |�1,2|eiϕ1,2 adjusts itself to a particu-
lar value ϕ = ϕmin. In particular, the most common cases are
ϕmin = 0 and ϕmin = π , defining the so-called 0 and π junc-
tions. This result implies that the ground state energy of the
combined system is a function of the aforementioned phase
difference, with a minimum at ϕ = ϕmin. In this regard, it is
important to study the spectral flow of Josephson systems with

the externally varied phase difference,3 and this defines the
first type of problems for showcasing our formalism. Specif-
ically, in one of the following examples, we shall see how
local Coulomb interaction at the contact between the conden-
sates may lead to a crossover between the above-mentioned
ϕmin = 0 and ϕmin = π ground states.

As Josephson systems feature, by construction, supercon-
ducting components, local charge conservation is violated
resulting in the nonzero persistent current (known as the
Josephson current (JC)) between the condensates comprising
the junction. It turns out [41] that such a current is also a
ϕ-dependent quantity that, quite generally, may be shown to
be the ϕ derivative of the aforesaid ground state energy. The
study of the experimentally measurable JC defines the second
problem, which we consider for demonstrating the potential
of Green’s function formalism.

A. Basic definitions

1. Model Hamiltonian

Before proceeding with concrete examples, we first specify
notations of the model Hamiltonians.

In what follows we restrict our consideration to spin-
1
2 s-wave superconductors, although—as is apparent from
Sec. II—our formalism allows including arbitrary matrix
structure and momentum dependence of the order parameters
up to O(p2).

We consider the following second quantized Hamiltonian:

H =
∫ ∞

−∞
dxψ̂†(x)

[
p

1

2m(x)
p + 1

2
{A(x), p} + V (x)

]
ψ̂ (x)

+ 1

2

∫ ∞

−∞
dx[ψ̂†(x)�̂(x)(ψ̂†(x))T + H.c.], (74)

where ψ̂ (x) = (ψ̂↑(x), ψ̂↓(x))T is a two-component spinor,
whose spin components σ =↑,↓ are the field operators obey-
ing the standard fermionic anticommutation relations

{ψ̂σ (x), ψ̂σ ′ (x′)} = 0, (75)

{ψ̂σ (x), ψ̂
†
σ ′ (x′)} = δσ,σ ′δ(x − x′). (76)

3In real experiments, the phase difference is typically varied by
closing the system into a circular geometry far away from the tun-
neling region, and varying the magnetic flux threading the resulting
ring.
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The effective mass m(x) is a piecewise constant scalar func-
tion of x; A(x) = A†(x),V (x) = V †(x) are piecewise constant
2 × 2 Hermitian matrices, and �̂(x) = −�̂T (x) = �(x)iσy is

the antisymmetric 2 × 2 s-wave paring matrix expressed in
terms of the spatially dependent scalar order parameter �(x).
We assign the following spatial dependence to these objects:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(x)

A(x)

V (x)

�(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= �(−x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mL

AL

VL

�LeiϕL

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ �(W > x > 0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mC

AC

VC

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ �(x − W )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mR

AR

VR

�ReiϕR

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (77)

Note that the left (−∞ < x < 0) and the right (+∞ >

x > W ) regions host superconductors, while the central—
tunneling—region W > x > 0 is normal (|�C | = 0). Intro-
ducing the labeling of the regions in terms of the index
λ = L,C, R (note that in the previous section it corresponds
to the index m, but here and below we use λ to avoid
confusion with the mass notation), we further specify that
mλ and �L,R take positive real values, while the Hermi-
tian matrices Aλ = A(0)

λ +∑ j=x,y,z A( j)
λ σ j ≡ A(0)

λ + �Aλ · �σ and

Vλ = V (0)
λ +∑ j=x,y,z V ( j)

λ σ j ≡ V (0)
λ + �Vλ · �σ are spanned by

the Pauli matrices σ j and the identity matrix with the real-
valued coefficients A(0, j)

λ and V (0, j)
λ .

Introducing the extended Nambu spinor

	̂(x) =
(

ψ̂ (x)

iσy(ψ̂†(x))T

)
, (78)

we rewrite the Hamiltonian in Eq. (74) in the form

H = 1

2

∫ ∞

−∞
dx 	̂†(x)H	̂(x), (79)

where

H =
(

h(0) �(x)
�∗(x) −σyh(0)∗σy

)
, (80)

h(0) = p
1

2m(x)
p + 1

2
{A(x), p} + V (x). (81)

As per common practice, we find it convenient to define a
new set of Pauli matrices τx, τy, τz, along with an identity
τ0, acting on the space of particles [upper two components
of 	(x)] and holes [lower two components of 	(x)]. The
Hamiltonian in Eq. (80) now may be written as

H = τz

[
p

1

2m(x)
p + 1

2
{ �A(x) · �σ , p} + V (0)(x)

]
(82)

+ τ0

[
1

2
{A(0)(x), p} + �V (x) · �σ

]
(83)

+�(x)τ+ + �∗(x)τ−. (84)

In this decomposition of H , the terms of Eq. (82), that is
the kinetic energy, the spin-orbit interaction, and the scalar
potential, as well as the pairing potential of Eq. (84) are even
under the standard time-reversal operation T̂ = iσyK , with K
denoting the complex conjugation. In turn, the terms collected
in Eq. (83), that is the vector potential and the Zeeman field,
are odd under the time-reversal operation.

2. Observables

It is well-known (see, e.g., in Ref. [42]) that introducing
the extended Nambu representation artificially doubles the
Hilbert space assigned to the quantum system. This redun-
dancy of the description has to be removed in the calculation
of observable quantities by enforcing a pseudo-reality con-
straint on the Nambu field operators. Eventually this results in
removing the hole-like part of the spectrum residing at nega-
tive energies ω < 0. It follows that the excitation spectrum of
the system may be directly inferred from the Eqs. (66), (67),
(70)–(73) by restricting the spectral range to ω > 0. For the JJ
models, we choose the parameters

Aλ = τz

mλ

, U1,2 = 0. (85)

Note that the contact potential strengths U1,2 are neglected,
since the physical effect of the tunneling barrier in the finite-W
setup is accounted for by an appropriate tuning of VC .

In the short junction limit, that is when the junction width
W is much smaller than all other physical length scales in the
system, we impose the scaling VC = U1

W on the potential of the
central region, while all other terms in HC are supposed to be
of O(W 0). Then HC = [U1 + O(W )] δW (x), with the nascent δ

function δW (x) = 1
W �(W > x > 0). In the limit W → 0, we

get the delta distribution δ(x) = limW →0 δW (x) and neglect
the O(W ) terms accompanying U1. The resulting model has
the single barrier at x = 0 with the contact potential U1δ(x),
and the corresponding formulas for the spectral density, i.e.,
Eqs. (45), (54)–(56), become applicable.

In the expressions in Eqs. (45) and (66) for the spectral
density ρ(ω) of the composite system, there are terms ρm(ω)
expressing the spectral density of the isolated subsystems and
the term expressed via d . This last term represents the cor-
rection due to the tunneling between the subsystems. It is the
only term containing the dependence on the phase difference
ϕ, which we indicate explicitly:

δρ(ω, ϕ) = − 1

π
Im

∂

∂ω
ln det d (ω + i0+, ϕ). (86)

The Josephson current may be expressed as the derivative
of the Gibbs free energy F with respect to the phase difference
across the superconducting leads, J (ϕ) = 2e

h̄
dF
dϕ

. It is then
given in terms of Eq. (86) by

J (ϕ) = − 2e

h̄β

∫ ∞

0
dω ln

(
2 cosh

βω

2

)
∂

∂ϕ
δρ(ω, ϕ), (87)
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where β = 1
kBT is the inverse temperature. Integrating by parts

we reveal an alternative representation

J (ϕ) = − 1

�0
Im
∫ ∞

0
dω tanh

βω

2

∂

∂ϕ
ln det d (ω + i0+, ϕ),

(88)

where �0 = h
2e is the superconducting magnetic flux

quantum.
With the help of Eq. (88), the identity

∂

∂ϕ
ln det d (z, ϕ) = tr

{
[d (z, ϕ)]−1 ∂d (z, ϕ)

∂ϕ

}
(89)

and the granted particle-hole symmetry, one can also convert
the integral over the real frequency axis into the (quickly
convergent) Matsubara sum

J (ϕ) = − π

�0β

∑
iωn

tr

{
[d (iωn, ϕ)]−1 ∂d (iωn, ϕ)

∂ϕ

}
(90)

T =0→ − 1

2�0

∫ ∞

−∞
dω tr

{
[d (iω, ϕ)]−1 ∂d (iω, ϕ)

∂ϕ

}
, (91)

which in the zero-temperature limit goes over into the inte-
gral in Eq. (91) over the imaginary frequency axis. These
imaginary frequency representations appear very efficient in
numerical calculations of J (ϕ).

B. Single barrier examples

First, we study the short junction case, in which the tun-
neling region is described by the contact potential ∝ δ(x), and
the results of Sec. II B are then employed.

1. Benchmark example: The Josephson model

Let us start by considering the paradigmatic problem of
a pair of s-wave superconductors tunnel-coupled with each
other across a barrier at x = 0. In this case, the extended
Nambu representation of Eq. (78) is not needed, and the ma-
trix Hamiltonians are expressed in the reduced Nambu basis
	̂(x) = (ψ̂↑(x), ψ̂†

↓(x))T as

Hλ =
(

p2

2m − μ �λ

�∗
λ − p2

2m + μ

)
, λ = R, L, (92)

where the order parameter is assumed to be homogeneous in
magnitude throughout the sample |�λ| = �0 > 0. Choosing
the symmetric gauge, we express the phases of �λ via the
externally induced phase difference ϕ = ϕR − ϕL such that

�λ = �0eiϕλ , ϕλ = λ
ϕ

2
. (93)

Hereby we conveniently re-labeled right λ = + and left λ =
− subsystems. As is traditionally done, the nature of the
barrier is modeled by the contact potential

U (x) = δ(x)V0τz. (94)

The d-matrix for this model is calculated in Appendix F 1.
For Im z > 0, it reads

d (z, ϕ) = −V0τz + i
k(+)

m
τz + i

k(−)

m

z − �0 cos ϕ

2 τx

z
√

1 − (�0
z

)2 , (95)

where

k(±) = kF

√
1 + z

μ

√
1 − (�0

z

)2 ∓
√

1 − z
μ

√
1 − (�0

z

)2
2

,

(96)

and kF = √
2mμ. The general bound state equation in Eq. (47)

yields

0 = m2

k2
F

det d (ω + i0+, ϕ)

=
(

k(+)

ikF
+ mV0

kF

)2

+ k(−)2

k2
F

(
1 − �2

0

�2
0 − ω2

sin2 ϕ

2

)
,

(97)

where D = 1/[1 + (mV0/kF )2] is the transparency of the tun-
neling barrier. It can be satisfied in the gap |ω| < �0, where it
holds

z

√
1 −

(
�0

z

)2∣∣∣∣
z=ω+i0+

= i
√

�2
0 − ω2, (98)

and the corresponding replacements are to be made in k(±). It
follows that Eq. (97) defines the exact energy-phase relation,
valid for all values of μ and D.

Evaluating the JC on the basis of Eq. (88) [additionally
multiplying it by the factor 2 to account the two copies of
Eq. (95) needed to reproduce the extended Nambu represen-
tation] we note that the subgap contribution appears as the
residuum

JABS(ϕ) = 2π

�0
tanh

βωA

2

∂ϕ det d (ωA, ϕ)

∂ω det d (ωA, ϕ)
(99)

= −2π

�0
tanh

βωA(ϕ)

2

dωA(ϕ)

dϕ
(100)

at the pole ω = ωA, given by the ABS energy found from
the Eq. (97). In turn, the continuum contribution to Eq. (88)
equals

Jcont(ϕ) = − sin ϕ

�0

∫ ∞

�0

dω tanh
βω

2

�2
0

ω2 − �2
0

× Im
k(−)2

m2 det d (ω + i0+, ϕ)
. (101)

To obtain the known ABS expression

ωA(ϕ) = �0

√
1 − D sin2 ϕ

2
, (102)

we invoke the so-called Andreev approximation relying on
μ � �0. In this limit, we find that k(+) → 0 and k(−) → kF ,
simplifying

d (z, ϕ) ≈ −V0τz + ikF

m

z − �0 cos ϕ

2 τx

z
√

1 − (�0
z

)2 , (103)

as well as the Eq. (97) to the form which admits the solution
given in Eq. (102). In addition, we notice that the JC is com-
pletely mediated by the ABS, since k(−) and det d (ω + i0+) in
Eq. (101) become purely real, and therefore Jcont(ϕ) vanishes
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FIG. 2. The phase dispersion of the ABS (top panel) and zero-
temperature JC (bottom panel). The results for a clean system are
shown in solid lines and are compared to their disordered counter-
parts plotted in dashed lines. Various colors correspond to different
values of the chemical potential, as indicated in the legends. To
achieve the Andreev limit universality, we fix the values (see above
the top panel) of the barrier transparency D as well as of the en-
ergy nIv0 and momentum mv0 scales associated with the impurity
scattering.

in the Andreev limit. Thus Eq. (100) yields the following
universal relation [14,43]:

J (ϕ) = π�0

2�0

D tanh

[
β�0

√
1−D sin2 ϕ

2

2

]
√

1 − D sin2 ϕ

2

sin ϕ. (104)

In Fig. 2, in solid lines, we show how the energy-phase
and the corresponding current-phase relations approach the
universal results of Eqs. (102) and (104) upon an increase in
the chemical potential μ.

It is also worth mentioning that the expression in Eq. (103)
multiplied by −1 is analogous by virtue of Eq. (44) to the self-
energy of a quantum dot coupled to superconducting leads in
the weak tunneling regime which is further approximated in
the wide-band limit, see, e.g., Ref. [44] for that self-energy ex-
pression. One has to replace the tunneling rate 
 of that model
with kF

m to gain the formal analogy with Eq. (103). In our
treatment, however, an effective 
 is itself of the bandwidth’s
order of magnitude, that is ∼μ (cf. the general discussion in
Sec. II B).

One may further ask whether the JC value beyond the
Andreev limit in our model is robust against static disorder, for
example. Our approach allows one to get analytical insights
into such questions at a modest expense. In particular, we
may ignore the effects of disorder on the barrier tunneling,
assuming that its imperfection is completely accounted for by
the contact potential in Eq. (94). Under such an assumption,
we put the self-energy insertions into the bulk propagators
G(0,R/L) alone.

Let us consider random nonmagnetic impurities, charac-
terized by the strength v0 of the short-range impurity potential
and the impurity density nI . Employing the standard T -matrix
approximation [45], we obtain the following disorder-induced
self-energy:

�λ(z) = Uλ�(z)U †
λ , Uλ = e

i
4 τzλϕ, (105)

�(z) = nIv0τz
1

1 − G(0)(0, 0; z)v0τz
+ O

(
n2

I

)
, (106)

dressing the momentum-space propagators of the bulk super-
conductors:

G(0,λ)
k (z) = UλG(0)

k (z)U †
λ → G̃(0,λ)

k (z) = UλG̃(0)
k (z)U †

λ ,

G̃(0)
k (z) = 1[

G(0)
k (z)

]−1 − �(z)
, (107)

where G(0)
k (z) is given by Eq. (F1). Representing

G̃(0)
k (z) = 1

z̃(z) − τz
[

k2

2m − μ̃(z)
]− τx�̃0(z)

(108)

and comparing it with Eq. (107), we find that the effect of the
random disorder consists in the following energy-dependent
renormalization of the model parameters

z →z̃(z) = z

⎛
⎜⎝1 − nIv0k1,+k2,+

imv0k(−)

(mv0k(−) )2 + (k1,+k2,+ + imv0k(+) )2

1

z
√

1 − (�0
z

)2
⎞
⎟⎠, (109)

�0 →�̃0(z) = �0

⎛
⎜⎝1 − nIv0k1,+k2,+

imv0k(−)

(mv0k(−) )2 + (k1,+k2,+ + imv0k(+) )2

1

z
√

1 − (�0
z

)2
⎞
⎟⎠, (110)

μ →μ̃(z) = μ − nIv0k1,+k2,+
k1,+k2,+ + imv0k(+)

(mv0k(−) )2 + (k1,+k2,+ + imv0k(+) )2
, (111)

where k1,+ and k2,+ are given in Eqs. (F3) and (F4).
Since the d-function is eventually expressed via the parameters of the bulk systems, it is sufficient to make the above

replacements in Eq. (95) in order to extract spectral information of the composite system subject to random potential disorder.
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Using the invariance

z

�0
= z̃(z)

�̃0(z)
, (112)

one finds that the dispersion of Andreev levels in Eq. (97) is modified by the following replacement

k(±)

kF
→ k̃(±)

kF
=
√

μ̃(z)

μ

√
1 + z̃(z)

μ̃(z)

√
1 − (�0

z

)2 ∓
√

1 − z̃(z)
μ̃(z)

√
1 − (�0

z

)2
2

. (113)

Returning back to the Andreev approximation μ̃(z) ≈ μ �
�0, we find that the results of Eqs. (102) and (104) remain
intact.

In Fig. 2, in dashed lines, we show how the energy-phase
and the corresponding current-phase relations approach the
universal results of Eqs. (102) and (104) upon an increase in
the chemical potential μ. In addition, Fig. 2 showcases the
effect of disorder on the energy- and current-phase relations
away from the universal Andreev limit, showing that static
disorder tends to push the Andreev states into the continuum
decreasing the critical current, similar to the effect of decreas-
ing the barrier’s transparency.

Next, we discuss the effect of the local Coulomb inter-
action at the point contact of the two superconductors. We
model it as the Coulomb repulsion between fluctuations of
local spin-up and spin-down densities,

VU = U {ψ̂†
↑(0)ψ̂↑(0) − 〈n↑(0)〉}{ψ̂†

↓(0)ψ̂↓(0) − 〈n↓(0)〉}.
(114)

With this term our model resembles the Anderson-Josephson
model of a quantum dot with the on-site Coulomb interaction
tunnel-coupled to two superconducting leads (see the review
about various studies of this model in Ref. [46]). However, in
our case, there is no well-defined quantum dot, since we treat
the contact far beyond the tunneling regime.

We also note that the subtraction of the density averages
in Eq. (114) eventually leads to the energy renormalization in
the Cooper channel alone [see Eq. (115) below, derived under
the assumption of no spontaneous spin-symmetry breaking].
Performing this subtraction, we get rid of an uninteresting
renormalization of the diagonal contact-potential component
in the particle-hole basis, which is largely dominated by
high-energy normal-state contributions. One can alternatively
envisage this subtraction as a result of combining the particle-
hole diagonal contribution to the (restricted) Hartree-Fock
self-energy with the bare contact potential, which leads to an
effective contact potential and defines the contact’s physical
transparency renormalized by the local Coulomb interaction.

The Hartree-Fock approximation to the local Coulomb in-
teraction in Eq. (114) is found on the basis of the Wick’s
theorem

VU � U 〈ψ̂↓(0)ψ̂↑(0)〉ψ̂†
↑(0)ψ̂†

↓(0)

+ U 〈ψ̂†
↑(0)ψ̂†

↓(0)〉ψ̂↓(0)ψ̂↑(0)

− U 〈ψ̂†
↑(0)ψ̂†

↓(0)〉〈ψ̂↓(0)ψ̂↑(0)〉
= �loc{ψ̂†

↑(0)ψ̂†
↓(0) + ψ̂↓(0)ψ̂↑(0)} − �2

loc

U
, (115)

where �loc = U 〈ψ̂↓(0)ψ̂↑(0)〉 = U 〈ψ̂†
↑(0)ψ̂†

↓(0)〉 is a local
superconducting order parameter.

The local Green’s function GU (0, 0) in the Hartree-Fock
approximation results from the Dyson equation

dU = [GU (0, 0)]−1 (116)

= [G(0, 0)]−1 − �locτx = d − �locτx. (117)

Using it in the expression of Eq. (90) [times factor 2 because
of the present usage of the reduced Nambu basis] for the JC

and accounting for the correction −�2
loc

U to the free energy
occurring in Eq. (115), we establish the mean-field expression
for the JC

J (ϕ) = − 2π

�0β

∑
iωn

tr

{
[dU (iωn, ϕ)]−1 ∂dU (iωn, ϕ)

∂ϕ

}

− 2π

�0

d

dϕ

�2
loc

U
. (118)

With the help of the self-consistency equation (see in
Appendix F 2)

�loc = U

2β

∑
iωn

tr
{
[dU (iωn, ϕ)]−1τx

}
, (119)

the expression in Eq. (120) is modified to the form

J (ϕ) = − 2π

�0β

∑
iωn

tr

{
[dU (iωn, ϕ)]−1 ∂d (iωn, ϕ)

∂ϕ

}
. (120)

A further application of the self-consistent Hartree-Fock
approach to the present model reaches its limitation, emerging
in the form of an ultraviolet divergence which is caused by the
ultra-local form of the Coulomb interaction (see discussion in
Appendix F 2), and one has to refine the method.

A similar problem arises in the bare perturbation theory in
the Andreev limit μ � �0: The local superconducting order
parameter �loc features the logarithmic behavior ∝ kF

m ln μ

�0
,

which hints at the nontrivial competition between the super-
conductivity and the Kondo effect [46].

To give a conservative quantitative estimate of the interac-
tion effects on the JC and the Andreev spectrum, we provide
below the results of the first-order perturbation theory for μ �
�0 and the dimensionless interaction parameter u = Um2�0

πk2
F

�
1. In particular, we approximate the local self-energy term
�loc(ϕ) = kF

m �̄loc(ϕ) by its leading O(u) contribution given
in Eq. (F27). The resulting dU is used for the JC evaluation by
means of Eq. (120) [or Eq. (F29) at zero temperature] as well
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FIG. 3. [(a) and (e)] Dispersion of subgap states as a function of ϕ and u for a system with μ = 3�0, D = 0.9. [(b) and (f)] Josephson
current as a function of ϕ and u for μ = 3�0, D = 0.9. [(c) and (g)] Derivative of Josephson current with respect to phase difference ϕ at
ϕ = 0 for a system with μ = 3�0. The orange line in (c) indicates the sign change of d

dϕ
J (ϕ = 0). [(d) and (h)] The critical current as a

function of u and D for μ = 3�0. The orange line in (d) indicates the location of the cusp in the critical current [explicitly seen in (h)] as a
function of Coulomb interaction strength u.

as in the bound state equation

det dU (ω, ϕ) = 0. (121)

Numerical data for the ABS and JC for a junction with μ =
3�0 are shown in Fig. 3. The panels (a) and (e) demonstrate
the energy-phase relation of the subgap states for various
values of the interaction parameter u ∈ [0, 0.5] and contact
transparency D = 0.9, while the panels (b) and (f) show the
phase-dispersion of the JC at these parameters. We observe
that upon increasing u above ∼0.2 the JC derivative [with
respect to ϕ] changes its sign from positive to negative, in-
dicating the 0-π phase transition. It is very analogous to the
phase transition which is well-established in superconductor-
ferromagnet-superconductor junctions [47,48]. The panels (c)
and (g) show the JC derivative at ϕ = 0 as a function of u and
D. In particular, we observe that the phase transition occurs at
smaller values of u in more transparent junctions with D → 1.
The panels (d) and (h) demonstrate the critical current Jc =
maxϕ |J (ϕ)| as a function of u and D. We reveal that around
the phase transition, the critical current displays a nondifferen-
tiable cusp in the dependence on the interaction parameter u.

2. Junction of two Majorana wires: spectral properties

Let us now apply our formalism to the famous Majorana
wire problem [34,35]. In particular, we consider a pair of
two semiconducting wires with the strong spin-orbit inter-
action α and induced superconducting correlations, which
are additionally submersed into the external magnetic field B
pointing in the wires’ direction. In the extended Nambu basis,
introduced in Sec. III A 1, they are described by the following
Bogoliubov-de-Gennes Hamiltonians

Hλ =
(

h(0)
p + αpσz − Bσx �λ

�∗
λ −h(0)

p − αpσz − Bσx

)
,

(122)

h(0)
p = p2

2m
− μ; λ = R, L ≡ +,−. (123)

Assuming the wires to be semi-infinite, we bring them in
contact [32,33] at x = 0 enabling the tunneling across the
contact potential

U (x) = δ(x)V0 τz σ0, (124)

where σ0 is the identity matrix in the spin space.
As in the previous consideration, we consider again for

simplicity the case of the isospectral junction with |�λ| =
�0 > 0, with a symmetrically induced phase difference �λ =
�0e

i
2 λϕ across the interface.

The bulk Green’s functions

G(0,λ)(x, x′) = Uλ g(x − x′)U †
λ , Uλ = e

i
4 τzλϕ, (125)

associated with the Hamiltonians in Eq. (122), are evaluated
in Appendix G 1. This information appears sufficient for es-
tablishing the composite Green’s function G(x, x′) of Eq. (31)
and the d matrix in Eq. (54) containing spectral properties
relevant for the study of the ABS and JC. For the present
model, we obtain

d = τz

2m
{−2mV0 + U+g′(0+)g−1(0)U−

− U−g′(0−)g−1(0)U+}. (126)

The calculation of the JC by means of Eqs. (88)-(91) re-
quires the additional derivative ∂ϕd . Since the ϕ dependence
of d in the above formula enters only via the gauging matrices
U±, we note the following useful relation:

∂ϕd = iτz

8m
{U+[τz, g′(0+)g−1(0)]U−

+ U−[τz, g′(0−)g−1(0)]U+}. (127)

On the basis of the exact expressions for g(0) and g′(0±)
(see in Appendix G 1), one can address various limits of the
model’s parameters. For example, we show in Appendix G 2
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0 π 2π
ϕ

0

Gap

ω

B = 0.75Δ0

analytical

numerical

0 π 2π
ϕ

0

Gap
B = 1.25Δ0

analytical

numerical

FIG. 4. The ABS dispersion in the short junction of the two
Majorana wires at zero chemical potential μ = 0 and large spin-
orbit energy ESO = mα2

2 = 60 �0 dominating over �0 and B. Left
and right panels refer to the nontopological (B = 0.75 �0 < �0)
and topological (B = 1.25 �0 > �0) regimes, respectively. As one
can see, the numerical result based on the exact equation det d = 0
perfectly agrees with the approximate low-energy result derived in
Appendix G 2 [see Eqs. (G18) and (G19)], which coincides with that
of Ref. [33].

how the recent results of Ref. [33] for the energy spectrum
and the JC in the regime of dominating spin-orbit energy
ESO ≡ mα2

2 � �0, B, μ can be analytically recovered from
our general expression for the d function. We also use it
to numerically evaluate the ABS dispersion at large ESO =
60 �0 (see in Fig. 4) to benchmark the present exact interface
Green’s function approach versus the scattering approach of
Ref. [33] relying on low-energy approximations in the spin-
orbit dominated regime.

The demonstration presented in Appendix G 2 serves
a more general purpose of explaining how one can de-
rive low-energy approximations for G(x, x′) in arbitrary
heterostructures. Since G(x, x′) can be always expressed ac-
cording to our present findings in terms of bulk Green’s
functions, it suffices to make a low-energy approximation
for these functions. This approximation typically relies on
the bulk spectrum linearization near Fermi points (see also
Ref. [40] for a similar discussion), and the approximate bulk
Green’s functions are evaluated much easier than their exact
counterparts.

At the same time, it is no longer needed to investigate how
the low-energy approximation affects the matching condition
of Eq. (6) involving derivatives of the wave functions. This is
usually a subtle problem since the spectrum linearization low-
ers by one the order of the Schrödinger differential equation,
and this requires relaxing the condition on the first derivatives.
On the other hand, the matching condition in Eq. (6) expresses
the current density conservation, which must be somehow
accounted for in the construction of the eigenfunctions. Our
approach circumvents this problem, since it allows us to make
the low-energy approximation directly for G(x, x′), skipping
any intermediate approximate treatment of Eq. (6).

The generality of our approach allows one to go beyond
the low-energy approximation relying on the dominance of
the spin-orbit interaction energy ESO in the present model.
Thus it enables exploring arbitrary parameter regimes of the
Majorana junction model, as demonstrated in the following.

In particular, in Fig. 5, we display the dispersion of the
subgap states for the moderate spin-orbit energy ESO = 4 �0,
at zero chemical potential μ = 0. We note that in the nontopo-
logical regime B < �0, addressed in the left panel of Fig. 5,

0 π 2π
ϕ

0

Gap
μ = 0, B = 0.75Δ0

4mξV = 0

4mξV = 1

4mξV = 5

0 π 2π
ϕ

0

Gap
μ = 0, B = 1.25Δ0

4mξV = 0

4mξV = 1

4mξV = 5

FIG. 5. The ABS dispersion in the short Majorana junction at
zero chemical potential μ = 0 and moderate spin-orbit interac-
tion strength ESO = mα2

2 = 4�0. Left and right panels refer to the
nontopological (B < �0) and topological (B > �0) regimes, respec-
tively. Blue, orange, and green colors are used to mark three different
strengths of the contact potential 4mξV0 = 0, 1, and 5, respectively,
which are expressed in terms of the Ginzburg–Landau coherence
length ξ = 1/

√
2m�0.

Andreev levels are being pushed into the continuum upon
an increase of the contact potential strength V0, akin to the
behavior in ordinary JJs. In the topological regime, shown in
the right panel of Fig. 5, we find that the increase of V0 results
in the unwrapping of the Andreev mode, such that its tails near
ϕ = 0, 2π are pushed towards zero energy.

The results for a yet different parameter regime with
ESO = 4�0 and—more essentially—nonzero μ = √

3�0 are
shown in Fig. 6. As before, the left and right panels refer
to the nontopological and topological regimes, respectively.
The nonzero μ replaces the boundary value B of the topolog-
ical phase transition from �0 to the larger value

√
�2

0 + μ2

(= 2�0 in our specific example). Apart form that, we observe
the apparent increase in the value of V0 required to push
the Andreev states into and away from the continuum of the
scattering states in the nontopological and topological phases,
respectively.

3. Junction of two Majorana wires: Josephson current

An example of the zero-temperature JC computed for the
model parameters ESO = 4�0, μ = √

3�0 is shown in Fig. 7,
with the left and right panels referring to the nontopological
and topological phases, respectively. In the nontopological

0 π 2π
ϕ

0

Gap

4mξV = 0

4mξV = 1

4mξV = 5

0 π 2π
ϕ

0

Gap

4mξV = 0

4mξV = 1

4mξV = 5

FIG. 6. The ABS dispersion in the short Majorana junction at
finite chemical potential μ = √

3�0 and moderate spin-orbit inter-
action strength ESO = mα2

2 = 4�0. Left and right panels refer to the

nontopological (B <
√

�2
0 + μ2) and topological (B >

√
�2

0 + μ2)
regimes, respectively. Blue, orange, and green colors are used to
mark three different strengths of the contact potential 4mξV0 = 0,
1, and 5, respectively.
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0 π 2π
ϕ

−2

−1
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Φ Δ
J

(ϕ
)

μ =
√

3Δ0, B = 1.25Δ0

4mξV = 0

4mξV = 1

4mξV = 5

0 π 2π
ϕ

−1.5
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0

0.75
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μ =
√

3Δ0, B = 2.50Δ0

4mξV = 0

4mξV = 1
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FIG. 7. The zero-temperature (T = 0) limit of the JC calculated
at finite chemical potential μ = √

3�0 and relatively small spin-
orbit energy ESO = mα2

2 = 4�0. Left and right panels refer to the

nontopological (B = 1.25�0 <
√

�2
0 + μ2 = 2�0) and topological

phases (B = 2.50�0 > 2�0), respectively.

phase, the JC demonstrates a sinusoidal behavior with a tilt
towards the high-symmetry point ϕ = π . On the contrary, we
see that the JC exhibits a sharp step-like discontinuity at the
high-symmetry point ϕ = π in the topological phase (see the
left panel of Fig. 7). This property relates to the discontinu-
ity in the derivative of the ground state energy (see Fig. 6)
with respect to the phase difference ∂ϕEGS(ϕ) ∝ sgn(ϕ −
π ), ϕ ≈ π . Such a result is nonphysical and arises from the
noncommutativity of the zero-energy and zero-temperature
limits, as is most easily seen in the representation of Eq. (88):

lim
T →0+

lim
ω→0+

tanh

[
ω

2kBT

]
= 0, (128)

lim
ω→0+

lim
T →0+

tanh

[
ω

2kBT

]
= 1. (129)

This implies that any arbitrarily small but finite temperature
will smear the sharp step (see Fig. 8). Additionally, Fig. 7
demonstrates the effect of the barrier imperfection V0 �= 0
on the JC, quite conventionally implying the reduction of
the critical current Jc = maxϕ |J (ϕ)| with the increase in the
back-scattering strength V0.

The finite-temperature effects are shown in Fig. 8, with
the left and right panels referring to the nontopological
and topological phases, as before. In the nontopological
phase, the key effects of thermodynamic fluctuations are the
simultaneous decrease in the critical current and demolition of
the aforementioned π -tilt of the current-phase relation. As is
mentioned in the previous paragraph, in the topological phase

0 π 2π
ϕ

−2

−1

0

1

2

Φ Δ
J

(ϕ
)

μ =
√

3Δ0, B = 1.25Δ0, 4mξV0 = 1

k T = 0.00Δ

k T = 0.05Δ

k T = 0.20Δ

k T = 0.50Δ

0 π 2π
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−0.75

0
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1.5
μ =

√
3Δ0, B = 2.50Δ0, 4mξV0 = 1

k T = 0.00Δ

k T = 0.05Δ

k T = 0.20Δ

k T = 0.50Δ

FIG. 8. The effect of the finite temperature on the JC, calculated
at finite chemical potential μ = √

3�0 and relatively small spin-
orbit energy ESO = mα2

2 = 4�0. Left and right panels refer to the

nontopological (B = 1.25�0 <
√

�2
0 + μ2 = 2�0) and topological

phases (B = 2.50�0 > 2�0), respectively.

the nonzero temperature destroys the sharp step in the current
profile, further affecting the current-phase relation in a manner
typical for the nontopological phase.

C. Double barrier example: long junction
of two Majorana wires

We continue by studying a long Josephson junction be-
tween the two Majorana wires. Now we assume that our
system consists of the three layers: the right (R) and the left
(L) superconducting leads, and the central (C) normal region
which is free of superconducting correlations, as is outlined in
Sec. III A 1. The Hamiltonians of the right and left supercon-
ducting leads are given by Eq. (122), while the Hamiltonian
of the central region is

HC = τzh
(0,C)
p + τzαC pσz − BCσx, (130)

with h(0,C)
p defined as in Eq. (123) with μ → μC and mC = m.

The bound state equation of Eq. (47), using Eq. (67) in the
two-barrier case, can be conveniently written as

det

(
1 − p̂0 gC (0) −p̂0 gC (−W )e

i
2 τzϕ

−p̂W gC (W )e− i
2 τzϕ 1 − p̂W gC (0)

)
= 0, (131)

where the translationally invariant Green’s function gC (x − x′)
for the normal central region is evaluated in Appendix G 3.
We also shifted the phase dependence from p0 = U− p̂0 U+
and pW = U+ p̂W U− to the off-diagonal elements, responsible
for the quantum coherence in the normal section, in order to
elucidate its importance for supporting the JC. In the present
model, the nondecaying terms gC (±W ) are achieved due to
the gapless spectrum of the Hamiltonian in Eq. (130) (in
particular, its outer branches do not gap out due to �0 = 0).
The matrices

p̂0,W = ± τz

2m
g′(0∓)[g(0)]−1 ∓ τz

2m
gC ′

(0∓)[gC (0)]−1

± i

2
(α − αC )τzσz (132)

do not carry the ϕ dependence and expressed with the help
of the Green’s function g(x − x′) of the bulk superconductors
evaluated in Appendix G 1.

In Fig. 9, we show the phase dependence of the junction-
localised bound states and of the JC at zero and finite
temperatures. We focus on the case of the isospectral junction
with BC = B, μC = μ = √

3�0, αC = α = 4�0ξ varying
the junction’s width W = 0.5 ξ, 2.5ξ, 5ξ, 10ξ [in the units
of the coherence length ξ = 1/

√
2m�0] at the two values of

the magnetic field B = 1.25�0, 2.5�0.
Specifically, the first and third rows demonstrate the evo-

lution of the energy dispersion with an increase in the width
of the central region. We see that in the nontopological phase
(B = 1.25 �0 <

√
�2

0 + μ2 = 2�0) the addition of the nor-
mal segment between the two Majorana wires has the effect of
lowering the energy of the subgap states, as well as increasing
their number. In turn, in the topological phase (B = 2.5 �0 >

2�0), the only bound state mode tends to spread over the
whole phase interval featuring the piecewise linear branches
of its phase dispersion.
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FIG. 9. The phase dependence of the ABS and JC for long JJs with αC = α = 4�0ξ, μC = μ = √
3�0, and BC = B, for a variety of the

junction’s widths W = 0.5ξ, 2.5ξ, 5ξ , and W = 10ξ (four different columns). The two upper rows correspond to the nontopological regime
B = 1.25�0 <

√
�2

0 + μ2 = 2�0, while the two lower rows correspond to the topological phase B = 2.5�0 > 2�0. In the second and fourth
rows, different colors are used to mark different temperatures T = 0, 0.05�0, 0.2�0, and 0.5�0.

As for the JC shown in the second and fourth rows of the
same figure, we find that it features qualitatively similar be-
havior to its short-junction counterpart, with the major effect
of the finite width being the decrease in the critical current.

Next, we consider an example of the model’s realization,
in which some of the parameters of the central region are
distinct from the corresponding ones in the superconducting
leads. For instance, let us study the effect of modifying the
parameters of Abelian (μC) and non-Abelian (BC) parts of
the scalar potential. Experimentally this may be achieved by
applying an appropriate gate voltage (to affect μC) and by
bringing the wire in proximity with a ferromagnet (to affect
BC).

In Fig. 10, we present the results for the ABS and the zero-
temperature JC in the model with αC = α = 4ξ�0, W =
2.5ξ , and μ = √

3�0. The five different columns correspond
to five different values of BC = 0, 0.5B, B, 1.5B, and 2B.
Like in Fig. 9, the first and third rows of Fig. 10 show
the phase-dispersion of the ABS in the nontopological (B =
1.25�0) and topological (B = 2.5�0) regimes of the Majo-
rana wires, respectively, while the second and fourth rows give
the corresponding zero-temperature current-phase relations.
Three distinct colors are used to indicate three different values
of the chemical potential in the normal region: μC = 0 (red),
μ (black), and 2μ (yellow).

In the nontopological phase (B = 1.25�0, first and sec-
ond rows), we observe that, by varying the parameters of
the central region, it is possible to push the ABS energies
downwards as much as needed for creating the crossing points

at zero energy. They are similar to the one observed in the
topological phase in the short junction. However, these cross-
ing points are not topological in nature, and arise from the
crossing of two particlelike and holelike Andreev bands, that
are symmetric around the ϕ = π point, and hence come in
pairs.4 In turn, the crossing at zero energy in the topological
phase arises from the intersection of two ϕ = π -asymmetric
bands, belonging to two distinct parity branches, and is topo-
logically protected [5]. We note that an analogous effect was
also observed in superconductor-ferromagnet-superconductor
heterostructures in the presence of spin-orbit coupling in
Ref. [6].

As for the zero-temperature JC in the nontopological
phase, we reveal that the appearance of the zero-energy-
touching Andreev branches results in the discontinuities of the
current-phase relations, akin to the topological regime. Like
the touching points themselves, the step-like discontinuities
also come in pairs and are notably falling behind the critical
current in size. The latter effect has to do with the presence of
additional strongly dispersing Andreev states, which signifi-
cantly contribute to the current.

In the topological phase (B = 2.5�0, third and fourth
rows), we see that independently of the parameter values

4Note that one can envisage the situation in which the two bands
touch one another at exactly zero energy. In this case, however, the
states around zero energy are expected to disperse quadratically, as
opposed to the linear dispersion found in the topological regime.
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FIG. 10. The phase dependence of the ABS and JC for long JJs for the long (W = 2.5ξ ) JJ with αC = α = 4�0ξ . The two upper rows
correspond to the nontopological phase B = 1.25�0, while the two lower rows describe the topological regime B = 2.5�0. The five different
columns correspond to five different values BC = 0, 0.5B, B, 1.5B, and BC = 2B of the Zeeman field in the central region. Three distinct
colors mark three different values μC = 0, μ, 2μ of the chemical potential in the central region.

inside the central region, there is always only one bound state
touching the zero energy at ϕ = π . In addition, for the cases
of the equal (μC = μ, black curve) and enhanced (μC = 2μC ,
yellow curve) chemical potentials of the central segment we
observe that an additional bound state appears for BC < B. As
in the previous consideration of the topological regime, we
find that the current-phase relation again features sharp step-
like discontinuity at the high-symmetry point ϕ = π . We note
that for most parameter values the size of this discontinuity is
inappreciably smaller than the critical current.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we provided a detailed account of the in-
terface Green’s function technique regarding a large class
of quasi-one-dimensional models of heterostructures. In our
analysis, we assumed the Hamiltonians of the individual lay-
ers to be Nc × Nc matrix-valued quadratic polynomials in
momentum operator conjugate to the composition axis of
the structure. Such Hamiltonians may be seen as arising
from the expansion of microscopic ones around the respec-
tive Fermi surfaces, allowing one to model a broad range of
realistic physical systems (multiband systems, systems with
superconducting correlations, etc). For the considered class
of models, we established the representation of the position
space Green’s function of the entire system in terms of bulk
position space Green’s functions of its subparts. By demon-
strating that the calculation of latter objects is uninvolved, we
opened up a simple pathway to study the multibarrier scat-
tering phenomena and the interface-localized bound states in
systems of interest. Furthermore, our work lays one of the first
stones into the analysis of many-body and disorder effects in
layered systems, requiring knowledge of Green’s functions as

input. By further extracting the global DOS of the system from
its Green’s function, we reveal that the spectral information
may, largely, be drawn from a single matrix d . For a system
with M tunneling barriers, we show that d is an NcM × NcM
block matrix, comprised of Nc × Nc-sized blocks admitting
for a simple representation in terms of bulk Green’s functions
of the layers. As the spectral density relates to the logarithmic
derivative of det d , we also establish that the bound state
energies of the system lie at its zeros.

We shall point out that our formalism explicitly deals
with ballistic contact problems (beyond the tunneling regime),
commonly studied in modern-day experiments [49]. As nowa-
days the veil of theoretical secrecy over the ballistic regime is
just being lifted, we hope our method finds its extensive use
in this regard.

The method is further exemplified on models of normal
and topological Josephson junctions. As a prototypical ex-
ample, we considered a junction between two conventional
superconductors with an induced phase difference across the
interface. We derived the exact energy- and current-phase
relations for the considered model, showing how they reduce
to the commonly known formulas in the Andreev approxi-
mation, for which the chemical potential in superconducting
leads is assumed to be the largest energy scale in the model.
Further, we studied whether the universal Josephson relations,
arising in the Andreev limit, are robust against static disorder.
By disorder-dressing the bulk Green’s functions of supercon-
ductors in the T -matrix approximation and using those to
assemble the Green’s function of the composite system, we
demonstrated the stability of the Josephson relations in the
Andreev approximation, revealing only small corrections to
the ABS energy beyond it. Next, we studied the effect of
the local Coulomb interaction at the contact point between
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superconductors, showing how it leads to the 0-π phase tran-
sition, detectable through the change in the current-phase
relation of the system.

As for the topological Josephson systems, we considered
models of short and long junctions between two Majorana
wires. We demonstrated how to calculate energy-phase and
current-phase relations for the considered models beyond the
low-energy approximation, reducing the numerical computa-
tion to root-searching problems.

In addition, we indicate that our method may serve
as a convenient starting point to develop low-energy ap-
proximations for considered models. When projecting the
Hamiltonians of different subsystems onto the low-energy
window of interest, one is typically challenged to identify
and further implement the correct matching conditions on
the distinct low-energy degrees of freedom. Our method al-
lows us to elegantly circumvent this problem by developing
the low-energy approximations of bulk single-layer Green’s
functions, as in Ref. [40]. In this paper, we demonstrated
how this strategy is realized in the Majorana junction model
(see Appendix G 2), reproducing the low-energy results of
Ref. [33].

In our future work, we are going to generalize our de-
velopments to the class of position-dependent single-layer
Hamiltonians, which are important to account for the effects
of inhomogeneous external fields.
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APPENDIX A: EVALUATION
OF THE GREEN’S FUNCTIONS

1. Green’s functions of translationally invariant systems

Let us consider the infinite-space model described by the
Hamiltonian in Eq. (1) and evaluate its Green’s function in

Eq. (9) in the position representation. It can be conveniently
rewritten as

G(0,m)(x, x′; z) =
∫ ∞

−∞

dk

2π

eik(x−x′ )

Q(k; z)
P(k; z), (A1)

where P(k; z) = adj[z − hm(k)] is the adjugate matrix, and
Q(k; z) = det[z − hm(k)] is a 2Nc-order polynomial of k, ad-
mitting the representation

Q(k; z) = det

(
1

2
Am

) 2Nc∏
s=1

(k − ks(z)) (A2)

in terms of the roots ks(z).
By the hermiticity of hm(k) the determinant Q(k; ω) on

the real frequency axis may only have either a pair of com-
plex conjugated roots or purely real roots. Upon the shift
ω → ω + i0+ the latter acquire infinitesimal imaginary parts,
whose signs are given by the signs of dks (ω)

dω
, or equivalently by

the signs of the dispersion slope (group velocity) dωk
dk |k=ks

. For
the Hamiltonian in Eq. (1), a number of dispersion branches
pointing up (down) at negative k is the same as a number
of dispersion branches pointing up (down) at positive k. This
implies that for every ω the number of real roots with the pos-
itive dispersion slope equals the number of real roots with the
negative dispersion slope. Therefore we can generally classify
all roots into the two equally sized sets {ks,+(ω + i0+)}Nc

s=1 and
{ks,−(ω + i0+)}Nc

s=1 according to

Im[ks,+(ω + i0+)] > 0, Im[ks,−(ω + i0+)] < 0. (A3)

Evaluating Eq. (A1) at z = ω + i0+ we close the integra-
tion contour in the upper and lower halves of the complex
momentum plane for x > x′ and x < x′, respectively, to cor-
respondingly pick up the residues at the isolated singularities
ks,+ or ks,−. This results in

G(0,m)(x, x′; ω + i0+) =
Nc∑

s=1

i�(x − x′)eiks,+|x−x′|

det
(

1
2Am

)∏
s′ �=s(ks,+ − ks′,+)

∏
s′ (ks,+ − ks′,−)

P(ks,+; ω)

−
Nc∑

s=1

i�(x′ − x)e−iks,−|x−x′|

det
(

1
2Am

)∏
s′ (ks,− − ks′,+)

∏
s′ �=s(ks,− − ks′,−)

P(ks,−; ω). (A4)

Thus the evaluation of Eq. (9) reduces to a problem of the
polynomial factorization in Eq. (A2) with a root post-selection
criteria of Eq. (A3). In many practical applications, these
tasks may be executed analytically, otherwise one can resort
to numerical methods, such as the NumPy’s built-in routine
numpy.roots, for example [50].

2. Boundary Green’s functions

For completeness of the exposition, we shall quote some
basic results on the propagators of bounded systems. For a
detailed account of the subject, we refer an interested reader
to Refs. [51,52], while for various interesting applications to
transport and solid state phenomena see Refs. [40,53–64].
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Consider a model described by Green’s function
G(0,m)(x, x′). Inserting an ultra-local infinite-height potential
at x = X , which creates a hard-wall boundary, we separate
our initial system into two disjoint subsystems x > X and
x < X . The Green’s functions of the both of them are given
by the expression

Gm
X (x, x′) = G(0,m)(x, x′) − G(0,m)(x, X )[G(0,m)(X, X )]−1

× G(0,m)(X, x′), (A5)

satisfying the boundary conditions Gm
X (X, x′) = Gm

X (x, X ) =
0. It also holds that Gm

X (x, x′) identically vanishes when either
x > X, x′ < X or x < X, x′ > X .

The expression in Eq. (A5) also has the lattice analog (see,
e.g., in Ref. [63])

Gm
n,n′ = G(0,m)

n,n′ − G(0,m)
n,0

[
G(0,m)

0,0

]−1
G(0,m)

0,n′ (A6)

for a nearest-neighbor tight-binding model with the infinite-
height potential at the site n = 0.

Adding the second hard-wall boundary at x = Y , we obtain
the Green’s function

Gm
X,Y (x, x′) = Gm

X (x, x′) − Gm
X (x,Y )

[
Gm

X (Y,Y )
]−1

Gm
X (Y, x′)

(A7)

= Gm
Y (x, x′) − Gm

Y (x, X )
[
Gm

Y (X, X )
]−1

Gm
Y (X, x′),

(A8)

satisfying the boundary conditions Gm
X,Y (X, x′) =

Gm
X,Y (x, X ) = Gm

X,Y (Y, x′) = Gm
X,Y (x,Y ) = 0. It can be also

represented in the symmetrized form

Gm
X,Y (x, x′) = G(0,m)(x, x′) − G(0,m)(x, X )

[
Gm

Y (X, X )
]−1

× Gm
Y (X, x′) − G(0,m)(x,Y )

[
Gm

X (Y,Y )
]−1

× Gm
X (Y, x′). (A9)

Assuming that X < Y , we observe that the Green’s function
Gm

X,Y (x, x′) identically vanishes when x and x′ belong to dif-
ferent intervals (smaller than X , between X and Y , larger than
Y ). In addition, the following identities hold:

Gm
X,Y (x, x′) = Gm

X (x, x′) x, x′ < X, (A10)

Gm
X,Y (x, x′) = Gm

Y (x, x′) x, x′ > Y. (A11)

With these definitions, we obtain the following expression
for the boundary Green’s functions introduced in the main
text:

Gm(x, x′) = �(xm+1 > x > xm)Gm
xm,xm+1

(x, x′), (A12)

where we assumed that neither x0 = −∞ nor xM+1 = ∞. In
these special cases, we get simpler expressions on the basis of
Eq. (A5)

G0(x, x′) = �(x1 − x)G0
x1

(x, x′), x0 = −∞, (A13)

GM (x, x′) = �(x − xM )GM
xM

(x, x′), xM+1 = ∞. (A14)

APPENDIX B: DERIVATION OF THE CONTINUUM LIMIT
IN THE SINGLE-BARRIER MODEL

To derive the continuum limit a → 0 of the lattice Green’s
functions in Eq. (31), we expand GL

−1,−1 and GR
1,1 by two

orders higher than the leading one: This is necessary to
cancel the leading O( 1

a2 ) term in Eq. (16) and to correctly
extract the subleading O( 1

a ) contribution. This expansion is
facilitated by the properties GL

−1,0 = GL
0,−1 = GL

0,0 = 0 and
GR

1,0 = GR
0,1 = GR

0,0 = 0 which are inherent to the boundary
Green’s functions of Eq. (A6). Using these identities as well
as G(0,L)

−1,−1 = G(0,L)
0,0 we have

GL
−1,−1 = G(0,L)

0,0 − G(0,L)
−1,0 − G(0,L)

0,−1 + G(0,L)
0,0

− [G(0,L)
−1,0 − G(0,L)

0,0

][
G(0,L)

0,0

]−1[
G(0,L)

0,−1 − G(0,L)
0,0

]
≈ a2G(0,L)

1 (0−, 0) − a3

2
G(0,L)

11 (0−, 0)

− a2G(0,L)
1 (0+, 0) − a3

2
G(0,L)

22 (0, 0−)

− a3G(0,L)
1 (0−, 0)][G(0,L)(0, 0)]−1G(0,L)

2 (0, 0−).

(B1)

Hereby we identify G(0,L)
n,n′ with G(0,L)(x, x′) via Eq. (30) and

use the subindices 1 and 2 to indicate partial derivatives of the
latter function with respect to the corresponding arguments.

Observing that tm = Am−iaBm
2a2 and

lim
x→0−

d2

dx2
GL(x, x) = −G(0,L)

11 (0−, 0) − G(0,L)
22 (0, 0−)

− 2G(0,L)
1 (0−, 0)[G(0,L)(0, 0)]−1

× G(0,L)
2 (0, 0−), (B2)

and using the jump conditions in Eqs. (42),(43), we obtain

tLGL
−1,−1t†

L = AL − iaBL

2a2
GL

−1,−1
AL + iaBL

2a2

= −AL

2a2
+ 1

8a
AL lim

x→0−

d2

dx2
GL(x, x)AL + O(a0).

(B3)

Analogously we find that

t†
RGR

1,1tR = −AR

2a2
+ 1

8a
AR lim

x→0+

d2

dx2
GR(x, x)AR + O(a0).

(B4)

Collecting together the terms defining D in Eq. (16) we
observe the cancellation of the O( 1

a2 ) terms thanks to the
choice of the a scaling in Eq. (29). The remaining O( 1

a ) terms
give rise to Eq. (34) defining the matrix d . Note that the linear
z dependence is suppressed in this limit since it appears in the
next-to-subleading order of the a expansion.

To approximate the remaining terms GL
n,−1, GR

n,1, GL
−1,n′ ,

and GR
1,n′ in Eq. (15), it suffices to expand them up to the
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leading order which turns out to be O(a2):

GL
n,−1 = GL

n,−1 − GL
n,0 ≈ −a2G(0,L)

2 (x, 0+)

+ a2G(0,L)(x)[G(0,L)(0, 0)]−1G(0,L)
2 (0, 0−)

= −a2
[
G(0,L)

2 (x, 0+) + GL
2 (x, 0−) − G(L,0)

2 (x, 0−)
]
,

(B5)

GR
n,1 = GR

n,1 − GR
n,0 ≈ a2G(0,R)

2 (x, 0−)

− a2G(0,R)(x, 0)[G(0,R)(0, 0)]−1G(0,R)
2 (0, 0+)

= a2
[
G(0,R)

2 (x, 0−) + GR
2 (x, 0+) − G(0,R)

2 (x, 0+)
]
,

(B6)

GL
−1,n′ = GL

−1,n′ − GL
0,n′ ≈ −a2G(0,L)

1 (0+, x′)

+ a2G(0,L)
1 (0−, 0)[G(0,L)(0, 0)]−1G(0,L)(0, x′)

= −a2
[
G(0,L)

1 (0+, x′) + GL
1 (0−, x′) − G(0,L)

1 (0−, x′)
]
,

(B7)

GR
1,n′ = GR

1,n′ − GR
0,n′ ≈ a2G(0,R)

1 (0−, x′)

− a2G(0,R)
1 (0+, 0)[G(0,R)(0, 0)]−1G(0,R)(0, x′)

= a2
[
G(0,R)

1 (0−, x′) + GR
1 (0+, x′) − G(0,R)

1 (0+, x′)
]
.

(B8)

Multiplying them with t†
L , tR, tL, t†

R, respectively, cancels the
factor a2, and we eventually obtain Eqs. (32) and (33).

APPENDIX C: PROOF OF THE RELATION EQ. (53)

To prove Eq. (53) it suffices to show that

ARF ′(0+) − iBR = 1

4
AR lim

x→0+

d2

dx2
GR(x, x)AR, (C1)

ALF ′(0−) − iBL = −1

4
AL lim

x→0−

d2

dx2
GL(x, x)AL. (C2)

First we evaluate

F ′(0+) = [G(0,R)
12 (0+, 0−) − G(0,R)

1 (0+, 0)[G(0,R)(0, 0)]−1

× G(0,R)
2 (0, 0+)

]AR

2
, (C3)

F ′(0−) = −[G(0,L)
12 (0−, 0+) − G(0,L)

1 (0−, 0)[G(0,L)(0, 0)]−1

× G(0,L)
2 (0, 0−)

]AL

2
. (C4)

Using the identities

G(0,R)
12 (0+, 0−) = G(0,R)

1 (0+, 0)[G(0,R)(0, 0)]−1

× G(0,R)
2 (0, 0−), (C5)

G(0,L)
12 (0−, 0+) = G(0,L)

1 (0−, 0)[G(0,L)(0, 0)]−1

× G(0,L)
2 (0, 0+), (C6)

previously derived in Ref. [40] [see Eqs. (B2) and (B3)
therein], as well as the jump conditions in Eqs. (42) and (43),
we simplify

F ′(0+) = −G(0,R)
1 (0+, 0)[G(0,R)(0, 0)]−1, (C7)

F ′(0−) = −G(0,L)
1 (0−, 0)[G(0,L)(0, 0)]−1. (C8)

Next, we evaluate

− 1

8
AR

[
lim

x→0+

d2

dx2
GR(x, x) − lim

x→0−

d2

dx2
GR

0 (x, x)

]
AR

= 1

4
ARG(0,R)

1 (0+, 0)[G(0,R)(0, 0)]−1G(0,R)
2 (0, 0+)AR

− 1

4
ARG(0,R)

1 (0−, 0)[G(0,R)(0, 0)]−1G(0,R)
2 (0, 0−)AR

= 1

4
AR
[
G(0,R)

12 (0+, 0−) − G(0,R)
12 (0−, 0+)

]
AR

− ARF ′(0+) − [G(0,R)(0, 0)]−1 (C9)

and

− 1

8
AL

[
lim

x→0−

d2

dx2
GL(x, x) − lim

x→0+

d2

dx2
GL

0 (x, x)

]
AL

= 1

4
ALG(0,L)

1 (0−, 0)[G(0,L)(0, 0)]−1G(0,L)
2 (0, 0−)AL

− 1

4
ALG(0,L)

1 (0+, 0)[G(0,L)(0, 0)]−1G(0,L)
2 (0, 0+)AL

= 1

4
AL
[
G(0,L)

12 (0−, 0+) − G(0,L)
12 (0+, 0−)

]
AL

+ ALF ′(0−) − [G(0,L)(0, 0)]−1. (C10)

Further using Eq. (51) we establish that

ARF ′(0+) − 1

4
AR lim

x→0+

d2

dx2
GR(x, x)AR

= 1

4
AR
[
G(0,R)

12 (0+, 0−) − G(0,R)
12 (0−, 0+)

]
AR (C11)

and

ALF ′(0−) + 1

4
AL lim

x→0−

d2

dx2
GL(x, x)AL

= 1

4
AL
[
G(0,L)

12 (0+, 0−) − G(0,L)
12 (0−, 0+)

]
AL. (C12)

The relations in Eqs. (C1) and (C2) follow from these by
virtue of the jump condition in the mixed derivatives

1

4
Am
[
G(0,m)

12 (0+, 0−) − G(0,m)
12 (0−, 0+)

]
Am = iBm, (C13)

which is a generalization of the equation (18) in Ref. [40].

APPENDIX D: GREEN’S FUNCTION DERIVATION
FOR THE MULTIBARRIER MODEL

The Green’s function computation in the single-barrier
model presented in Sec. II B can be straightforwardly gen-
eralized to the case of arbitrary M barriers. Defining their
positions at sites n = n1, . . . , nM and assigning the local on-
site potentials Wnm to each of them, we also introduce M + 1
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disjoint subsystems defined on the intervals nm + 1 � n �
nm+1 − 1 and describe them by the Green’s functions Gm.

Switching on the coupling
∑M

m=1 vm between the disjoint
subsystems via the hoppings through the barrier sites nm,

vm = −|nm〉tnm−1〈nm − 1| − |nm − 1〉t†
nm−1〈nm|

− |nm + 1〉tnm〈nm| − |nm〉t†
nm

〈nm + 1|, (D1)

we set up the Dyson equation treating v′
ms as a perturbation. It

has the form

Gn,n′ = G{m}
n,n′ −

M∑
m′=1

(
Gm′−1

n,nm′ −1t†
nm′ −1 + Gm′

n,nm′ +1tnm′
)
Gnm′ ,n′

−
M∑

m′=1

δn,nm′ g
m′
nm′ ,nm′

(
tnm′−1Gnm′−1,n′ + t†

nm′ Gnm′ +1,n′
)

(D2)

generalizing Eq. (14). Hereby G{m}
n,n′ contains not only all

Green’s functions Gm of the finite-ranged disjoint subsystems,
but also those gm

n,n′ = δn,nm δn′,nm
z−Wnm

of the barrier sites nm.
Below we find the solution of Eq. (D2) following the same

routine as in Sec. II B.
Introducing the M-component vectors

Ḡ (±)
m′ = Gnm′±1,n′ , (D3)

Ḡ (0)
m′ = Gnm′ ,n′ , (D4)

we first derive the equation

⎛
⎜⎝
Ḡ (+)

Ḡ (−)

Ḡ (0)

⎞
⎟⎠ =

⎛
⎝ 1 0 −T +,0

0 1 −T −,0

−T 0,+ −T 0,− 1

⎞
⎠

−1
⎛
⎜⎜⎝
Ḡ (+)

disj

Ḡ (−)
disj

Ḡ (0)
disj

⎞
⎟⎟⎠, (D5)

where

Ḡ (+)
disj,m′ = Gm′

nm′ +1,n′ , (D6)

Ḡ (−)
disj,m′ = Gm′−1

nm′ −1,n′ , (D7)

Ḡ (0)
disj,m′ = gm′

nm′ ,nm′ δnm′ ,n′ , (D8)

and

T 0,+
m,m′ = −δm,m′gm′

nm′ ,nm′ t
†
nm′ , (D9)

T 0,−
m,m′ = −δm,m′gm′

nm′ ,nm′ tnm′ −1, (D10)

T +,0
m,m′ = −δm,m′−1Gnm′ −1

nm′−1+1,nm′ −1t†
nm′ −1

− δm,m′Gm′
nm′+1,nm′ +1tnm′ , (D11)

T −,0
m,m′ = −δm,m′Gm′−1

nm′ −1,nm′ −1t†
nm′ −1

− δm,m′+1Gm′
nm′+1−1,nm′ +1tnm′ . (D12)

Finding explicitly the solutions for Eqs. (D3), (D4)

Gnm,n′ = −
M∑

m′=1

(D−1)m,m′ F̄m′,n′ , (D13)

gm
nm,nm

(
tnm−1Gnm−1,n′ + t†

nm
Gnm+1,n′

)
= gm

nm,nm
δnm,n′ +

M∑
m′=1

(D−1)m,m′ F̄m′,n′ , (D14)

we insert them into Eq. (D2). Thereby we establish the com-
posite Green’s function of the whole system

Gn,n′ =
M∑

m=0

Gm
n,n′ +

M∑
m,m′=1

Fn,m(D−1)m,m′ F̄m′,n′ , (D15)

where

Dm,m′ = δm,m′
(
z − Wnm

− tnm−1Gm−1
nm−1,nm−1t†

nm−1 − t†
nm

Gm
nm+1,nm+1tnm

)
− δm,m′+1tnm−1Gm−1

nm−1,nm−1+1tnm−1

− δm,m′−1t†
nm

Gm
nm+1,nm+1−1t†

nm+1−1, (D16)

and

Fn,m = −δn,nm + Gm−1
n,nm−1t†

nm−1 + Gm
n,nm+1tnm , (D17)

F̄m′,n′ = −δnm′ ,n′ + tnm′ −1Gm′−1
nm′−1,n′ + t†

nm′ G
m′
nm′ +1,n′ . (D18)

The formula in Eq. (D15) is a multibarrier generalization
of the single-barrier formula of Eq. (15). Observing that

∑
n

F̄m′,nFn,m = ∂

∂ω
Dm′,m, (D19)

we also express the global DOS in the multibarrier setup by
the analogy with the single-barrier formula of Eq. (25) as

ρ(ω) =
M∑

m=0

ρm(ω) − 1

π
Im

∂

∂ω
ln det D(ω + i0+). (D20)

To take the continuum limit of Dm,m′ we approximate in
Eq. (D16) [cf. Eq. (29)]

Wnm ≈ Am−1 + Am

2a2
+ Um

a
, (D21)

and

tnm−1Gm−1
nm−1,nm−1t†

nm−1

≈ −Am−1

2a2
+ 1

8a
Am−1 lim

x→x−
m

d2

dx2
Gm−1(x, x)Am−1,

(D22)

t†
nm

Gm
nm+1,nm+1tnm

≈ −Am

2a2
+ 1

8a
Am lim

x→x+
m

d2

dx2
Gm(x, x)Am, (D23)
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analogously to the single-barrier case discussed in Ap-
pendix B. In addition, there are two new objects in Eq. (D16),
which are approximated by

tnm−1Gm−1
nm−1,nm−1+1tnm−1 ≈ − 1

4a
Am−1Gm−1

12 (x−
m , x+

m−1)Am−1,

(D24)

t†
nm

Gm
nm+1,nm+1−1t†

nm+1−1 ≈ − 1

4a
AmGm

12(x+
m , x−

m+1)Am.

(D25)

Altogether these terms provide the continuum limit of D
in Eq. (D16) giving rise to the expressions in Eqs. (58)–
(60) defining the matrix d = lima→0 a D in the multibarrier
case.

A derivation of the continuum limit of Eqs. (D17) and
(D18) employs the same type of the a expansion as in
Eqs. (B5)–(B8). It leads us to the final result in Eqs. (61),
(62) analogous to the result of Eqs. (32) and (33) of the
single-barrier case.

APPENDIX E: SIMPLIFICATION OF THE GREEN’S FUNCTION IN THE DOUBLE-BARRIER CASE

On the basis of expressions in Eqs. (A5) and (A9), we obtain

GC
0,W (x, x′) = g(x − x′) − g(x){g(0) − g(−W )[g(0)]−1g(W )}−1{g(−x′) − g(−W )[g(0)]−1g(W − x′)}

− g(x − W ){g(0) − g(W )[g(0)]−1g(−W )}−1{g(W − x′) − g(W )[g(0)]−1g(−x′)}, (E1)

in terms of the translationally invariant counterpart
G(C,0)(x, 0) ≡ g(x). According to Eq. (A12), the boundary
Green’s function of the central region is then given by
GC (x, x′) = �(W > x > 0)GC

0,W (x, x′).
Taking in account that GC

0,W (x, x′) identically vanishes
when x and x′ belong to different spatial regions [either
(−∞, 0) or (0,W ) or (W,∞)], we get the identities

∂2

∂x∂x′ G
C
0,W (0−,W +) = ∂2

∂x∂x′ G
C
0,W (0−,W −) (E2)

= ∂2

∂x∂x′ G
C
0,W (0+,W +) = 0. (E3)

They allow us to replace

1

4
ACGC

12(0+,W −)AC

= 1

4
AC

[
∂2

∂x∂x′ G
C
0,W (0+,W −) − ∂2

∂x∂x′ G
C
0,W (0−,W −)

+ ∂2

∂x∂x′ G
C
0,W (0−,W +) − ∂2

∂x∂x′ G
C
0,W (0+,W +)

]
AC .

(E4)

After the lengthy calculation using Eqs. (E1), (42), and (43),
we obtain

1
4ACGC

12(0+,W −)AC = {g(W ) − g(0)[g(−W )]−1g(0)}−1.

(E5)

Analogously we deduce
1
4ACGC

12(W −, 0+)AC = {g(−W ) − g(0)[g(W )]−1g(0)}−1.

(E6)

To derive

− 1

8
AC

[
lim

x→0−

d2

dx2
GC

0 (x, x) + lim
x→0+

d2

dx2
GC (x, x)

]
AC

= {g(0) − g(−W )[g(0)]−1g(W )}−1, (E7)

we use the identities

∂2

∂x∂x′ G
C
0,W (0+, 0−) = ∂2

∂x∂x′ G
C
0,W (0−, 0+) = 0 (E8)

to replace

− 1

8
AC

[
lim

x→0−

d2

dx2
GC

0 (x, x) + lim
x→0+

d2

dx2
GC (x, x)

]
AC

= −1

8
AC

[
lim

x→0−

d2

dx2
GC

0,W (x, x) + lim
x→0+

d2

dx2
GC

0,W (x, x)

−2
∂2

∂x∂x′ G
C
0,W (0+, 0−) − 2

∂2

∂x∂x′ G
C
0,W (0+, 0−)

]
AC .

(E9)

After the lengthy calculation using Eqs. (E1), (42), and (43),
we obtain Eq. (E7).

Analogously we deduce

− 1

8
AC

[
lim

x→W +

d2

dx2
GC

W (x, x) + lim
x→W −

d2

dx2
GC (x, x)

]
AC

= {g(0) − g(W )[g(0)]−1g(−W )
}−1

. (E10)

APPENDIX F: JOSEPHSON SYSTEM

1. Position-space Green’s functions of bulk s-wave
superconductors

The momentum-space Green’s functions of the bulk s-
wave superconductors are equal at ϕ = 0 to

G(0)
k (z) = 1

z2 − (h(0)
k

)2 − �2

(
z + h(0)

k �0

�0 z − h(0)
k

)
, (F1)

where h(0)
k = k2

2m − μ.
For the evaluation of

G(0)(x, x′) =
∫ ∞

−∞

dk

2π
eik(x−x′ )G(0)

k (z), (F2)
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we note the following poles of G(0)
k (z)

k1,± = ±

√√√√
2mμ + 2mz

√
1 −

(
�0

z

)2

, (F3)

k2,± = ∓

√√√√
2mμ − 2mz

√
1 −

(
�0

z

)2

. (F4)

Considering Im(z) > 0 and deforming appropriately the inte-
gration contour in the complex k plane, we obtain by means
of the residue theorem

G(0)(x, x′) = − imeik1,+|x−x′|

2k1,+
[eτxχ + τz] (F5)

+ imeik2,+|x−x′|

2k2,+
[eτxχ − τz], (F6)

where eτxχ = 1+τx tanh χ√
1−tanh2 χ

and tanh χ = �0
z .

For Im(z) < 0, it is necessary to replace k1,+ → k1,− and
k2,+ → k2,− in the above equations.

Next, we evaluate

G(0)(0, 0) = − im

k1,+k2,+
[k(+)τz − k(−)eτxχ ], (F7)

[G(0)(0, 0)]−1 = −k(+)τz + k(−)e−τxχ

im
, (F8)

where

k(±) = k1,+ ± k2,+
2

sgn Im(z), (F9)

as well as

G(0)
1 (0±, 0) = G(0)

2 (0, 0±) = ±mτz. (F10)

With this in hands and noting

G(0,λ)(x, x′) = UλG(0)(x, x′)U †
λ , Uλ = e

i
4 τzλϕ, (F11)

one can show on the basis of Eqs. (54)–(56) that the matrix d
of the Josephson system is given by Eq. (95).

2. Local Coulomb interaction
in the Hartree-Fock approximation

To compute the expectation values 〈ψ↓(0)ψ↑(0)〉 and
〈ψ†

↑(0)ψ†
↓(0)〉 with respect to the Hartree-Fock Hamiltonian,

we define the following imaginary-time Matsubara Green’s
functions:

GMat
γ δ;U (x, x′; τ ) = −〈Tτ 	̂γ (x, τ )	̂†

δ (x′, 0)〉 (F12)

= 1

β

∑
iωn

e−iωnτ Gγ δ;U (x, x′; iωn), (F13)

where 	̂1(x) = ψ̂↑(x) and 	̂2(x) = ψ̂
†
↓(x). In this terms,

〈ψ↓(0)ψ↑(0)〉 = GMat
12,U (0, 0; τ = 0−)

= 1

2β

∑
iωn

eiωn0+
tr{[dU (iωn)]−1τx}, (F14)

〈ψ†
↑(0)ψ†

↓(0)〉 = GMat
21,U (0, 0; τ = 0−)

= 1

2β

∑
iωn

eiωn0+
tr{[dU (iωn)]−1τx}. (F15)

The function [dU (z)]−1 = [d (z) − �locτx]−1 has the fol-
lowing off-diagonal components

1

2
tr {[dU (z)]−1τx} = − m

kF

⎛
⎜⎝ k(−)

kF

i�0
z cos ϕ

2√
1 − (�0

z

)2 + �̄loc

⎞
⎟⎠ 1

k(−) 2

k2
F

1−
(

�0
z

)2 +
⎛
⎝ k(−)

kF

i�0
z cos ϕ

2√
1−
(

�0
z

)2
+ �̄loc

⎞
⎠

2

+ (V̄0 + k(+)

ikF

)2
, (F16)

where V̄0 = mV0
kF

and �̄loc = m�loc
kF

.
At zero temperature, the Matsubara sum in Eq. (F15)

turns into the imaginary-frequency integral. The integrand
∝ �0 cos ϕ

2 in Eq. (F16) decays sufficiently fast at high fre-
quencies, so that the convergence factor eiω0+

for it may be
omitted. The other integrand ∝ �̄loc does require the conver-
gence factor, which is needed to handle the terms ∼1/z at
high frequencies. Collecting all contributions we obtain the
following self-consistency equation

�̄loc = −u
∫ ∞

0
dω̄

k̄(−) cos ϕ

2√
ω̄2 + 1

R(ω̄), (F17)

− u�̄loc

∫ ∞

0
dω̄[R(ω̄) − R0(ω̄)] (F18)

− u�̄loc

∫ ∞

0
dω̄R0(ω̄) cos(ω̄0+), (F19)

where

u = Um2�0

πk2
F

(F20)

is a dimensionless interaction parameter, and

R(ω̄) = 1

k̄(−) 2ω̄2

ω̄2+1 +
(

k̄(−) cos ϕ

2√
ω̄2+1

+ �̄loc

)2
+ (V̄0 − ik̄(+)

)2 ,

(F21)

k̄(±) =
√

1 + i �0
μ

√
ω̄2 + 1 ∓

√
1 − i �0

μ

√
ω̄2 + 1

2
, (F22)
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R0(ω̄) = 1

k̄(−) 2
0 + (V̄0 − ik̄(+)

0 )2
, (F23)

k̄(±)
0 =

√
1 + i �0

μ
ω̄ ∓

√
1 − i �0

μ
ω̄

2
. (F24)

To perform the integral in Eq. (F19), we rotate the integra-
tion contour to the real axis

u�̄loc i
∫ i∞

i0
dz̄R0(−iz̄)

ez̄0+ + e−z̄0+

2

= − i

2
u�̄loc

∫ ∞

0
dω̄ [R0(iω̄ + 0+) − R0(−iω̄ + 0+)]

(F25)

= −u�̄loc

∫ ∞

μ/�0

dω̄ e−ω̄0+
√

�0
μ

ω̄ + 1(√
�0
μ

ω̄ − 1 + V̄0
)(

�0
μ

ω̄ + 1 + V̄ 2
0

) .
(F26)

The resulting integral has the ultraviolet logarithmic diver-
gence which is not cut off at the scale μ. The origin of this
divergence is rooted in the ultralocal form of the Coulomb
interaction in our model, and for the integral’s regularization,
it is necessary to introduce the cutoff scale ωc � μ, whose
inverse vF /ωc captures the microscopic length scale of the
interaction. Thus the contribution in Eq. (F19), is estimated by
−u�̄loc

μ

�0
ln ωc

�0
. This behavior signals the necessity to refine

the model’s consideration, e.g., by resorting to renormaliza-
tion group methods [46].

In turn, in the bare perturbation theory, the local supercon-
ducting order parameter is given by the convergent integral

�̄loc ≈ −u
∫ ∞

0
dω̄

k̄(−) cos ϕ

2√
ω̄2 + 1

R(ω̄)

∣∣∣∣
�̄loc=0

. (F27)

It is remarkable that in the Andreev limit μ � �0, it also
features the logarithmic dependence of the high energy
scale μ:

�̄loc ≈ −Du cos
ϕ

2
ln

μ

�0
, D = 1

1 + V̄ 2
0

. (F28)

In addition, we provide the zero-temperature limit of the
JC formula in Eq. (120)

J (ϕ) = 2�0 sin ϕ

2

�0

×
∫ ∞

0
dω̄

(
k̄(−) cos ϕ

2√
ω̄2 + 1

+ �̄loc

)
R(ω̄)k̄(−)

√
ω̄2 + 1

. (F29)

APPENDIX G: MAJORANA JUNCTION

In this Appendix, we evaluate bulk Green’s functions and
their spatial derivatives which are needed for constructing
the d matrix in the Majorana junction model (both in the
short W → 0 and finite W cases). The derived expressions are
used for plotting energy- and current-phase relations in the
numerical examples presented in the main text.

1. Short junction

The bulk Green’s function g(x) occurring in Eq. (125) is
defined by

g(x) =
∫

dk

2π
eikxgk, (G1)

where

gk =
(

a(+)
k −�0

−�0 a(−)
k

)−1

, (G2)

a(±)
k = z ∓ h(0)

k ∓ αkσz + Bσx, (G3)

h(0)
k = k2

2m
− μ. (G4)

The inverse in Eq. (G2) may be written as

gk = Pk

Qk
= 1

Qk

(
a(−)

k A(+)
k �0A(−)

k

�0A(+)
k a(+)

k A(−)
k

)
, (G5)

where

A(+)
k = adj

[
a(+)

k a(−)
k − �2

0

]
= z2 − �2

0 + B2 − (h(0)
k

)2 − α2k2

− 2zBσx + 2αkh(0)
k σz + 2iBαkσy, (G6)

A(−)
k = adj

[
a(+)

k a(−)
k − �2

0

]
= z2 − �2

0 + B2 − (h(0)
k

)2 − α2k2

− 2zBσx + 2αkh(0)
k σz − 2iBαkσy, (G7)

and

Qk = det
[
a(+)

k a(−)
k − �2

0

]
= det

[
a(−)

k a(+)
k − �2

0

]
= [z2 − �2

0 + B2 − (h(0)
k )2 − α2k2]2

− 4z2B2 − 4α2k2
(
h(0)

k

)2 + 4α2B2k2. (G8)

Setting z = ω + i0+, we find on the basis of Eq. (A4)

g(x) = i�(x)
4∑

s=1

(2m)4eiks,+x∏
s′ �=s(ks,+ − ks′,+)

∏
s′ (ks,+ − ks′,−)

(
a(−)

k A(+)
k �0A(−)

k

�0A(+)
k a(+)

k A(−)
k

)∣∣∣∣∣
k=ks,+

− i�(−x)
4∑

s=1

(2m)4eiks,−x∏
s′ (ks,− − ks′,+)

∏
s′ �=s(ks,− − ks′,−)

(
a(−)

k A(+)
k �0A(−)

k

�0A(+)
k a(+)

k A(−)
k

)∣∣∣∣∣
k=ks,−

, (G9)

where ks,+ and ks,− are the roots of the equation Qk = 0 with positive and imaginary parts, respectively.
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The expression in Eq. (G9) allows one to easily establish

g′(0+) = −
4∑

s=1

(2m)4ks,+
det
∏

s′ �=s(ks,+ − ks′,+)
∏

s′ (ks,+ − ks′,−)

(
a(−)

k A(+)
k �0A(−)

k

�0A(+)
k a(+)

k A(−)
k

)∣∣∣∣∣
k=ks,+

, (G10)

g′(0−) =
4∑

s=1

(2m)4ks,−∏
s′ (ks,− − ks′,+)

∏
s′ �=s(ks,− − ks′,−)

(
a(−)

k A(+)
k �0A(−)

k

�0A(+)
k a(+)

k A(−)
k

)∣∣∣∣∣
k=ks,−

. (G11)

2. Expansion in the spin-orbit dominated regime

To reproduce the results of Ref. [33] in the spin-orbit dominated regime, we perform the expansion of Eq. (G9) to the leading
order 1/α. This gives

g(x) ≈ eiC0|x|/αe−i2mαxσz

2iα

[
z + �0τx

C0
− sgn (x)τzσz

]
+ eiC++|x|/α

2iα

[
z − (B − �0)σx

C++
+ sgn (x)τzσz

]
1 + τxσx

2

+ eiC+−|x|/α

2iα

[
z − (B + �0)σx

C+−
+ sgn (x)τzσz

]
1 − τxσx

2
, (G12)

where

C0 = z

√
1 − �2

0

z2
, (G13)

Cτσ = z

√
1 − (σB − τ�0)2

z2
, τ, σ = ±. (G14)

Next, we establish the quantities relevant for the calculation
of the d matrix:

g(0±) = g(0) = 1

2iα

∑
τ=±

∑
σ=±

ḡτσ

1 + ττx

2

1 + σσx

2
, (G15)

1

m
g′(0±) = ±τz − z + τx�0

C0
σz, (G16)

where

ḡτσ = z + τ�0

C0
+ z − σB + τ�0

Cτσ

. (G17)

Inserting these results at z = ω + i0+ into Eq. (126), after
a simple albeit tedious calculation we recover the equations
for the subgap bound states at the absent contact potential
(V0 = 0)

cos2 ϕ

2
= ω2 + �2

0 − B2 + C++C+−
ω2 + �2

0 − B2 − C++C+−
, (G18)

cos2 ϕ

2
= ω2

�2
0

, (G19)

previously reported in Ref. [33].
We note in passing that for an isolated Majorana wire

a boundary Green’s function of the form discussed in Ap-
pendix A 2 suggests the following equation for the bound
states:

det g(0) = 1

(2α)4

∏
τ,σ

ḡτσ = 0, (G20)

which factorizes into the four equations ḡτσ = 0 for τ,

σ = ±. The Majorana zero mode ω = 0 appears at B > �0

as a solution satisfying the two equations ḡ++ = ḡ−− = 0.

3. Long junction

In the case of the long junction we, in addition, need the
bulk position space Green’s function of the normal central
region. Setting �0 = 0 in Eq. (G2), we represent it as

gC
k =

∑
τ=±

adj a(τ )
k

det a(τ )
k

1 + ττz

2
=
∑
τ=±

g(τ )
k

1 + ττz

2
, (G21)

where

adj a(τ )
k = z − τh(0)

k + ταkσz − Bσx, (G22)

det a(τ )
k = [z − τh(0)

k

]2 − α2k2 − B2. (G23)

It follows

gC (x) =
∑
τ=±

g(τ )(x)
1 + ττz

2
, g(τ )(x) =

∫
dk

2π
eikxg(τ )

k .

(G24)

By the virtue of Eq. (A4), we find for z = ω + i0+

g(τ )(x) = − (2mα)2

k2
1,+ − k2

2,+

2∑
s=1

(−1)s+1 eiks,+|x|

2iα

×
[

ω − τh(0)
ks,+ − Bσx

αks,+
+ sgn(x)τσz

]
, (G25)

where ks,+ = −ks,− are the roots of the bi-quadratic equation
det a(τ )

k = 0 with Im ks,+ > 0.
We consequently find

g(τ )(0±) = − (2mα)2

k2
1,+ − k2

2,+

2∑
s=1

(−1)s+1

2iα

ω − τh(0)
ks,+ − Bσx

αks,+
(G26)
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and

g(τ ) ′
(0±) = mτ

[
±1 − 2mασz

k1,+ + k2,+

]
, (G27)

from which the LR/L→C functions in Eqs. (72) and (73) may
be deduced. Hence the d matrix for the model of Sec. III C
may be constructed on the basis of Eqs. (67), (70), and (71).

It is worth noting the useful formula

∂ϕd = i

4

(
[τz,LL] 0

0 [τz,LR]

)
, (G28)

which is applicable for the JC calculation by means of
Eqs. (88)–(91).
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