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Motivated by the recent discovery of an intermediate quantum critical phase between the antiferromagnetic
order and the Fermi liquid in the frustrated Kondo lattice CePdAl, we study here a Kondo-Heisenberg chain
with frustrated J1-J2 XXZ interactions among local spins using the density matrix renormalization group method.
Our simulations reveal a global phase diagram with rich ground states including the antiferromagnetic order, the
valence-bond-solid and bond-order-wave orders, the pair density wave state, the uniform superconducting state,
and the Luttinger liquid state. We show that both the pair density wave and uniform superconductivity belong
to the family of Luther-Emery liquids and may arise from pair instability of an intermediate quantum critical
phase with medium Fermi volume in the presence of strong quantum fluctuations, while the Luttinger liquid has
a large Fermi volume. Our work provides a comprehensive picture of the frustrated Kondo lattice physics at one
dimension, and suggests a deep connection between the pair density wave, the unconventional superconductivity,
and the non-Fermi liquid quantum critical phase.
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I. INTRODUCTION

The competition between Kondo screening and the
Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction un-
derlies the rich physics of Kondo lattice systems [1,2]. Near
the quantum critical point (QCP) [3] from an antiferro-
magnetic (AFM) ground state to a Fermi liquid, anomalous
non-Fermi-liquid (NFL) properties and unconventional super-
conductivity (SC) often emerge, as have been observed in
YbRh2Si2 [4,5], CeRhIn5 [6], CeCu2Si2 [7], and CeCu6−xAux

[8]. Without frustration, the AFM QCP is believed to coincide
with a sharp transition from small to large electron Fermi
surfaces (FS) [5,9–12], while in frustrated Kondo lattices such
as CePdAl [13,14], the QCP was reported to expand into a
finite region of NFL ground state. This quantum critical phase
may arise from strong quantum fluctuations due to geometric
or interaction frustrations or low dimensionality [2,15], but
its nature is not yet clarified. Previous theories proposed a
weak-coupling state consisting of almost decoupled spinons
and electrons with a small electron FS [16], while recent
work found a strong-coupling state with well-defined holon
excitations as composite objects of spinons and holes and
an electron FS of medium size [17,18]. In the latter theory,
it has been proposed that the intermediate quantum critical
phase could become unstable towards other exotic orders such
as holon superconductivity, pair density wave (PDW), or hy-
bridization wave. Investigations using more accurate methods
are needed to settle this debate.

*yifeng@iphy.ac.cn

However, numerical calculations of two-dimensional (2D)
frustrated Kondo lattices are difficult. Quantum Monte Carlo
simulations often suffer from severe negative sign problems
[19,20]. To proceed, we take the 1D Kondo lattice as a starting
point, which may be solved using the well-developed density
matrix renormalization group (DMRG) approach [21–23] and
help to illuminate the basic physics of the 2D systems un-
der doping [24]. DMRG has been extensively applied to 1D
Kondo lattice systems and revealed many important features
such as an intermediate ferromagnetic phase for doping less
than 0.5 [25], charge density wave (CDW) in doped Kondo
chain [26], the dimerization [27–29] and bond-order-wave
(BOW) order [29] at quarter filling, and possible PDW state
[30–34]. It has also confirmed the existence of a small electron
FS with the Fermi wave vector kS

F = n
2π (n is the density

of conduction electrons) at weak coupling and a large FS
with kL

F = 1+n
2 π at strong Kondo coupling [23,25,35–41], but

whether or not there exits an intermediate quantum critical
phase and what its instability might lead to have not been well
explored.

In this work, we study this issue based on the 1D
Kondo-Heisenberg model with frustrated J1-J2 XXZ interac-
tions using the infinite DMRG method. The nearest (J1) and
next-to-nearest (J2) Heisenberg interactions are included to
account for the magnetic frustration characterized by the pa-
rameter Q = J2/J1. A global phase diagram is constructed
and reveals unambiguous evidences for intermediate strong-
coupling phases over a wide parameter region. The ground
states are found to be governed by pair correlations, causing
a PDW state near the AFM phase boundary and a uniform
SC state at larger Kondo coupling JK. We show that both the
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PDW and SC phases belong to Luther-Emery liquids and are
eventually suppressed to enter a Luttinger liquid (LL) with a
large Fermi volume as JK increases. Our work reveals a deep
connection between the pair density wave, the unconventional
superconductivity, and the non-Fermi liquid quantum critical
phase.

The paper is organized as follows. Section II introduces
the model and the DMRG method used in our calculations.
Section III gives a typical Q-JK phase diagram for n = 0.8
and J1 = 0.6, showing all competing ground states including
AFM, valence bond solid (VBS), BOW, PDW, SC, LL, and
charge density wave (CDW) orders. In Sec. IV, we clarify the
Fermi volume evolution over the phase diagram and attribute
the PDW and SC states to the pair instability of an interme-
diate quantum critical phase with a partially enlarged Fermi
volume. The effects of electron density variation on the phase
diagram and the Fermi volume are also discussed.

II. MODEL

We start with the Kondo-Heisenberg Hamiltonian,

H = − t
∑

〈i j〉,σ
(c†

i,σ c j,σ + H.c.) + JK

∑

i

si · Si

+ J1

∑

〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j + �zS

z
i Sz

j

)

+ J2

∑

〈〈i j〉〉

(
Sx

i Sx
j + Sy

i Sy
j + �zS

z
i Sz

j

)
, (1)

where c†
i,σ creates an electron of spin σ at site i, t is the

nearest-neighbor hopping amplitude, and JK is the Kondo
coupling between the local spin Si and the conduction electron
spin si = ∑

αβ c†
i,α

�σαβ

2 ci,β , where �σ are the Pauli matrices. The
Heisenberg exchange interactions J1 and J2 are both posi-
tive and describe AFM couplings between nearest-neighbor
and next-nearest-neighbor local spins, respectively. Their ratio
Q = J2/J1 reflects the strength of magnetic frustration. �z

gives the anisotropy of the exchange interactions along z
axis in the spin space and is set to 2 throughout this work.
Hereafter, t is set to unity.

An intuitive illustration of the above frustrated Kondo-
Heisenberg model (FKHM) is shown in Fig. 1(a). We study
the model using the infinite DMRG (iDMRG) method [21,42–
45], which is a variation method based on infinite matrix
product states consisting of unit cells arranged along one
dimension periodically [43,46,47]. It is suitable for accurately
determining the Luttinger parameters without being affected
by the boundary effect. To account for possible periodicity
of the ordered states (AFM, VBS, CDW, PDW) and spin
correlations, we use different unit-cell sizes Lu = 20, 10, 10,
8 for the electron density n = 0.9, 0.8, 0.6, 0.5, respectively,
and ensure the consistency of the unit-cell sizes by checking
with the finite-size DMRG. Since the total electron number∑

i,σ c†
i,σ ci,σ and the z-component of the total spins

∑
i(s

z
i +

Sz
i ) are both conserved, we use the U(1) × U(1) symmetry

to accelerate the computation. The virtual bond dimension is
chosen to be χ = 4000 in most cases, with which we can
achieve a typical truncation error smaller than 4 × 10−6. For
more challenging situations, a larger χ = 8000 is used. To

t J1

J

J

(a)

(b)

FIG. 1. (a) Illustration of the 1D Kondo-Heisenberg model with
frustrated nearest-neighbor and next-nearest-neighbor spin interac-
tions. The local spins (red arrows) and the conduction electrons
(blue balls with arrows) are coupled through the Kondo coupling
JK. (b) Typical phase diagram on Q-JK plane based on calculations
for J1 = 0.6 and n = 0.8. The insets illustrate the behaviors of the
pair correlation ��(x) in PDW and SC states. The yellow dotted
line separates the regions with medium (left) and large (right) Fermi
volume, which is small in AFM, PDW, and VBS + BOW regions.

ensure the convergence, we perform typically 80 to 160
sweeps for each calculation. More details of our simulations
can be found in the Appendix.

III. THE GROUND-STATE PHASE DIAGRAM

A typical phase diagram is given in Fig. 1(b) based on
our calculations for J1 = 0.6 and n = 0.8. The corresponding
order parameters or characteristics are summarized in Table I.
For small JK, we obtain an AFM phase at small Q and a VBS
phase coexisting with a BOW order at large Q. There is a

TABLE I. Characteristics of all phases in the Q-JK phase diagram
of the frustrated Kondo-Heisenberg model. The last column gives the
definition of the order parameters in the main text.

Phase Characteristic Definition

AFM OAFM Eq. (2)
VBS OVBS Eq. (3)
+BOW OBOW Eq. (4)

1. |��(x)| ∝ |x|−K� and K� < 2 Eq. (5)
LEL 2. �n(x) ∝ |x|−Kn Eq. (7)

3. K� ∗ Kn � 1
4. |�S (x)| ∝ e−�S x and �S > 0 Eq. (6)

PDW Belongs to LEL and ��(q = π ) dominates
SC Belongs to LEL and ��(q = 0) dominates

1. Quasilong ranged �S (x) or �S � 0 Eq. (6)
LL 2. Short ranged ��(x) or K� > 2.0 Eq. (5)
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deconfined quantum critical point (DQCP) between the AFM
and VBS/BOW phases that persists up to JK ≈ 1.0 and then
splits into an intermediate quantum critical region showing
PDW order with a Fermi wave vector consistent with that
of noninteracting conduction electrons. Further increasing JK

suppresses the PDW order and induces a first-order transition
to a uniform SC phase accompanied with a jump in the Fermi
wave vector. In the SC state, the Fermi volume is not sharply
defined. It looks like to have a medium size and evolves
gradually to the large Fermi volume for sufficiently large JK

(the yellow dotted line). Both the PDW and SC phases show
characteristic properties of the Luther-Emery liquid. When the
SC is destroyed at even larger JK, the system enters a Luttinger
liquid (LL) phase [48,49]. The continuous evolution of the
Fermi volume implies an intermediate phase in contrast to the
weak-coupling Kondo breakdown scenario, which predicts a
sharp transition from small to large Fermi volumes. The PDW
and SC states cover the whole intermediate region and arise
from the electronic instability due to AFM fluctuations. The
pair correlations also penetrate into the AFM phase and the
region of large Fermi volume.

A. AFM and VBS/BOW

We discuss first the AFM and VBS/BOW phases. For
JK = 0, the conduction electrons and local spins are decou-
pled. The pure J1-J2 spin model has been extensively studied
[50,51] and, for �z > 1, has an AFM ground state at small Q.
Increasing Q beyond a critical value Qc drives the system into
a VBS phase. Numerically, the two phases can be identified
by the following order parameters:

OAFM = 2

L

∑

l

(−1)l
〈
Sz

l

〉
, (2)

OVBS = 2

L

∑

l

(−1)l〈Sl · Sl+1〉. (3)

Their results are plotted in Fig. 2(a) for several values of Q
as functions of JK. At Q = 0, the AFM order is most stable.
Its order parameter OAFM is reduced with increasing Kondo
coupling and vanishes continuously at the QCP JK = 1.7.
Introducing frustration suppresses the AFM order and drives
the QCP to a smaller JK = 1.0 at Q = 0.3. The AFM order
persistes up to Qc � 0.32 for JK = 0, beyond which it is taken
over by the VBS.

The VBS phase contains some peculiar feature that re-
quires careful examination. As shown in Fig. 2(a), it first
appears at large JK after the AFM is completely suppressed
for Q = 0.3. For Q = 0.333, two separate regions with finite
VBS order parameters are observed. For clarity, we refer them
as the left and right VBS, respectively. The left one exists for
JK < 1.1 and corresponds to the VBS state of the pure spin
model in the decoupling limit. It arises from the J1-J2 inter-
action among local spins and its order parameter decreases
continuously as the Kondo coupling increases to JK ≈ 1.1. By
contrast, the right VBS is only observed for a small range of
1.85 < JK < 2.1 and vanishes much faster than the left one
with increasing JK, which must have a distinct origin. We
will see that it is actually inherited from n = 0.5. For larger

FIG. 2. Evolution of (a) OAFM and OVBS and (b) OBOW with the
Kondo coupling JK. (c) Evolution of OAFM and OVBS with the frus-
tration parameter Q. In panel (b), OBOW at Q = 0.333 is magnified
5 times for JK < 1.2. Other parameters are J1 = 0.6 and n = 0.8.

Q = 0.5, the two regions merge together into a single region
as shown in Fig. 1(b).

The VBS order is always accompanied by a BOW or-
der of itinerant electrons for JK > 0, which characterizes the
ordering of electron pairs on neighboring sites and may be
quantified by [29,52,53]

OBOW = 1

L

∑

lσ

(−1)l〈c†
l,σ cl+1,σ 〉. (4)

The numerical results are plotted in Fig. 2(b). We immediately
draw two conclusions. First, direct comparison with Fig. 2(a)
indicates that the BOW order always coexists with the VBS
order. Second, for fixed Q, the order parameter OBOW of the
right VBS phase can be much larger than that of the left one.
These two observations together suggest that the BOW order
arises from the VBS order of local spins through the Kondo
coupling. The larger Kondo coupling in the right VBS/BOW
region may be responsible for the much larger magnitude of
the BOW order parameter, with the VBS order parameters
being of similar magnitude in both regions.

014103-3



CHEN, WANG, AND YANG PHYSICAL REVIEW B 109, 014103 (2024)

FIG. 3. Real space (left) and momentum space (right) variation
of (a), (b) the singlet-pair correlation ��, (c), (d) the spin correlation
�S , and (e), (f) the charge density correlation �n for JK = 3.25, 3.3,
and 5.0 at Q = 0. The dashed lines represent the power-law fitting.
Other parameters are J1 = 0.6 and n = 0.8.

The AFM and VBS phases break different symmetries and
their quantum phase transition (QPT) at JK = 0 has recently
been shown to be beyond the conventional Landau-Ginzburg
theory [54–57]. For finite JK, we may study both the effect
of frustration Q on the deconfined QCP and its stability when
coupled to a Fermi sea [58]. This is shown in Fig. 2(c), where
we plot the AFM and VBS order parameters as functions
of the frustration parameter Q for two different values of
JK. Within the limit of our numerical accuracy, the QCP re-
mains stable even for JK � 0.95, with the critical Qc � 0.32
only slightly reduced than that at JK = 0. For slightly larger
JK = 1.1, the AFM and VBS phases are separated by a clear
intermediate region, which is not present in the original spin
model.

B. PDW and SC

We demonstrate in this section that the intermediate region
between AFM and VBS for JK > 0.95 exhibits an unusual
PDW order or a uniform SC order. This is seen by introducing
the pair correlation function:

��(x) = 〈�†
x�0〉, (5)

where �
†
l = (c†

l↑c†
l+1↓ − c†

l↓c†
l+1↑) represents the singlet-pair

operator. In one dimension, it should exhibit quasi-long-range
correlations characterized by a slow power-law decay, namely,
|��(x)| ∝ |x|−K� .

Some typical results of the pair correlation function are
plotted in Fig. 3(a). We see a slow power-law decay in
the amplitude |��(x)| for both JK = 3.25 (blue) and 3.3
(red), indicating the presence of quasi-long-range singlet-pair

FIG. 4. Evolution of (a) the pair correlation ��(k) at k = 0, π ,
(b) the local Kondo entanglement 〈si · Si〉 and its derivative with
respect to JK, and (c) the spin correlation �S (k) at k = 0, π as func-
tions of the Kondo coupling JK at Q = 0. The vertical dash-dotted
line represents the QPT at JK = 3.275. Other parameters are J1 = 0.6
and n = 0.8.

correlations. However, the two results are actually different,
which is seen after Fourier transformation to the momen-
tum space. As shown in Fig. 3(b), ��(k) is dominated by
the peak at the momentum k = π for JK = 3.25 and at k =
0 (mod 2π ) for JK = 3.3. In real space, the sign of ��(x)
oscillates for JK = 3.25, while it remains positive for JK =
3.3. The two situations therefore correspond to a PDW state
with the wave length λPDW = 2 and a uniform SC state, as
illustrated in the insets of Fig. 1(b).

Interestingly, the quantum phase transition between the
PDW and SC states is found to be first order. This is seen in
Fig. 4(a), where the PDW order parameter ��(k = π ) experi-
ences a sudden drop to zero at the transition point JK = 3.275,
while simultaneously the SC order parameter ��(k = 0)
emerges and jumps to a finite value. The first-order transition
is accompanied by a sudden jump of the Kondo correlation
〈si · Si〉 = ∂Eg

∂JK
and the divergence of its derivative with respect

to JK, as shown in Fig. 4(b). This is distinctly different from
the Ising universality observed in a related model studied via
the bosonization [31,32].

The PDW-SC transition is closely associated with the
change in the spin correlation function:

�S (x) = 〈Sx · S0〉 − 〈Sx〉 · 〈S0〉. (6)

The results in real space are given in Fig. 3(c) and show
exponential decay with distance for both JK = 3.25 and 3.3. In
momentum space, as shown in Fig. 4(c), the spin correlation
function is dominated by the peak at k = π for small JK

in the PDW region. At the transition JK = 3.275, the peak
suddenly drops to the same magnitude as k = 0, so that the
spin spectra shown in Fig. 3(d) become more flat over a wide
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momentum range in the uniform SC region. This suggests that
the PDW order is closely related to the strong AFM spin fluc-
tuations near the AFM phase boundary. Increasing the Kondo
coupling reduces the spin fluctuations at k = π and destroys
the PDW order, but the fluctuations still remain sufficient to
induce the uniform SC. Similar PDW-SC transition is found in
EuRbFe4As4 [59], where it is accompanied by the suppression
of a helical magnetic order with increasing temperature. The
triplet-pair correlations are also examined and excluded due
to exponential decay with the distance.

We therefore conclude that the intermediate quantum crit-
ical phase of the 1D Kondo-Heisenberg model may become
unstable towards superconductivity owing to the AFM spin
fluctuations, and a nonuniform PDW state may appear close to
the AFM QCP. Very recently, the PDW state was discovered
in the heavy fermion superconductor UTe2 [60,61], which is
formed of two-leg ladders with frustrated magnetic interac-
tions [62].

C. Luther-Emery liquids

We show here that both PDW and SC belong to a class of
states known as the Luther-Emery liquids (LELs), which are
characterized by the presence of a finite spin gap, the absence
of a charge gap, and a power-law decay of the superconduct-
ing gap with system size [63,64].

The power-law decay of the superconducting gap is obvi-
ous owing to the presence of PDW and SC and obeys �SC ∝
L−K� . The finite spin gap can be seen from the spin correlation
function plotted in Fig. 3(c), where it decays exponentially as
|�S (x)| ∝ e−�Sx in both the PDW and SC states. The value of
�S reflects the magnitude of the spin gap.

We now demonstrate the absence of charge gap by calcu-
lating the charge density correlation function:

�n(x) = 〈nxn0〉 − 〈nx〉〈n0〉, (7)

where nl = ∑
σ c†

lσ clσ is the electron density at site l . As
shown in Fig. 3(e), �n(x) exhibits power-law decay with
distance, |�n(x)| ∝ |x|−Kn , in both PDW and SC phases. In
momentum space as shown in Fig. 3(f), both spectra are domi-
nated by sharp peaks at kCDW = 0.2π (mod 2π ). This implies
a coexisting CDW order of the wave length λCDW = 10 in both
phases. The much larger wave length indicates that this CDW
order is not induced by the PDW state with λPDW = 2.

The Luther-Emery liquids require a further constraint on
the power-law exponents of the quasi-long-range singlet-pair
correlations and charge density correlations, namely, K� ∗
Kn � 1. To see this, we plot in Fig. 5 the evolution of both
parameters as well as the spin gap �S as a function of the
Kondo coupling JK for Q = 0 (left) and 0.5 (right). Both
parameters decreases rapidly to a value smaller than 2 after
the AFM or VBS order is suppressed at large JK, where �S

starts to take a nonzero value. Theoretically [49], it is known
that as the temperature T → 0, the pair susceptibility obeys
χp ∝ T −(2−K� ). K� < 2.0 thus implies divergence of the pair
correlation and a quasi-long-range order at zero temperature
[34,65], which emerges together with the finite spin gap and
the quasi-long-range density correlation. Around the QCP, K�

can also be slightly smaller than 2.0 inside the AFM or VBS
state, indicating the possible coexistence of a secondary PDW

FIG. 5. Evolution of (a), (b) K�, (c), (d) Kn, (e), (f) Kn ∗ K�, and
(g), (h) the spin gap �S as functions of the Kondo coupling JK for
Q = 0 (left) and 0.5 (right). The vertical dash-dotted line represents
the PDW-SC transition point at Q = 0. There is no PDW state at
Q = 0.5. Other parameters are J1 = 0.6 and n = 0.8.

order. Obviously, increasing the frustration extends the range
of the SC state and enhances the strength of the pair corre-
lation as reflected in the smaller minimum of the K� value
in Fig. 5(b). For Q = 0.5, as depicted in the phase diagram
Fig. 1(b), the PDW state is weakened and disappears in the
whole parameter range. Additionally, the relative strength of
the charge density correlation and the pair correlation also
depends on the magnitude of J1 (not shown), revealing a
subtle competition between CDW and SC, which has been
intensively discussed in recent literatures [34,65–68]. Never-
theless, over a wide range of the Kondo coupling, as shown in
Figs. 5(e) and 5(f), we find K� ∗ Kn � 1, in good agreement
with the property of the Luther-Emery liquids [34,63].

D. Luttinger liquid

For sufficiently large JK, the superconductivity is com-
pletely suppressed and the ground state becomes a Luttinger
liquid. As is shown for JK = 5.0 in Fig. 3(a), ��(x) exhibits
a rapid power-law decay with K� > 2, indicating the absence
of quasi-long-range pair correlation. The spectra ��(k) in
momentum space are plotted in Fig. 3(b) and are close to zero
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in the whole Brillouin zone. For Q = 0, K�, Kn, and K� ∗ Kn

all show a rapid change at JK ≈ 3.8. Correspondingly, �S

vanishes as shown in Fig. 5. These suggest a significant reduc-
tion in the charge density correlation and the pair correlation
and confirm the breakdown of the Luther-Emery liquids in
the region of large JK. In the meanwhile, the spin correla-
tion function �S (k) displays a plateau in momentum space
and a small peak at k = ±0.2π (mod 2π ), resembling that
of electrons with the Fermi wave vector kL

F = 0.9π . We thus
conclude that the large JK region is a Luttinger liquid (LL)
with a large Fermi volume, consistent with previous calcula-
tions [35,36,38,40,41]. Different from the first-order PDW-SC
transition, the SC-LL transition is continuous. For Q = 0, this
is evidenced in Fig. 4 by the gradual disappearance of ��(k)
with increasing JK and the smooth evolution of the first and
second derivatives of Eg at JK ≈ 3.8.

IV. DISCUSSION

A. Evolution of the Fermi volume

The PDW and SC states or the Luther-Emery liquids may
be viewed to arise from pair instability of certain intermediate
quantum critical phase between AFM or VBS of a small Fermi
volume and the Luttinger liquid of a large Fermi volume. To
understand the nature of this intermediate phase and resolve
the theoretical controversial, we analyze below how the Fermi
volume evolves in different regions of the phase diagram.
This is done by defining a characteristic momentum k∗

n where
a jump or power-law singularity occurs in the momentum
distribution of the electron density [23,25,37,39,41]:

nk = 1

L

∑

lσ

〈c†
0σ clσ 〉e−ikl . (8)

Some typical results are given in Fig. 6(a) for Q = 0, 0.5 and
n = 0.8. The momentum distribution shows a sharp jump at
k∗

n = 0.4π = kS
F ≡ n

2π for JK = 0.4 and k∗
n = 0.9π = kL

F ≡
1+n

2 π for JK = 8.0, indicating the existence of a small Fermi
volume in the weak Kondo coupling limit and a large Fermi
volume in the strong coupling limit. At intermediate JK, a
small peak appears around k∗

n = 0.6π = (1 − n
2 )π due to the

interaction with AFM spin correlations. In Fig. 6(c), the spin
spectra also exhibits an additional peak around similar mo-
mentum. Beyond JK = 3.275, where the PDW order turns into
the uniform SC state, a kink feature shows up in nk at a larger
momentum, which evolves gradually with increasing Kondo
coupling.

The overall evolution of k∗
n with JK is shown (red circles) in

Fig. 6(e), where it jumps from kS
F = 0.4π to around k∗

n = 0.7π

at the PDW-SC transition JK = 3.275 and then continuously
increases to kL

F = 0.9π at JK = 3.8, indicating an interme-
diate region between two limits with well-defined small or
large Fermi volumes. Interestingly, the PDW state is found
to always have a small Fermi volume, reflecting a competition
between the PDW order and the Kondo delocalization owing
to the presence of strong AFM spin correlations. The sudden
jump of the Fermi volume at the PDW-SC transition suggests
that the PDW state might arise from a normal state with a
medium Fermi volume. For Q = 0.5, where the PDW order is
gone, k∗

n jumps at the VBS-SC transition and then increases

FIG. 6. Momentum distribution of (a), (b) the electron occupa-
tion nk and (c), (d) the spin correlation function �S (k) for different
values of JK at Q = 0 (left) and 0.5 (right). (e), (f) Evolution of the
characteristic momentum k∗

n (red circles), kS (green diamond), and
k∗

S (blue squares) as functions of JK for Q = 0 (left) and 0.5 (right).
The vertical dot-dashed lines in panels (e) and (f) represent the
quantum phase transition into the SC. Other parameters are J1 = 0.6
and n = 0.8.

continuously to kL
F as shown in Figs. 6(b) and 6(f). The only

difference is that for nonzero Q, the SC state persists even
in the large Fermi volume region with very strong Kondo
coupling as depicted in Fig. 1(b). With increasing Q, the pair
correlation strengthens and the region of the Luther-Emery
liquids also expands. Consequently, the distance between the
right boundary (the cyan solid line) of the SC state and the
boundary (the yellow dotted line) at which the Fermi volume
becomes large increases. In CeRhIn5 [69], superconductivity
has also been observed to penetrate in the AFM and Fermi
liquid regions.

The above results are further supported by the analysis of
the Friedel oscillation, which has been commonly used as
an indicator of the size of the Fermi volume [35,36,38,40].
Unfortunately, our results show that the Friedel oscillation of
the electron density is dominated by the wave vector kCDW =
0.2π of the CDW order and cannot be used to distinguish
the small and large Fermi volume, so we have to consider
the Friedel oscillation of the spins as reflected in the spin
fluctuation spectra �S (k) for Q = 0 in Fig. 6(c) and Q = 0.5
in Fig. 6(d). In both cases, we find rich peak structures in the
spin spectra. The peak positions kS as a function of the Kondo
coupling are collected and compared in Fig. 6(e) for Q = 0
and Fig. 6(f) for Q = 0.5. In both cases, we see kS jumps
from π to an intermediate value at the PDW-SC or VBS-SC
transition, and then gradually evolves to 0.2π = 2kL

F mod 2π

as JK increases, resembling the behavior of nk in the whole
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FIG. 7. Variation of the overall Q-JK phase diagrams with the
electron density: (a) n = 0.9, (b) n = 0.6, and (c) n = 0.5 with J1 =
0.6. The yellow dotted lines separate the regions with medium (left)
and large (right) Fermi volume.

SC region. The relation between kS and the Fermi wave vec-
tor agrees well with the expectation for a Luttinger liquid.
By employing the same relation and defining k∗

S via kS =
±2k∗

S (mod 2π ), we find that the derived k∗
S is in quantitative

agreement with k∗
n even in the whole SC phase, which pro-

vides an additional support for the continuous evolution of the
Fermi volume in the intermediate region. This is in contrast
to earlier studies [23,41,70], which assume a continuous QPT
between two phases with small or large Fermi volumes. The
existence of an intermediate region without an apparent Fermi
surface has also been observed previously in the literature
[41], but they failed to notice the effect of CDW order in
hiding the charge Friedel oscillation and concluded that k∗

n and
k∗

S cannot represent a Fermi surface. Our results are consistent
with recent proposal based on Schwinger boson calculations
for frustrated Kondo lattices [17,18].

B. Variation of the pair instability

The pair instability for PDW and SC may change with
tuning parameters such as the electron density and the mag-
nitude of J1. Figure 7 shows the phase diagrams for n = 0.9,
0.6, 0.5. Compared to Fig. 1(b) for n = 0.8, the AFM phase
boundaries are only slightly changed since they are mostly
determined by the Heisenberg interaction. The PDW and
SC regions are suppressed with reducing n and disappear at

FIG. 8. Evolution of (a) OVBS and (b) OBOW at Q = 0.3 for the
electron density n = 0.9, 0.8, 0.6, and 0.5 with J1 = 0.6.

n = 0.5, indicating substantial weakening of pair correlations.
By contrast, the right VBS/BOW state is greatly enhanced at
n = 0.5 to cover a large portion of the phase diagram. This
is also seen in their substantially enhanced order parameters
in Fig. 8, which arise most probably due to the RKKY in-
teraction mediated by itinerant electrons [27–29]. Different
from the antiferromagnetic J1 and J2 that may originate from

FIG. 9. Evolution of the characteristic momenta k∗
n (red circles),

kS (green squares), and k∗
S (blue squares) for the electron density

(a) n = 0.9, (b) n = 0.6, and (c) n = 0.5 for Q = 0 (left) and 0.5
(right) with J1 = 0.6.
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FIG. 10. Electron density n(x) along with x in the finite-size
DMRG simulation with L = 100 for average electron densities n =
0.9, 0.8, 0.6, 0.5. Other parameters are JK = 2.0 and J1 = 0.6.

the superexchange interaction, the induced RKKY interaction
at n = 0.5 is ferromganetic between nearest-neighbor spins
and antiferromagnetic between next-nearest-neighbor spins.
For sufficiently large JK, they may surpass J1 and J2 to give
rise to the VBS/BOW order. Our calculations for smaller J1

indeed confirm the suppression of pair correlations and the in-
termediate Luther-Emery liquids. For larger n, both the range
and strength of the right VBS/BOW state reduce gradually,
implying that its presence at other densities may be inherited
from that at n = 0.5. Ignoring the right VBS/BOW phase
gives a much simpler phase diagram only with intermediate
PDW and SC states.

As the PDW and SC regions diminish with decreasing n,
the intermediate region with a medium Fermi volume also
shrinks and eventually disappears as shown in Fig. 9. This
leads to a sudden jump of the Fermi volume from small to
large at the boundary of the VBS/BOW and Luttinger liquid
states, which is detached from the AFM one. The lack of the
medium Fermi volume region at small n suggests a signif-
icant reduction in quantum fluctuations as electron density
decreases. In fact, the spin gap �S does decrease with de-
creasing n or Q, indicating longer-range spin correlations due
to the weakening of quantum fluctuations. In our 1D model,
the intermediate phase exists even at Q = 0 for large n. For
higher dimension, frustration may be necessary in producing
the quantum critical phase [17,18].

V. CONCLUSIONS

To summarize, we performed systematic iDMRG simula-
tions of the 1D Kondo-Heisenberg model with frustrated J1-J2

XXZ interactions among local spins and found rich ground
states in the typical Q-JK phase diagram. In particular, we
found an intermediate region with strong pair correlations
between the AFM or VBS/BOW of a small Fermi volume
and the Luttinger liquid of a large Fermi volume. Apart from

FIG. 11. The scanning process to obtain the ground states of
the frustrated Kondo-Heisenberg model with J1 = 0.6, n = 0.8, and
Q = 0.0.

quarter filling, a long-range PDW order is observed close the
the AFM phase boundaries, which turns into a uniform SC
state for larger Kondo coupling through a first-order quantum
phase transition with a sudden drop of AFM spin fluctuations.
Analysis of the Fermi volume indicates a small one in the
PDW state and a continuous evolution in the SC state. It is
suggested that the both may arise from a quantum critical
normal state with medium Fermi volume. This implies a deep
connection between the PDW, the unconventional supercon-
ductivity, and the non-Fermi liquid quantum critical phase.
For n close to 0.5 or weak frustration, both PDW and SC
are suppressed and we find a sudden transition from small-
to-large Fermi volumes. Our work provides a comprehensive
understanding of the frustrated AFM Kondo lattice in one
dimension. For higher dimension, similar mechanism may
still play a role if quantum fluctuations are sufficiently strong
with geometric frustrations or orbital degeneracy. It will be
interesting to see if these may be verified in future studies
using more sophisticated methods [71].
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APPENDIX: DETAILS ON NUMERICAL SIMULATIONS

We provide here more details on our numerical simula-
tions. All data presented in the main text are obtained from
iDMRG, and the finite-size DMRG is only used to determine
the unit cell size for iDMRG simulations. For example, as
shown in Fig. 10 for the finite-size system of length L = 100
with the average electron density n = 0.9, 0.8, 0.6, 0.5, the
finite-size DMRG calculations give the CDW wave length
λCDW = 20, 10, 5, 4, respectively. Taking into account the
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FIG. 12. The scanning process to obtain the ground states of
the frustrated Kondo-Heisenberg model with J1 = 0.6, n = 0.8, and
Q = 0.5.

periods of PDW, AFM, VBS, and BOW, we choose the unit
cell size to be Lu = 20, 10, 10, 8 in their respective iDMRG
calculations.

To obtain the phase diagram for a given density n, we
fix the frustration parameter Q, scan the Kondo coupling JK,
calculate the quantities listed in Table I, and fit the data to
get the Luttinger parameter K� and the spin gap �S . Taking
n = 0.8 as an example, two typical scanning processes are
shown in Figs. 11 and 12 for Q = 0.0 and 0.5, respectively.
As shown in Fig. 11, when JK < 1.6, OAFM has a finite value
and K� � 2, so the ground state is AFM in this region. With
increasing JK, K� reduces below 2.0 and the spin gap �S

obtains a finite value, indicating that the ground state becomes
a Luther-Emery liquid. Depending on the position of the dom-
inant peak in ��(k), this state is further divided into the PDW
(k = π ) and the SC (k = 0). When JK increases above 3.8,
the spin gap �S is gone and K� � 2, so the ground state is a
Luttinger liquid. Similarly, for Q = 0.5 shown in Fig. 12, we
find for JK < 1.5 a VBS ground state with a finite OVBS and

FIG. 13. Evolution of OAFM and OVBS with the frustration pa-
rameter Q for virtual bond dimensions χ = 4000 and 8000. Other
parameters are JK = 0.95, J1 = 0.6, and n = 0.8.

K� � 2. While for JK > 1.5, we find K� < 2.0, a finite spin
gap �S , and a dominant peak of ��(k) at k = 0, implying a
uniform SC ground state.

To determine the DQCP, we fix JK and scan the frus-
tration Q. As shown in Fig. 13 for n = 0.8 and JK = 0.95,
OAFM decreases continuously with increasing Q and disap-
pears at Qc = 0.32, at which OVBS appears and increases
continuously.

The results in the main text are all converged by comparing
the results with different bond dimensions from χ = 2000 to
8000. For example, in obtaining Fig. 1(b) for J1 = 0.6, n =
0.8, and Q = 0.0, we use U (1)charge × U (1)spin symmetry and
the virtual bond dimension χ = 4000. As show in Fig. 11(b),
the order parameters OAFM for AFM, ��(k = 0) for SC, and
��(k = π ) for PDW with χ = 4000 converge well compared
to that of χ = 2000. The calculations of the fitting parameters
K� and �S are more challenging, but as shown in Fig. 11(a),
they also converge well. Similarly in Fig. 12 for Q = 0.5, the
results also converge with χ = 4000. While for the DQCP
shown in Fig. 13, the results of χ = 8000 converge quite well
with that of χ = 4000, which gives concrete evidence for the
existence of the DQCP.
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