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We study a linear rotor in a bosonic bath within the angulon formalism. Our focus is on systems where
isotropic or anisotropic impurity-boson interactions support a shallow bound state. To study the fate of the
angulon in the vicinity of bound-state formation, we formulate a beyond-linear-coupling angulon Hamiltonian.
First, we use it to study attractive, spherically symmetric impurity-boson interactions for which the linear rotor
can be mapped onto a static impurity. The well-known polaron formalism provides an adequate description in
this limit. Second, we consider anisotropic potentials, and show that the presence of a shallow bound state with
pronounced anisotropic character leads to a many-body instability that washes out the angulon dynamics.
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I. INTRODUCTION

A rotating impurity in a bosonic environment (such as a
molecule in superfluid helium-4) can be conveniently stud-
ied using the angulon concept [1], which is motivated by
the well-known polaron quasiparticle [2–6]. The angulon has
been used in the studies of collective states of many-particle
quantum systems [7], the renormalization of the rotational
constant B [8], and the angular self-localization [9]. However,
work is still needed to bring our understanding of the angulon
to that of the polaron [10–15].

One unresolved question is how angulons form when the
underlying rotor-bath interaction supports a bound state. This
scenario has not been studied so far for the angulon prob-
lem, while it has gained much attention in the Bose polaron
problem where it leads to a Bose polaron-molecule crossover
[16–19]. It appears necessary to explore the role of bound
states in the angulon formalism because it is known that
helium atoms can bind to molecules. Bound states between
a heavy molecule (e.g., Cl2 or OCS) and helium atoms may
be deep and have binding energies a few times larger than
the separation energy of a helium atom [20,21]; bound states
between a light molecule (such as H2 and D2) and a helium
atom are expected to be shallow [20]. It might be particularly
interesting to understand the angulon instability [7,22], a res-
onant transfer of angular momentum from the impurity to the
environment, in the presence of shallow bound states. Indeed,
resonant interactions that typically occur at the threshold for
binding could enhance the exchange of angular momentum.

To study the angulon in the presence of bound states, we
must go beyond the paradigm of past theoretical works on
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the angulon that were performed within the framework of
a linear-coupling microscopic theory; higher-order processes
are needed for our study. To formulate a suitable minimal
model, we rely on the Bogoliubov approximation, and con-
sider beyond-linear-coupling terms similar to those in the
strong-coupling Bose polaron problem [16]. To study the
resulting Hamiltonian, its ground and excited states, we use
exact diagonalization (ED).

As anticipated, we find that the presence of a shal-
low bound state can lead to a strong momentum exchange,
washing out quasiparticle features. This strongly modifies
properties of the angulon. However, we also find that the
momentum exchange is contingent on a sufficient anisotropic
component of the microscopic molecule-boson interaction
potential.

For molecules in helium clusters, the molecule-boson
interactions are indeed anisotropic [23,24], providing a mi-
croscopic mechanism for the renormalization of the moment
of inertia [25]. However, the main contribution to the binding
energy typically comes from the isotropic part of the potential
[26,27] and spatial correlations of large clusters are isotropic
[26–28]. The situation appears to be similar also for light
molecules (such as H2 and D2) whose rotational constant is
weakly renormalized in a helium droplet [29]. Further work
is thus needed to find the best experimental conditions for the
observation of our findings.

Our paper is organized as follows. In Sec. II, we lay out
the theoretical framework for our analysis: the many-body
description of an immobile molecular impurity immersed in a
Bose-Einstein condensate (BEC). We study the single-boson
problem in Sec. III. In Sec. IV, we investigate the limit of
isotropic boson-molecule interactions, which allows us to
connect the limiting cases for the angulon and polaron quasi-
particles. Anisotropic interactions are considered in Sec. V,
where we also illustrate the “quantum carousel phenomenon”
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for a rotor-boson bound state. In Sec. VI, we investigate the
transition from purely isotropic to anisotropic interactions.
We conclude in Sec. VII. We compare one- and two-phonon
results in Appendix A, and provide technical details in Ap-
pendixes B, C, D, and E.

II. MOLECULAR IMPURITY IN
BEYOND-LINEAR-COUPLING REGIME

A. Hamiltonian

Units. We use a system of units in which h̄ ≡ 1. We shall
present distances in units of (mbB)−1/2, where mb is the mass
of a boson and B is the rotational constant. Energies shall
be measured in dimensionless form as E/B or E/[k2

n/(2mb)]
with kn = (6π2n0)1/3 where n0 is the condensate density; the
dimensionless density is n0(mbB)−3/2. To provide some intu-
ition behind dimensionless numbers, we note that for liquid
helium n0 � 22/nm3 (see, e.g., Ref. [30]); B depends strongly
on the the mass of the molecule (for a heavy OCS molecule
B � 0.2 cm−1, and light molecules have B > 1 cm−1). This
implies that the dimensionless parameter n0(mbB)−3/2 is typ-
ically of the order of one in current experiments. For some
numerical illustrations we shall use n0(mbB)−3/2 = 1, which
corresponds to B � 0.63 cm−1.

Laboratory frame. We consider a single molecule, modeled
as a linear rotor, immersed in a homogeneous Bose-Einstein
condensate. In the laboratory frame, the microscopic Hamil-
tonian that describes this system is conveniently written as [1]

Ĥlab. fr. = Ĥmol + Ĥbos + Ĥmb, (1)

where the three terms describe the molecule, the BEC, and
their interaction, respectively. These terms read as

Ĥmol = αBĴ2,

Ĥbos =
∑

k

ε(k)â†
kâk + 1

2

∑
k,k′,q

Vbb(q)â†
k′−qâ†

k+qâk′ âk,

Ĥmb =
∑
k,q

V̂mb(q, φ̂, θ̂ )ρ̂(q)â†
k+qâk. (2)

Here, we have adopted the formalism of second quantization
with bosonic creation â† and annihilation â operators. The
kinetic energy of a free boson reads as ε(k) = k2/(2mb).
The molecular angular momentum operator in the labora-
tory frame is denoted as Ĵ. The potentials Vbb and V̂mb

describe the boson-boson and molecule-boson interaction, re-
spectively. While k, k′ and q are three-dimensional momenta
(φ̂, θ̂ ) denote the two extrinsic Euler angle operators needed
to describe the orientation of a linear rotor. These operators
measure the orientation of the molecular impurity: φ̂|φ, θ〉 =
φ|φ, θ〉, where |φ, θ〉 is an eigenstate of the angular degrees of
freedom. The impurity frozen at r = 0 has a constant Fourier-
transformed Dirac δ(3) density ρ̂(q) = 1. We have introduced
for convenience the dimensionless parameter α ∈ [0, 1] to
control the strength of the coupling between different angular
momentum states. If α = 0, there is no energy scale associated
with rotation; the orientation of the molecule is fixed. The
molecule is free to rotate if α = 1.

Molecular frame. To simplify the angular momentum alge-
bra, we work in the molecular frame, where the microscopic
interaction potential can be written in real space as a function
(and not an operator)

Vmb(r) =
∑

λ

Vλ(r)Yλ0(θr, φr ). (3)

Here, Yλμ are spherical harmonics, and Vλ is the potential that
corresponds to the angular momentum channel λ. Note that
we adhere to the Condon-Shortley phase convention in the
definition of the spherical harmonics [31].

The Hamiltonian in the molecular frame, Ĥm. fr. = Ŝ−1

Ĥlab. fr.Ŝ, reads as

Ŝ−1ĤmolŜ = αB(Ĵ′ − �̂)2,

Ŝ−1ĤbosŜ =
∑

k �=0,λμ

ω(k)b̂†
kλμ

b̂kλμ,

Ŝ−1ĤmbŜ =
∑

k �=0,λ

Uλ(k)[b̂†
kλ0 + H.c.]

+
∑

k,q �=0
λll ′ν

1W
l

l ′λ(k, q)Clν
l ′νλ0b̂†

klν b̂ql ′ν

+
∑

k,q �=0
λll ′ν

2W
l

l ′λ(q, k)Clν
l ′νλ0[b̂†

qlν b̂†
kl ′−ν

+ H.c.], (4)

where �̂ is the momentum of the bath, Ĵ′ is the molecular-
frame angular momentum operator, and the sums go over the
indices that parametrize the angular momentum basis (see
Appendix B for technical details). Note that the bosonic cre-
ation and annihilation operators were renamed from â to b̂
to emphasize that the Bogoliubov approximation [32] was
employed in the derivation of Eq. (4). We also transitioned
from the single-particle momentum basis defined by k to
the angular momentum basis defined by (k, λ, μ) (see Ap-
pendix C). The Bogoliubov quasiparticles are characterized
by the standard dispersion relation ω(k) [see Eq. (B12)]. Uλ

determines the strength of the one-phonon coupling,

Uλ(k) =
√

2k2n0ε(k)

ω(k)π

∫ ∞

0
dr r2Vλ(r) jλ(kr), (5)

whereas the two-phonon coupling coefficients are
parametrized as

1W
l

l ′λ(k, q) = (ukuq + vkvq)

√
2l + 1

4π
W l

l ′λ(k, q) (6)

and

2W
l

l ′λ(k, q) = ukvq

√
2l + 1

4π
W l

l ′λ(k, q), (7)

where uk and vk are the Bogoliubov coefficients [see
Eq. (B11)] and

W l
l ′λ(k, q) = 2kq

π

√
2l ′ + 1

2l + 1
Cl0

l ′0λ0

∫ ∞

0
dr r2Vλ(r) jl (kr) jl ′ (qr).

(8)

The Clebsch-Gordan coefficients Clν
l ′ν ′λμ and the spheri-

cal Bessel functions of the first kind jl (x) in the last

014102-2



LINEAR ROTOR IN AN IDEAL BOSE GAS NEAR THE … PHYSICAL REVIEW B 109, 014102 (2024)

expression indicate that the rotating impurity couples different
angular momentum channels. This is in contrast to a three-
dimensional Bose polaron where a single (linear) momentum
is sufficient to describe the system (see the studies at the level
of the Fröhlich Hamiltonian [33–35]), which corresponds to
Eq. (4) with W = 0, and beyond [16,18,36–44].

B. Parameters

The decomposition of Eq. (3) into spherical harmonics
can be used to describe any microscopic interaction potential.
However, to understand the qualitative differences between
a featureless and a rotating impurity, it is convenient to re-
strict the angular momentum channels to λ ∈ {0, 1}. This
approximation defines a minimal toy model that allows for
an exchange of one unit of angular momentum between the
molecule and the bath in a single scattering event. Further-
more, from the symmetry considerations, this could be a
faithful description for molecules whose point group is C∞v .
[The typical examples of this symmetry class such as HF, DF,
HCl [45–47], and CO [48] might, however, also require λ = 2
channels.]

Although the approximation λ ∈ {0, 1} is natural for our
qualitative study [1], one might need to include other chan-
nels for quantitative description of some molecules in helium
droplets. For example, homonuclear molecules (such as Cl2)
have D∞h symmetries rendering channels with even λ, espe-
cially λ = 2, more prevalent.

For simplicity, we parametrize the multipoles of Eq. (3) by
attractive Gaussians

Vλ(r) = − gλ

2r2
λ

e−r2/r2
λ , (9)

with interaction strengths g0 and g1. We fix the width of
the potential: r0 = r1 = 1.5 (mbB)−

1
2 and vary |g0| ∼ |g1| ∼

50 mbB2 in our numerical simulations. Even though this model
potential does not quantitatively reproduce any particular
atom-molecule potential, it allows for the angular momentum
exchange, which is the key ingredient of our study. The pa-
rameters of the potential are motivated by previous studies of
the angulon quasiparticles [1]; we shall use them to compare
and contrast to the already existing results.

As our focus is on the formation of a bound state in
the bath, we set abb = 0 as we do not expect that weak
boson-boson interactions can strongly modify this dynamics.
In this case, the Bogoliubov rotation itself is trivial, i.e.,
uk ≡ 1, vk ≡ 0. This eliminates from Eq. (4) the pairing term
involving b̂†b̂† and its complex conjugate, which correspond
to creation and annihilation of phonon pairs, respectively. We
are left with only one beyond-linear term, which involves b̂†b̂,
and our study represents an investigation of this term within
the angulon formalism. This term acts as an external potential
for phonons that can support a rotor-boson bound state.

We note that abb = 0 is the standard limiting case in the
study of Bose polarons [38,49–51] that is known to describe
qualitatively various properties of the system, in particular, its
energy [16]. For quantitative calculations, which are beyond
this work, finite boson-boson interactions should be taken into
account (see, e.g., Refs. [16,38,52]).

C. Technical details and definitions

While we provide an extended summary of the employed
technical framework in Appendixes B, C, D, and E, we find it
fitting to provide some useful details below.

Conservation of total angular momentum. We exploit the
fact that the total angular momentum L̂ = Ĵ + �̂ is conserved
to constrain the basis [see the discussion around Eq. (B18)].
In the absence of an external field that breaks the spherical
symmetry, all the relevant physical properties are independent
of the quantum number M (associated with L̂Z , the projection
of the total angular momentum onto the laboratory-frame Z
axis), which we will omit hereafter.

Spectral function. To quantify the response of the system,
we work with the zero-momentum spectral density function
(see Appendix B)

A(E ) = − 1

π
Im lim

ε→0+

∑
L

∑
j

∣∣〈�NI

∣∣� ( j)
L

〉∣∣2

E − ε
( j)
L + iε

. (10)

The j index runs over all eigenstates �
( j)
L of Ĥm. fr. for a given

total angular momentum L. The corresponding eigenvalues
are ε

( j)
L . The spectral function provides information about the

excitations of the system that have a “significant” overlap
with the noninteracting state �NI (no bosonic excitations).
Even though the spectral function in Eq. (10) obeys a sum
rule (see Appendix B), the maximum value of A(E ) has no
significance for our study. Hence, for plotting purposes we
linearly rescale A(E ) such that its maximum at any frequency
is 1. We illustrate our results using ε = 0.05 B.

One-phonon vs two-phonon excitation ansatz. The one-
phonon or single-phonon ansatz means that the state vector
used in ED includes only single-phonon excitations (see Ap-
pendix E for details). It resembles the Chévy ansatz, originally
introduced for an imbalanced Fermi gas [53]. Accordingly,
two phonon or double phonon shall refer to results obtained
with up to two-phonon excitations in ED.

Polaron picture vs angulon picture. To analyze the molec-
ular impurity problem, we present our results in two different
ways (“pictures”) depending on which parameters are being
varied. We shall refer to the first one as the polaron picture, as
it is standard for studies of Bose polarons. In this picture, the
behavior of the system is analyzed as a function of either the
s-wave scattering length aib (which in cold-atom experiments
can be tuned by means of a Feshbach resonance [54,55]) or
the microscopic interaction strengths gi.

The mapping from the s-wave interaction strength g0 to
the scattering length aib is done using a numerical (RK4)
scheme that solves the Schrödinger ordinary differential equa-
tion (ODE) for aib [56], keeping r0 = 1.5 (mbB)−

1
2 fixed. For

anisotropic potentials, even though effective range parameters
also exist, we prefer to investigate the energetics of the system
directly as a function of g1 in terms of the dimensionless
parameter (g1mb)1/4k−1

n .
Note that the standard choice for the dimensionless energy

in studies of the Bose polaron, E/[k2
n/(2mb)], is not natural

for presenting the energy spectrum for molecular impuri-
ties. In particular, it leads to big gaps between different L
blocks. Therefore, to illustrate our findings, we set α = 0.4 for
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Bound State Forms

Z

FIG. 1. Ground-state energy of a boson interacting with a static
(purple and red) and rotating (orange and green) molecule for two
values of g0. The inset shows the “quasiparticle weight” Z for the
purple line as a function of the rescaled g1. The bosonic density
profiles nph(r) calculated using Eq. (C9) in the molecular frame are
shown for (g1mb)1/4r0 = 2.8, 3.0.

calculations reported in the polaron picture (except for Fig. 7,
bottom panel).

We shall refer to the second way of presenting results as
the angulon picture. It is standard for studies of the angulon
quasiparticle. In this picture, spectral properties are expressed
as a function of the dimensionless bath density n0(mbB)−3/2

or ln[n0(mbB)−3/2]. This is practical for molecular impurities
since in the limit n0 → 0, we obtain a free rotor whose rota-
tional constant B is that of the noninteracting molecule.

By presenting results in two different pictures, we hope that
our results will be easily understood by researchers working
on Bose polarons as well as on angulons. As we illustrate in
the next sections, the polaron picture allows us to demonstrate
the evolution of the energy spectrum close to the threshold for
binding in a simple way. At the same time, we find the angulon
picture suitable for showing a transition between isotropic and
anisotropic interaction potentials.

III. ONE-BOSON PROBLEM

A. Without the bath

To set the stage for our investigation of a many-body
system, we start with the single-boson problem, which corre-
sponds to removing the one-phonon coupling term and setting
the bath density n0 to zero in Hamiltonian (4). This leads to
a single boson that interacts with the impurity, allowing us to
isolate the physics that comes from the beyond-Fröhlich term.
By toggling between α = 0 and α = 1, we can have a static
(“very heavy”) or a rotating molecule, respectively.

In Fig. 1, we show the ground-state energy for the lowest
total angular momentum block L = 0 as a function of g1 for
fixed g0. Not surprisingly, we find that a rotating molecule
starts to support a bound state at a higher value of g1,crit

compared to a static molecule. This is a direct consequence

of the rotational kinetic energy B(Ĵ′ − �̂)2 that counteracts
bound-state formation (cf. Ref. [57]). There is a resemblance
of this result to the standard textbook two-body problem
[58] where the reduced mass increases the overall kinetic
energy and changes the threshold for binding. However, a
rotating impurity cannot be reduced to a static one with some
renormalized parameters, making the problem we consider
physically richer and numerically more difficult.

For g1 < g1,crit , the boson is not bound to the impurity, and
its probability density [defined in Eq. (C9) in the molecular
frame] is given by 1/V , where V is the volume of the system.
At g1 > g1,crit, a bound state exists, leading to a finite proba-
bility to find the boson in the vicinity of the molecule. This is
evident from the density profile in the inset of Fig. 1, which
features a p-wave lobe characteristic for a p-wave dominated
model potential, Eq. (9). The size of the p-wave lobe decreases
as g1 increases, reflecting a more compact bound state.

The formation of the bound state can be detected by
considering the overlap of the ground state �0 with the non-
interacting state �NI:

Z = |〈�0|�NI〉|2. (11)

This quantity, which turns into the residue of a quasipar-
ticle for a many-body problem, features (for V → ∞) an
abrupt change at g1 = g1,crit from one to zero, which implies
a vanishing spectral function in Eq. (10). As the attractive
Gaussian interaction strength g0 > 0 is gradually increased
in magnitude, the value of g1,crit decreases, but the character
of bound-state formation remains unaltered (abrupt change of
Z at g1 = g1,crit; vanishing ground-state energy, E = 0, for
g1 < g1,crit).

B. In the presence of the condensate

Let us now consider what happens to the one-boson physics
discussed above in the presence of the condensate. To this end,
we study the many-body Hamiltonian from Eq. (4) with a
single excitation on top of a dilute condensate with a given
density. We present the corresponding ground-state energy
in Fig. 2, which illustrates the transition from the physics
dominated by the Fröhlich-type Hamiltonian to the one driven
by bound-state formation.

As shown in Fig. 2 for g1 < g1,crit, the linear-coupling
terms drastically modify the behavior of the system already
for very small bath densities. In particular, the ground-state
energy of the system is negative even if the b̂†b̂ term does
not support a bound state, as e.g. for g0 = 5 mbB2, n0 =
e−10 (mbB)3/2, and small values of g1. For weak couplings
the reduction of the energy simply follows from the fact
that the second-order correction to the ground-state energy
in perturbation theory is always negative. In fact, for the
Fröhlich-polaron problem (no b†b term) one finds [11,59]

E0 = −
∑

k

|U0(k)|2
ω(k) + k2/(2mb)

, (12)

where U0(k) is the interaction potential in the zero angular
momentum sector as defined in Eq. (5). As is evident from
Eq. (12), systems with finite densities have a negative value
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FIG. 2. Ground-state energy of a boson interacting with a static
(purple and pink) and rotating (orange and cyan) molecule for g0 =
5 mbB2 in the presence of a condensate of varied density n0. The inset
shows the quasiparticle weight Z for the purple line as a function
of g1 (compare this inset to the one of Fig. 1). The bosonic density
profiles in the molecular frame are shown in the inset on either side
of the threshold for binding, at values (g1mb)1/4r0 = 2.7, 3.2.

of the ground-state energy, E < 0. This is in contrast to Fig. 1
where the energy is identically zero for g1 < g1,crit .

Moreover, bound-state formation in the presence of the
environment features a smooth decrease of Z to zero. In-
deed, even for a small nonzero bath density such as n0 =
e−10 (mbB)3/2, there is a finite probability to find a bo-
son close to the impurity, which turns the bound-state
formation into a gradual process. This is similar to the
BEC-induced hybridization between a polaron and molec-
ular state described in the context of strong-coupling Bose
polarons [16]. Finally, we note that the critical value
of g1,crit for binding cannot be identified unambiguously
for finite densities. However, for practical purposes, one
may identify the interaction strength at which bound-
state formation occurs with the rule-of-thumb criterion
Z (g1,crit ) = 0.5.

IV. ISOTROPIC INTERACTIONS:
STATIC IMPURITY LIMIT

As a next step, we consider isotropic interactions, i.e., we
assume that g1 = 0. In this limit, the boson-impurity interac-
tion cannot change the angular momentum of the molecule,
meaning that it is a good quantum number and that the angu-
lon is not formed. Still, isotropic interactions provide a useful
limit for estimating the energies, and understanding spatial
correlations [26,27,60,61]. As different rotational states of the
molecule are decoupled, they can be seen as a static limit
of the Bose polaron problem: an impurity in a BEC [62–64]
or superfluid helium [65]. Therefore, we can adopt technical
tools and physical intuition developed for Bose polarons. In
particular, for the analysis here, we use the polaron picture
(see Sec. II C).

-0.4 -0.2 0.0 0.2 0.4 0.6

(knaib)
−1

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

E
/(

k
2 n
/(

2m
b)

)

0.0

0.2

0.4

0.6

0.8

1.0

A
L

=
0
+

A
L

=
1

−0.15 −0.10 −0.05

E/(k2
n/(2mb))

0.0

0.5

1.0

A
L

=
0
+

A
L

=
1 Lorentzian

0.326 0.350 0.395 0.540 0.663 0.674 0.678

(g0mb)
1/4k−1

n

FIG. 3. Spectral function of a system with g1 = 0 calculated
using two-phonon ED for the L = 0, 1 blocks with α = 0.4 and bath
density n0 = 1.0 (mbB)3/2. The dependence on both (knaib )−1 and
(g0mb)1/4k−1

n is shown, illustrating the nonlinear mapping aib ↔ g0.
The inset demonstrates the spectral function profile at (knaib )−1 =
0.5 (blue solid curve) together with its Lorentzian best fit (red dashed
curve).

In Fig. 3, we show the spectral function (10) on two-
phonon level for the blocks L = 0, 1 assuming a bath density
of n0 = 1.0 (mbB)3/2. As anticipated, we find that the angulon
reduces to a “static polaron” in each L block. The well-known
[15,16] attractive and repulsive polaron branches are recov-
ered. Importantly, the polarons in the different L blocks are
exact replicas of one another, except for a trivial offset in
energy due to the rotational kinetic energy αBL(L + 1). In
particular, spectral weights in the L = 0 and 1 blocks match
identically.

As we are using a Gaussian potential, finite-range effects
are visible in the spectral function. In particular, we see that
the “repulsive polaron” feature can have negative energies.
In fact, we understand this feature as not the standard repul-
sive polaron but as a particle scattering off a molecule-boson
bound state. Indeed, this feature appears only at the two-
phonon ED level. Furthermore, its spectral function has a
well-defined Lorentzian profile (see Fig. 3) that hints at the
resonant scattering process. We discuss finite-range effects
further in Appendix A.

V. ANISOTROPIC INTERACTIONS

Having analyzed the case of g1 = 0, let us study the other
limiting case of only anisotropic interactions, i.e., g0 = 0.
Such p-wave potential dominated systems feature rich spec-
tral characteristics arising from many-body effects that cannot
be reduced to polaron physics. To present our results, we adopt
both the polaron and angulon pictures.
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FIG. 4. Left panel: Spectral function of the p-wave dominated
(g0 = 0) angulon calculated using two-phonon ED, for the L =
0, 1, 2 blocks with α = 0.4 and bath density n0 = 1.0 (mbB)3/2. The
color map is identical to the one in Fig. 7. Right panel: Decomposi-
tion of the spectral function into the three L blocks using color maps.

A. Polaron picture

In Fig. 4, we show the spectral function of the angulon
with the total angular momentum up to L = 2 at a fixed
bath density n0 = 1.0 (mbB)3/2. We plot the spectral function
against the dimensionless interaction parameter (g1mb)1/4k−1

n .
It is practical to identify three regimes in our data:

(i) Dressed molecule. In the weak-coupling regime
(g1mb)1/4k−1

n � 0.32, the dressed rotor behaves as a well-
defined quasiparticle with large spectral weight. The two-
body potential supports no bound states, and the rotor can be
visualized as a “carousel” with no rider.

(ii) Many-body instability. The two-body potential with
a critical interaction strength (g1mb)1/4k−1

n � 0.32 supports
a shallow bound state for L = 0. This implies a resonant
bath-impurity interaction that alters the angulon spectrum
drastically. For L �= 0, the immersed molecule enters a super-
position of a free rotor (noninteracting state) and phononic
states (at most two excitations in Fig. 4) on top of the conden-
sate, which is seen as an apparent discontinuity in the response
of the system.

We refer to this regime as a many-body instability, which
arises due to the resonant transfer of angular momentum be-
tween the impurity and the bath via the anisotropic interaction
(g1 �= 0) (cf. Ref. [1]). In terms of a quantum carousel anal-
ogy, this regime can be visualized as an “unsuccessful attempt
of phonons to jump into a seat of a carousel.”

(iii) Bound states. For interaction strengths larger than
(g1mb)1/4k−1

n � 0.41 we observe formation of one attractive
branch (bound state) per L block, decreasing in energy with
increasing g1: a quantum carousel with a rider.

The bound-state regime for L = 1 seems to be realized for
stronger couplings in comparison to L = 2. This observation
can again be understood using the carousel interpretation in
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FIG. 5. Spectral function of the p-wave dominated (g0 = 0)
angulon, decomposed into L = 0, 1, 2 blocks with α = 1. The in-
teraction strength is g1 = 50 mbB2, chosen such that for L = 0 there
is one bound state in the limit n0 → 0. In the dimensionless units
of Fig. 2, the interaction strength is (g1mb)1/4r0 = 4.0. To facili-
tate a comparison with Fig. 4, we have added the dependence on
(g1mb)1/4k−1

n above the figure. The left (right) panel is calculated
using one-phonon (two-phonon) ED.

which rotational kinetic energy competes with the attractive
force of the impurity. Note that the L blocks come closer
in energy in comparison to the g1 = 0 case. This can be
rationalized by noticing that the moment of inertia of the
bound state is larger than that of a free molecule. In partic-
ular, we observe that for (g1mb)1/4k−1

n � 0.45 the spectrum
can be approximated by BeffL(L + 1), where Beff < B. This
can be interpreted as an angulon where instead of a molecule
the basic element is a bound state between an impurity and a
boson.

To summarize regimes (ii) and (iii): in the instability
regime, the spectral weight of the angulon quasiparticle be-
comes negligible. Once the interaction strength becomes
sufficiently strong, a long-lived angulon state based on a
bound state emerges. The formation of the bound state in our
ED calculations is similar to the polaron-molecule transition
where a particle is taken from the bath to form a molecule
[18,66,67].

B. Angulon picture

We corroborate our analysis by switching to the angulon
picture. In Fig. 5, we show spectral features of the p-wave
dominated angulon. The long-lived angulon states correspond
to the sharp features, which reproduce the spectrum αBL(L +
1) of a free rotor at low bath density n0. We choose g1 =
50 mbB2 to ensure that there is exactly one bound state for
L = 0 in the low-density limit n0 = 0.

Once the medium becomes denser, a rich many-body struc-
ture emerges. The contrast to the s-wave dominated repulsive
one-phonon angulon modeled using a variational approach
[1] is stark: We observe that the long-lived attractive angulon
living in the L = 1 block has a vanishing spectral weight in
most of the 0 � E/B � 2 window. This is a manifestation of
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FIG. 6. Transition from isotropic to anisotropic interactions (α = 1.0). Shown are spectral functions on the one-phonon level for an s-wave
potential dominated angulon (left panel), an intermediate case with g0 > 0 and g1 > 0 (middle panel), and a p-wave potential dominated
angulon (right panel). The interaction strengths (given in the titles) are chosen such that there is one bound state per L block and the ground-state
energy at n0 = 0 matches across the panels. The colors correspond to different L blocks (up to L = 2).

the many-body instability which suppresses the quasiparticle
weight of the bound state (see regime ii of Fig. 4).

Note that the features of the bound state calculated using
a one-phonon ED are qualitatively different from those from
the two-phonon ED. This is most evident for the L = 2 block.
At the one-phonon level, rotational states of the molecule are
directly coupled only if they differ by one quantum of angu-
lar momentum. Consequently, the L = 2 bound-state branch
appears right below the L = 1 continuum branch. At the
two-phonon level, molecular rotational states differing by two
quanta of angular momentum can be directly coupled, allow-
ing for the formation of a much wider (in terms of energy)
instability regime. We report similar findings in the polaron
picture (see Appendix A).

For L = 1, the ED calculations with two phonons show that
the long-lived bound states are energetically much closer to
the ground state (L = 0 block) than suggested by the naive
�E = 2 estimate valid for isotropic interactions (cf. Fig. 3).
The energy separation between bound states of adjacent L
blocks for two-phonon ED is smaller than for one-phonon
ED (due to the coupling between molecular rotational states
that differ by two quanta of angular momentum). The spectral
weights that correspond to these bound states are likewise
smaller. For calculations with larger number of phonons, we
expect that the moment of inertia of a bound state will become
larger and the energies of the bound states for L �= 0 will
be even closer to the ground-state energy. One must exercise
care, however, when analyzing this situation, as we work
with abb = 0, which implies that all bosons excited from the
condensate can in principle be in the bound state (similar to
studies of impurities in a Bose gas in Ref. [50]).

VI. TRANSITION FROM ISOTROPIC
TO ANISOTROPIC POTENTIALS

After discussing the limiting cases of pure s- and p-wave
interactions, let us touch upon the transition between the two.
For convenience, we focus on the angulon picture and one-
phonon ED calculations. The left and right panels of Fig. 6
present the spectral function of the two limiting cases. The
middle panel is for a system where the microscopic interaction
strengths g0 and g1 are of equal importance. Note that the
values of g0 and g1 in the middle panel are chosen rather arbi-
trarily. Other values could have been used as well to illustrate
a smooth transition between the left and right panels of Fig. 6.

For isotropic interactions (g1 = 0), each L block features
two long-lived states. The upper one is in the continuum part
of the spectrum. The other one originates from a rotor-boson
bound state at n0 = 0. The energies of the former (latter)
states are increasing (decreasing) functions of the bath density
n0. The blocks are not coupled and the branches can freely
cross one another. This changes if g1 �= 0 in which case the
bound-state branch for L > 0 blocks has an instability regime
driven by an avoided crossing of energy levels. The bound
states for L > 0 reappear below the continuum branch of the
L − 1 block. However, this is an artifact of the one-phonon
ansatz. If one used a two-phonon ansatz, the L = 2 bound state
would feature an additional avoided crossing with the L = 0
block, reappearing below its continuum branch (see Fig. 5).

In the limiting case of purely anisotropic interactions
(g0 = 0), the discontinuity becomes maximal, and the L >

0 bound-state branches vanish for intermediate and small
bath densities (see also Sec. V). In other words, when the
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L-block bound state is inside the (L − 1)-block continuum
branch, the system enters an instability for sufficiently strong
anisotropic interactions. A coupling between molecular rota-
tional states differing by two quanta of angular momentum
can be constructed either by adding more phonons or by
adding higher-order multipoles to the interaction potential (9).

VII. SUMMARY AND OUTLOOK

We studied a rotating impurity in a Bose gas assuming that
the impurity-boson potential can support a bound state. We
developed a beyond-linear-coupling model, and analyzed it
using a numerical method based upon exact diagonalization
with one and two phonons.

First, we focused on pure s-wave interactions. In this case,
the angulon problem is equivalent to a static impurity in a
Bose gas, connecting our problem to the body of known po-
laron results. Second, we analyzed pure p-wave interactions.
We demonstrated that the many-body instability can destroy
the angulon quasiparticle if there is a shallow molecule-boson
bound state.

Our results are based on the assumption that abb = 0,
which leads to a fast convergence of our ED method, and al-
lows for the most direct illustration of our results. It is natural
to expect that strong angular momentum transfer facilitated
by the presence of a shallow bound state will be present also
for abb �= 0. Still, further investigations of the effect of abb are
needed to identify the most realistic experimental scenario for
confirming our findings. Another assumption of our work is
that there is a single bound state in the system. However, for
heavy molecules immersed in helium droplets [20], a shallow
bound state can actually be an excited state of the molecule-
helium-atom system. Further work is needed to understand
this scenario, in particular, the effect of deep bound states on
our results.

Finally, we want to outline a few other research directions
motivated by our study. At the two-body level (one boson
and a molecule), it appears interesting to develop an effective
description of the system in the vicinity of the threshold for
binding, which can be later used to parametrize many-body
results. This problem can be approached in the spirit of ef-
fective field theories (EFT) [68], which establish correlations
between different observables, such as binding energies and
low-energy scattering parameters. EFT can also help to un-
derstand three-body physics (for two bosons and a molecule),
which might be relevant for light molecules where active
translational degrees of freedom pave the way for the Efimov
effect [69–71].

The few-body physics becomes very different if we restrict
rotational and translation motions to a two-dimensional ge-
ometry, where any p-wave potential supports a bound state
[72–74]. The presence of this bound state may modify the
known properties of a planar angulon [75], motivating further
studies of p-wave interacting two-dimensional rotors. Finally,
it might be interesting to analyze the effect of shallow bound
states on the time dynamics that can be realized in a laboratory
[76,77]. It is known that the dynamics of the Bose polaron is
strongly affected by the presence of a bound state [38,49,50]
(compare also Refs. [78,79]), which implies that time

evolution of the angulon quasiparticle may contain informa-
tion about shallow bound states observable in a laboratory.

High-level data products are made available on rea-
sonable request. For implementation details please con-
sult the Cython implementation on the public GitHub
repository [80].
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APPENDIX A: ONE-PHONON VS TWO-PHONON RESULTS

In this Appendix, we show the differences between a
one- and two-phonon ED approach and discuss finite-range
effects. In Fig. 7 (top panel), we reduce the maximum num-
ber of phonon excitations to one while keeping all other
numerical and microscopic parameters in line with the two-
phonon results in Fig. 3. As in Sec. IV, the L = 0, 1 blocks
exhibit identical spectral features modulo an overall offset
in energy due to the rotational kinetic energy in the L = 1
block.

In the figure, we also present results for a dilute gas with
n0 = e−10 (mbB)3/2 [see the bottom panel of Fig. 7 and cf.
to a much denser gas with n0 = 1.0 (mbB)3/2 in the top
panel of Fig. 7]. Independent of the density, we identify a
long-lived “attractive polaron” feature in each L block which
flattens off at the values of the rescaled scattering length
(knaib )−1 for which finite-range effects become important.
Comparing the top panel of Fig. 7 to the two-phonon case
presented in Fig. 3, we notice that the “finite-range” plateau
occurs at higher energies at the one-phonon level. This is
expected as two phonons must lead to a deeper bound state
if abb = 0.

Note that in the limit of a dilute Bose impurity system
(bottom panel of Fig. 7), the spectral function features a well-
known “repulsive polaron” with a strong spectral signature
away from unitarity. The repulsive polaron in a dilute Bose
gas can thus be described using the one-phonon excitation
ansatz in agreement with studies based on contact interactions
[16,38]. However, here we show that due to the finite-range
molecule-boson interaction potential employed in our study,
Eq. (9), some different features arise that are not present
in the contact interaction model. Specifically, the repulsive
polaron feature has a “nonstandard” structure as n0 grows (see
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FIG. 7. Spectral function of the s-wave dominated system
(g1 = 0) calculated with one-phonon ED for the L = 0, 1 blocks.
Top panel: n0 = 1.0 (mbB)3/2 and α = 0.4. Bottom panel: n0 =
e−10 (mbB)3/2 and α = 0.02. Note that the repulsive polaron is visible
for low bath densities but morphs into a forklike structure when
increasing n0.

the top panel of Fig. 7). For example, for n0 = 1.0 (mbB)3/2

we observe that the attractive and repulsive polaron features
form a two-pronged fork in the spectral function landscape.
While the upper prong in the phonon continuum (repulsive
polaron) has a lower spectral weight close to the unitarity limit
compared to the long-lived attractive polaron, it is pronounced
for smaller values of the scattering length. At the two-phonon
level (cf. Fig. 3), the upper prong is less noticeable due to
the repulsive polaron feature that appears with much higher
spectral weight.

Let us briefly explain why a reduction of the density n0

effectively leads to a decrease in the effective molecule-boson
interaction range and the appearance of the standard repulsive
polaron feature (see the bottom panel of Fig. 7). At zero
temperature, the natural length scales of our problem are given
by r0 and n−1/3. Therefore, we expect that the energy E =
n2/3F (g0, n1/3r0) of a finite-range model can be expressed as
a function F that depends only on the combination n1/3r0. To
illustrate this, we write the Schrödinger equation H�(x) =
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FIG. 8. Decomposition of the spectral function of the p-wave
dominated system (g0 = 0) into the L = 0, 1, 2 blocks (differentiated
by the color maps) with α = 0.4 and bath density n0 = 1.0 (mbB)3/2.
Left panel: results for one-phonon ED. Right panel: results for two-
phonon ED. The inset shows the quasiparticle weight Z for the
ground state of the L = 0 block as a function of (g1mb)1/4k−1

n .

E�(x) for the boson-molecule problem

n−2/3H�(x) = −n−2/3

(
1

2
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∂x2
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0
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0

)
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= −
(

1

2
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∂ (n1/3x)2
+ g0

2(n1/3r0)2
e
− (n1/3x)2

(n1/3r0 )2

)
�(x)

= −
(

1

2

∂2

∂ x̃2
+ g0

2r̃0
2 e

− x̃2

r̃0
2

)
�̃(x̃), (A1)

where we have defined x̃ = n1/3x and r̃0 = n1/3r0. Thus,
the expectation value of the energy (and other relevant ob-
servables) up to a multiplicative factor can be expressed as
F (g0, n1/3r0). The parameter g0 introduces other (effective)
length scales in the problem, in particular, the scattering
length; it is fixed by two-body physics independently of the
density of the Bose gas. As in our investigation we work
close to unitarity, all length scales except the scattering length
become irrelevant: one can use g0 � f (aib/r0) (cf. Ref. [56]).
Therefore, the reduction of the density with fixed knaib corre-
sponds to a reduced effective range.

We now investigate one-phonon vs two-phonon results in
the purely anisotropic p-wave potential limit. The one-phonon
ED partially captures the qualitative features of the “quantum
carousel,” as shown in Fig. 8. While the dressed rotor in
the weak-coupling regime is well recovered, the long-lived
bound-state branch appears at much higher energies than in
the two-phonon case. Since the single available phonon is
preferably attached to the impurity if the coupling allows,
there is simply no phonon “left” to properly account for
the impurity-bath coupling. The moment of inertia of the
bound state is thus underestimated (see Sec. V). As a conse-
quence, the spectral discontinuity is too small and the energy
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separation between the bound states of the L = 0 and L > 0
blocks is too large.

Another shortcoming of the one-phonon approach is that
the residue is overestimated. In the strong-coupling regime at-
tained for large values of g1, the residue Z for the ground state
(shown in Fig. 8) converges to lower values for two-phonon
ED, indicating a higher level of hybridization with the bath.

The instability regime and quasiparticle weights can thus
be described more reliably by a two-phonon ansatz and be-
yond. This further corroborates the need for light and fast
analytic methods such as ED that allow for an easy imple-
mentation of higher-order phonon excitations.

APPENDIX B: HAMILTONIAN

We start from a first-principle laboratory-frame Hamilto-
nian that describes a single linear molecule interacting with a
homogeneous BEC:

Ĥlab. fr. = Ĥmol + Ĥbos + Ĥmb. (B1)

In units where h̄ ≡ 1, the kinetic energy of a linear-rotor
impurity reads as Ĥmol = αBĴ2, where B is the rotational
constant and Ĵ is the laboratory-frame angular momentum
operator. The quantum state of a rigid linear rotor is defined
by the eigenvalues of Ĵ2 and one of the projections onto the
laboratory-frame coordinate axes, usually chosen to be ĴZ ,
such that

Ĵ2| j, m〉 = j( j + 1)| j, m〉,
ĴZ | j, m〉 = m| j, m〉.

(B2)

In the absence of external fields, the eigenstates of a rigid lin-
ear rotor thus form (2 j + 1)-fold degenerate multiplets with
energies given by Ej = B j( j + 1). Often it is convenient to
work in the angular representation, where the linear rotor
wave functions are given by spherical harmonics (see Ap-
pendix D and also Varshalovich et al. [81]),

〈θ, φ| j, m〉 = Yjm(θ, φ). (B3)

As usual, we assume that only two-body forces between
the bosonic atoms are important so that the Hamiltonian that
describes bosons is written in second quantization as

Ĥbos =
∑

k

ε(k)â†
kâk + 1

2

∑
k,k′,q

Vbb(q)â†
k′−qâ†

k+qâk′ âk.

(B4)
One can use

∑
k ≡ ∫

R3
d3k

(2π )3 to simplify calculations. Since
momentum carries units of wave numbers, each summation
in Eq. (B4) carries a dimensionality of [length]−3. The boson
creators and annihilators satisfy the canonical commutation
relations (CCRs)

[âr, â†
r′ ] = δ(3)(r − r′),

[âk, â†
k′ ] = (2π )3δ(3)(k − k′).

(B5)

Note that, in this convention, the operators â†
k and âk are not

dimensionless, but carry a dimension of [length]
3
2 .

The first term of Eq. (B4) is the kinetic energy of bosons,
ε(k) = ε(k) = k2/(2mb), with mb the boson mass. The sec-
ond term describes boson-boson interactions, whose strength

in momentum space is approximated by a pseudopotential
Vbb(q) = gbb. We keep it for the sake of discussion while
in the main text we set Vbb = 0. Within the first-order Born
approximation of the Lippmann-Schwinger equation [82], we
identify a simple relation with the boson-boson scattering
length abb = gbbmb/(4π ).

To make use of the macroscopic occupation of the zero-
momentum quantum state, it is convenient to split the creation
and annihilation operators into the zero-momentum and finite-
momentum parts by

âk = (2π )3�̂0δ
(3)(k) + �̂k �=0, (B6)

where the factor of (2π )3 appears due to the adopted conven-
tion for the Fourier transform,

f̂ (R) =
∫
R3

d3k
(2π )3

f̂ (k)eik·R. (B7)

Let us now apply the Bogoliubov approximation to Eq. (B6),
which first replaces the operators �̂0 and �̂

†
0 with the c num-

ber
√

n0, where n0 is the classical number density of particles
in the condensate:

�̂0 → √
n0, �̂

†
0 → √

n0. (B8)

This is equivalent to ignoring the noncommutativity of the
operators �̂0 and �̂

†
0, which is a good approximation for de-

scribing the macroscopic phenomena that BECs exhibit. The
second step of the Bogoliubov approximation is to assume that
the population of excited states is small, i.e.,

∑
k〈|�̂k|2〉 �

n0. Consequently, one can neglect the terms cubic and quartic
in �̂k. The celebrated Bogoliubov transformation of the field
operators reads as

�̂k = ukb̂k + vkb̂†
−k (B9)

with the real coefficients uk and vk that obey the normal-
ization condition |uk|2 − |vk|2 = 1 on the basis of the CCRs
(B5). This transformation diagonalizes the leading terms in
Eq. (B4),

Ĥbos �
∑
k �=0

ω(k)b̂†
kb̂k. (B10)

Note that Hamiltonian (B10) provides a useful description
only for weak impurity-boson interactions. It is also not useful
for some other scenarios, e.g., in the presence of vortices [83].

The Bogoliubov coefficients read as

uk =
(

ε(k) + Vbb(k)n0

2ω(k)
+ 1

2

) 1
2

,

vk = −
(

ε(k) + Vbb(k)n0

2ω(k)
− 1

2

) 1
2

.

(B11)

Equation (B10) describes the bosonic system in terms of
noninteracting Bogoliubov quasiparticles with the dispersion
relation

ω(k) =
√

ε(k)

[
ε(k) + 8πabbn0

mb

]
. (B12)

014102-10



LINEAR ROTOR IN AN IDEAL BOSE GAS NEAR THE … PHYSICAL REVIEW B 109, 014102 (2024)

Although ω(k) is only linear for small momenta k � mbc =√
mbgbbn0, we refer to both particlelike and wavelike limits of

ω(k) as “phonons.”
Most generally, the interaction between an impurity and the

bosonic atoms is given by

Ĥmb =
∑
k,q

V̂mb(q, φ̂, θ̂ , γ̂ )ρ̂(q)â†
k+qâk, (B13)

where ρ̂(q) = 1 is Fourier transform of the Dirac δ(3) func-
tion, which describes the density of an immobile, pointlike
impurity located at r = 0. The boson operators âk satisfy the
CCRs (B5). As opposed to atomic impurities in cold-atom

systems, the microscopic interaction potential

Vmb(r) =
∑

λ

Vλ(r)Yλ0(θr, φr ) (B14)

between a linear molecule and a boson, where r =
(r, θr, φr ) ≡ (r, r̂) is the boson coordinate vector in the molec-
ular frame (x, y, z), permits angular momentum exchange via
Vλ.

The Wigner D matrices (see Appendix D) transform co-
variant components of any irreducible tensor. Combining this
insight with the plane-wave expansion, the spherical harmonic
addition theorem, the Bogoliubov approximation (B6) and
transformation (B9) as well as the angular momentum rep-
resentation [Eq. (C1)] we arrive at

Ĥmb =
∑

k �=0,λμ

Uλ(k)

√
4π

2λ + 1
(Ŷ †

λμ(�̂)b̂†
kλμ

+ H.c.) +
∑

k,q �=0
λμlml ′m′

W l
l ′λ(k, q)Clm

l ′m′λμ(ukuq + vkvq)Ŷ †
λμ(�̂)b̂†

klmb̂ql ′m′

+
∑

k,q �=0
λμlml ′m′

W l
l ′λ(k, q)Clm

l ′m′λμ(−1)m′
ukvq(Ŷ †

λμ(�̂)b̂†
klmb̂†

ql ′−m′ + H.c.). (B15)

Here,
∑

k �=0 ≡ ∫ ∞
0 dk. The one-phonon coupling coefficients

are

Uλ(k) =
√

2k2n0ε(k)

ω(k)π

∫ ∞

0
dr r2Vλ(r) jλ(kr), (B16)

and the two-phonon coupling coefficients read as

W l
l ′λ(k, q) = 2

π
kq

√
2l ′ + 1

2l + 1
Cl0

l ′0λ0

∫
R+

dr r2Vλ(r) jl (kr) jl ′ (qr).

(B17)

The real scalars Clν
l ′ν ′λμ are the Clebsch-Gordan coefficients,

and jl are spherical Bessel functions of the first kind.
To perform calculations, it is convenient to exploit the con-

servation of the total angular momentum L̂ = Ĵ + �̂, where
�̂ is the composite angular momentum of the bath:

�̂ =
∑
kλμν

b̂†
kλμ

J(λ)
μν b̂kλν. (B18)

Here, J(λ) is the three-dimensional (3D) vector of matrices
fulfilling the angular momentum algebra in the representation

of angular momentum λ, say J
( 1

2 )
z = (1 0

0 −1). As one can

easily check, the natural relations

�̂
2|k, λ, μ〉coll = λ(λ + 1)|k, λ, μ〉coll,

�̂z|k, λ, μ〉coll = μ|k, λ, μ〉coll
(B19)

hold for collective bath states |k, λ, μ〉coll. First described in
2016 [7], the angular momentum analog of the Lee-Low-Pines
(LLP) transformation [59] is then generated by the composite
angular momentum of the bath via

Ŝ = e−iφ̂⊗�̂z e−iθ̂⊗�̂y e−iγ̂⊗�̂z . (B20)
While the Euler angle operators (φ̂, θ̂ , γ̂ ) act in the Hilbert
space of the rotor, �̂ acts in the Hilbert space of the bath. By
virtue of the phononic operators b̂†

kλμ
and b̂kλμ being defined

as irreducible tensor operators, or spherical tensor operators,
of rank λ, the Wigner D matrices determine the transformation
rule for Bogoliubov modes (point 7 of Appendix D) via

Ŝ−1b̂†
kλμ

Ŝ =
∑

ν

D̂λ†
μν (�̂)b̂†

kλν
. (B21)

Combining the commutation relations (D11) with the identity∑
mm′μ

Clm
l ′m′λμD̂λ

μ0D̂l†
mνD̂l ′

m′ν ′ = Clν
l ′ν ′λ0, (B22)

the molecular-frame Hamiltonian is found to be

Ĥm. fr. = Ŝ−1Ĥlab. fr.Ŝ = αB(Ĵ′ − �̂)2 +
∑

k �=0,λμ

ω(k)b̂†
kλμ

b̂kλμ +
∑

k �=0,λ

Uλ(k)[b̂†
kλ0 + H.c.] +

∑
k,q �=0
λll ′ν

1W
l

l ′λ(k, q)Clν
l ′νλ0b̂†

klν b̂ql ′ν

+
∑

k,q �=0
λll ′ν

2W
l

l ′λ(q, k)Clν
l ′νλ0[b̂†

qlν b̂†
kl ′−ν

+ H.c.]. (B23)
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We have introduced the effective potentials

1W
l

l ′λ(k, q) = (ukuq + vkvq)

√
2l + 1

4π
W l

l ′λ(k, q) (B24)

and

2W
l

l ′λ(k, q) = ukvq

√
2l + 1

4π
W l

l ′λ(k, q). (B25)

The projection of the laboratory-frame angular momentum
operator Ĵ onto the molecular-frame axes is denoted by Ĵ′. Its
components Ĵ ′

k (k ∈ {−1, 0,+1}) can be expressed in terms of
the covariant spherical basis

e−1 = 1√
2

(
ex − iey

)
,

e0 = ez,

e+1 = − 1√
2

(
ex + iey

)
.

(B26)

The first advantage of Hamiltonian (B23) over (B1) is that
the former does not contain the impurity’s Euler coordinates
(θ, φ), allowing us to bypass the intractable angular momen-
tum algebra arising from the impurity-bath coupling, manifest
in Eq. (B15).

Second, the laboratory-frame eigenstate |L, M〉 =∑
jm

kλμi
ai

kλ jC
LM
jmλμ| jm0〉 ⊗ |k, λ, μ〉coll

i of total angular

momentum L and Z projection M (here the index i labels a
possible phonon configuration that results in the collective
bath state |k, λ, μ〉coll) is transformed into the many-body
state

Ŝ−1|L, M〉 =
∑
kλni

f i
kλn|L, M, n〉 ⊗ |k, λ, n〉coll

i , (B27)

where the coefficients are given by f i
kλn =

(−1)λ+n
∑

j ai
kλ jC

j0
L−nλn. Each state |LMn〉 in the super-

position (B27) is an effective symmetric-top state, with the
projection n of the total angular momentum onto the z axis
being entirely determined by the boson field; the canonical
transformation (B20) converts a linear-rotor molecule into
an effective symmetric top by dressing it with a boson field.
Hence, the Hamiltonian (4) is explicitly expressed through
the total angular momentum, a constant of motion, evident in
Ĵ′2Ŝ−1|L, M〉 = L(L + 1)Ŝ−1|L, M〉.

Third, in the strong-coupling limit of ξ = B/ max
k,λ

Uλ(k) �
1, the Hamiltonian (4) can be exactly solved by means
of an additional coherent state transformation [7], provided
quadratic terms are excluded. As a comparison, the beyond-
Fröhlich static Bose polaron can be solved exactly in one
dimension [39] and the ground polaron state is found to be
an exact multimode squeezing state. However, in the case of
the Bose angulon, the saddle-point equation for the mean-field
variational parameters cannot be solved in closed form, pro-
hibiting an exact solution of the beyond-Fröhlich static Bose
angulon even in the limit of ξ � 1. Exact diagonalization
(ED) is thus one of the few ways to make progress.

In the Lehmann representation (which corresponds to an
expansion in the many-particle eigenstates under the assump-
tion of a time-independent Hamiltonian [84]), the retarded

Green’s function of the angulon reads as

Gret,ang(E ) = lim
ε→0+

∑
L

∑
j

∣∣〈�NI|� ( j)
L

〉∣∣2

E − ε
( j)
L + iε

. (B28)

Here, the j index runs over all eigenstates �
( j)
L with associated

eigenvalues ε
( j)
L of Ĥm. fr. within the L block, and in order to

make the set of eigenstates complete, we need to sum over the
quantum number L as well. Recall that the noninteracting state
�NI is the one containing no phonons. The zero-momentum
angulon spectral function then reads as [16]

A(E ) = − 1

π
Im Gret,ang(E ) (B29)

and obeys the sum rule
∫

dE A(E ) = 1, where the integration
extends over all frequencies. To prove the sum rule, note that

Im lim
ε→0+

1

x + iε
= −πδ(x). (B30)

APPENDIX C: ANGULAR MOMENTUM
REPRESENTATION AND PHONON DENSITY PROFILES

Phonon creation and annihilation operators b̂†
k and b̂k

can be mapped from Cartesian coordinates k = {kx, ky, kz} to
spherical coordinates k = {k, θk, φk}. Yet, for the problem at
hand, we are interested in the angular momentum properties
of a rotating impurity immersed in a condensate. Hence, it
is much more convenient to work in the angular momen-
tum representation for the single-particle basis instead of the
Cartesian or spherical one. As we will now derive, the single-
particle basis change

b̂†
kλμ

= ki−λ

(2π )
3
2

∫
S2

dφkdθk sin θkYλμ(θk, φk )b̂†
k,

b̂†
k = (2π )

3
2

k

∑
λμ

iλY ∗
λμ(θk, φk )b̂†

kλμ

(C1)

is compatible with the frequently adopted [85] CCRs:

[b̂k, b̂†
k′ ] = (2π )3δ(3)(k − k′),

[b̂kλμ, b̂†
k′λ′μ′] = δ(k − k′)δλλ′δμμ′ .

(C2)

The presence of k′s in the transformation rule (C1) can be
made plausible via δ(3)(r − r′) = 1

r2 δ(θ − θ ′)δ(φ − φ′)δ(r −
r′). Although the transformation does not depend on the radial
basis functions, it is sensitive to the chosen angular basis func-
tions. The results above are obtained for the wave functions

ψkλμ(r, θk, φk ) =
√

2

π
k jλ(kr)Yλμ(θk, φk ). (C3)

One possibility to derive Eq. (C1) is to consider the action
of the operators b̂†

k and b̂k on the vacuum |0〉. We ignore the
fact that the eigenstates of the momentum operator are non-
normalizable states,

〈r|b̂†
k|0〉 = 〈r|ψk〉 = eikr

(2π )
3
2

. (C4)
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We also know that b̂†
kλμ

|0〉 = |ψkλμ〉 satisfies

b̂†
kλμ

|0〉 =
∑

k′
〈ψk′ |ψkλμ〉|ψk′ 〉 ≡

∑
k′

〈ψk′ |ψkλμ〉b̂†
k|0〉. (C5)

By inserting the plane-wave expansion combined with the
spherical harmonic addition theorem, we arrive at

〈ψk′ |ψkλμ〉 = 1

(2π )
3
2

∫
R3

d3r e−ik′rψkλμ(r)

= ki−λYλμ(θk′ , φk′ )
∫ ∞

0
dr r2 jλ(kr) jλ(k′r).

(C6)

The orthogonality identity
∫ ∞

0 dr r2 jλ(kr) jλ′ (k′r) = π
2k2 δ(k −

k′)δλλ′ for the spherical Bessel functions then yields

b̂†
kλμ

=
∑

k′
〈ψk′ |ψkλμ〉b̂†

k′

= ki−λ

∫
S2

dφkdθk sin θkYλμ(θk, φk )b̂†
k. (C7)

In view of our CCRs (C2), we need to add a small correction
to eliminate the factor (2π )3:

b̂†
kλμ

= ki−λ

(2π )
3
2

∫
S2

dφkdθk sin θkYλμ(θk, φk )b̂†
k. (C8)

The derivation of the other expression in (C1) follows the
same logic and will be omitted.

The real-space variant of the second equation in (C1) yields
the following expression for the phonon density nph(r) =
〈b̂†

rb̂r〉 in the impurity frame:

nph(r) =
∑
λμ
λ′μ′

i−λ+λ′

r2
Yλμ(θr, φr )Y ∗

λ′μ′ (θr, φr )〈b̂†
rλμb̂rλ′μ′ 〉.

(C9)

Using the real-space analog of the first equation in (C1),
inserting a Fourier transform in the integrand and discretizing
momentum, we evaluate the partial-wave contributions to

〈b̂†
rλμb̂rλ′μ′ 〉 = 2iλ−λ′

r2�k

π

kmax∑
k,k′=kmin

kk′ jλ(kr) jλ′ (k′r)〈b̂†
kλμ

b̂k′λ′μ′ 〉.

(C10)

Our ED algorithm works in the angular momentum represen-
tation as is evident from Hamiltonian (4). The expectation
values 〈b̂†

kλμ
b̂k′λ′μ′ 〉 can thus be calculated at once for the nu-

merical ground state. At first glance, the phonon density (C9)
is not necessarily real as the product of spherical harmonics
YλμY ∗

λ′μ′ contains the complex phase eiφr (μ−μ′ ). However, the
sum in Eq. (C9) is still real. To prove it, we consider the antiu-
nitary time-reversal operator T̂ defined by T̂ (α|k, λ, μ〉) =
α∗|k, λ,−μ〉 on the single-particle level. The time-reversal
operator is an involution (as expected for any system of
bosons): T̂ 2 = 1. Time-reversal symmetry is also a symmetry
of the system: [T̂ , Ĥm. fr.] = 0. Indeed, the b̂†b̂ term does not
couple phonons with different angular momentum projections
and the b̂†b̂† term excites two phonons with opposite angular
momentum projections. Using these insights one can show

that

〈b̂†
kλμ

b̂k′λ′μ′ 〉 = 0 for μ �= μ′ (C11)

and

〈b̂†
kλμ

b̂k′λ′μ〉 = 〈b̂†
kλ−μ

b̂k′λ′−μ〉 ∀ k, k′, λ, λ′, μ. (C12)

Real valuedness of nph now follows from standard properties
of spherical harmonics:

YλμY ∗
λ′μ + Yλ−μY ∗

λ′−μ = YλμY ∗
λ′μ + Y ∗

λμYλ′μ(−1)μ+μ

= 2 Re(YλμY ∗
λ′μ) ∈ R. (C13)

APPENDIX D: ANGULAR MOMENTUM ALGEBRA

Let us summarize some key results for symmetric tops,
proofs of which are either straightforward or can be found in
textbooks on angular momentum [81]. In this Appendix, the
angular momentum operators Ĵi and Ĵ ′

i of the main text turn
into differential operators Ji and Pi, respectively, in the Euler
angle representation, i.e., on the Hilbert space of Wigner D
matrices. Although derived in the latter representation, the fol-
lowing angular momentum properties are in fact independent
of the representation:

(1) The Wigner D matrices D j (e) can be defined via their
matrix elements as

〈 j, m|Û (ê)| j′m′〉 = δ j j′D
j
mm′ (e), (D1)

where the Euler angle operators ê = (φ̂, θ̂ , γ̂ ) specify the
rotation Û (ê) = e−iφ̂Ĵz e−iθ̂ Ĵy e−iγ̂ Ĵz . The conjugated Wigner D
matrices D j∗(e) are simultaneous eigenfunctions of the three
mutually commuting differential operators J 2, Jz, and Pz:

J 2D j∗
m′m(e) = jD j∗

m′m(e),

JzD
j∗
m′m(e) = m′D j∗

m′m(e),

PzD
j∗
m′m(e) = mD j∗

m′m(e).

(D2)

The operator P describes the internal angular momentum of
the rigid rotor in the body-fixed frame, obtained by projecting
the physical angular momentum operator J onto the body-
fixed axes f̂i.

The Wigner D functions thus represent wave functions of
a rigid symmetric top: They are eigenfunctions of the three
operators J 2, Jz, and Pz, whose eigenvalues are sufficient to
describe a symmetric top with three quantum numbers, as in
Eq. (B27).

(2) The action of the ladder operators J±1 on the wave
functions D j∗

m′m(e) is the standard one [81]:

J±1D j∗
m′m(e) =

√
j( j + 1) − m(m ± 1)D j∗

m′±1m(e),

JzD
j∗
m′m(e) = m′D j∗

m′m(e).
(D3)

However, the internal ladder operators P+1 = Px + Py and
P−1 = Px − Py act (counterintuitively) as step-down and
step-up “ladder” operators, respectively:

P±1D j∗
m′m(e) =

√
j( j + 1) − m(m ∓ 1)D j∗

m′m∓1(e). (D4)

(3) The physical angular momentum operators Ji fulfill
the standard commutation relations

[Ji,J j] = iεi jkJk, i, j, k ∈ {x, y, z} (D5)
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which are equivalent to

[Jμ,Jν] = −
√

2C1μ+ν
1μ1ν Jμ+ν, μ, ν ∈ {±1, 0}. (D6)

Yet, the commutation relations

[Pi,P j] = −iεi jkPk, i, j, k ∈ {x, y, z} (D7)

or

[Pμ,Pν] =
√

2C1μ+ν
1μ1ν Pμ+ν, μ, ν ∈ {±1, 0} (D8)

of the internal operators Pi qualify as anomalous, due to the
famous sign difference in the structure factors. That is, it is
the operators −Pi that satisfy standard angular momentum
commutation relations. This result is a direct consequence of
the fact that the Ji do not commute with the rotated axes f̂i

appearing in the definition Pi = f̂i · J .
(4) The operators Ji and Pi commute:

[Ji,P j] = 0, ∀ i, j ∈ {x, y, z}. (D9)

(5) The invariant squared total angular momentum opera-
tors J 2 = P2, i.e., the Casimir operators, satisfy

J 2 = − csc2 θ

(
∂2

∂φ2
+ ∂2

∂γ 2
− 2 cos θ

∂2

∂φ∂γ

)

− ∂2

∂θ2
− cot θ

∂

∂θ
. (D10)

(6) The Wigner D functions can also be defined as solu-
tions of the differential equations

= (−1)ν+1
√

j( j + 1)C jm−ν

jm1−νD j
m−νm′ (e),[

Pν, D j
mm′ (e)

] =
√

j( j + 1)C jm′+ν

jm′1ν D j
mm′+ν (e),

(D11)

where, for the sake of completeness, we note the operators at
hand:

J±1 = i√
2

e±iφ

[
∓ cot θ

∂

∂φ
+ i

∂

∂θ
± 1

sin θ

∂

∂γ

]
, J0 = −i

∂

∂φ
,

P±1 = i√
2

e∓iγ

[
± cot θ

∂

∂γ
+ i

∂

∂θ
∓ 1

sin θ

∂

∂φ

]
, P0 = −i

∂

∂γ
.

(D12)

(7) The Wigner D matrices appear in many studies involv-
ing angular momentum because they realize transformations
of covariant components of any irreducible tensor [Eq. (D13)
itself can be taken as their definition] of rank j under coor-
dinate rotations. For instance, the spherical harmonics ψ j,m,
eigenfunctions of a quantum particle moving in a spherically
symmetric field, or of linear rotors, with angular momentum
j and projection m transform as

ψ jm′ (θ ′, φ′) =
j∑

m=− j

ψ jm(θ, φ)D j
mm′ (e), (D13)

where (θ, φ) and (θ ′, φ′) are polar angles in the laboratory
frame and body-fixed frame, respectively.

APPENDIX E: EXACT DIAGONALIZATION:
IMPLEMENTATION DETAILS

Let us first motivate our adopted numerical routine. One
popular choice in the literature is diagrammatic quantum
Monte Carlo [DQMC] [86]. It is versatile and can be applied
to any dimension, any number of phonon branches, and all
types of couplings. The imaginary-time Green’s function is
calculated with a controlled stochastic error by performing a
random walk in the space of all Feynman diagrams. However,
DQMC has to face the so-called sign problem [87,88] which
is typically fatal to Monte Carlo approaches: The diagram-
matic expansions of the real-time Green’s functions consist
of complex-valued terms whose non-positive-definite weights
require careful separation of signs and magnitudes when
Monte Carlo sampling over them. For weak sign problems,
the estimators simply converge slower, yet for strong sign
problems the ratio of the statistical errors fluctuates wildly and
there is little that can be done. To extract the real-time Green’s
function, one could instead perform analytic continuation
of imaginary-time data [89], which is not straightforward
and equally ill conditioned for many worthwhile cases [90].
Obtaining information on excited states would also require
such bad-tempered analytic continuation techniques. Another
drawback of DQMC methods is that convergence can be slow.

There is thus a need for lighter and faster methods such
as the momentum average approximation [91], or ED. ED
constitutes a vastly simpler framework, circumvents the sign
problem, and provides a similar level of insight into the prop-
erties of the low-lying eigenstates and eigenvalues of quantum
impurity systems. It obtains Green’s functions directly in real
time, as opposed to imaginary time as in DQMC. Once the
enumeration of basis vectors is set up, the hashing trick (ex-
plained below) allows one to efficiently represent Hamiltonian
matrices or matrices corresponding to other quantities.

We illustrate some implementation choices for ED. An
efficient representation of ket states is needed. In our im-
plementation, we specify a ket |ψ〉 = |ψimp〉 ⊗ |ψph〉 via
|ψimp〉 = |L, n〉 (here n is the quantum number that specifies
the projection of the angular momentum onto the molecular
axis) and

|ψph〉 = ∣∣S0, NS0 , . . . , Smax, NSmax

〉
, (E1)

with NSi denoting the number of phonons in state Si. Note
that we have neglected the good quantum number M since we
do not assume any external field that would break rotational
symmetry. To save memory, the single-particle phonon state
label Si ∈ {0, 1, . . . , Smax} only appears in the definition (E1)
if it is occupied by at least one phonon. The total number of
available phononic states is given by

Smax + 1 =
(

kmax − kmin

�k
+ 1

) lmax∑
l=0

(2l + 1). (E2)

Here kmin, kmax, �k, and lmax are the chosen numerical pa-
rameters for the momentum discretization and the maximal
phonon angular momentum quantum number. For given L
and n quantum numbers, the number of a priori conceivable
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phononic configurations is

(Smax + Nph)!

Smax!Nph!
, (E3)

where Nph is the total number of phonons. However, Eq. (B27)
stipulates that the sum of the angular momentum projections
of the phonons onto the molecular z axis equals n, reducing
the number of permissible configurations substantially.

In an attempt to speed up the CPU-bound task of ED, we
employ the “cython.parallel” module available in Cython. To
save memory [the Hamiltonian Ĥm. fr. in Eq. (4) has numerous
zero entries] we put SCIPY’s package “sparse.csr_matrix” to
use, which implements the compressed sparse row (CSR)
format. In order to calculate eigenvalues and eigenvectors of
sparse matrices, our ED algorithm calls the SCIPY function
“scipy.sparse.linalg.eigsh,” which is a wrapper to ARPACK
algorithms. For the angulon spectral functions in Figs. 3–5,
we compute all eigenstates �

(α)
L in Eq. (B28) except for the

one insignificant per L block associated with the largest eigen-
value, avoiding two ARPACK runs per block.

As an improvement to the direct access table, we resort to
hashing, allowing us to use relatively small numbers as index
in a table called hash table. It is the hash function that converts
a possibly big key from the universe U into a small practical

integer value from the set of hash values H , h : U → H .
A good hash function should be efficiently computable and
distribute the keys uniformly over its output range. In view
of our universe consisting of ket states of the form |ψph〉 in
Eq. (E1), we choose the following injective hash function:

h(|ψph〉) =
Smax∑
Si=0

(Si + 1)S
NSi
max. (E4)

The sum in Eq. (E4) runs over each single-phonon state label
Si in state |ψph〉. Since the hash value might still become
considerably large, we further save memory by retaining only
the remainder of the hash values after division by some pre-
determined divisor [92], for instance 20.

The numerical discretization parameters we adopt on the
one-phonon level are �k = 0.02 (mbB)1/2, kmax = 4 (mbB)1/2

and �k = 0.05 (mbB)1/2, kmax = 4 (mbB)1/2 on the two-
phonon level. While eigenenergies exhibit subpercent level
convergence for one-phonon ED, increasing kmax to kmax =
5 (mbB)1/2 introduces at most 4% variations in the energy
levels for two-phonon ED. We expect that similar convergence
behavior holds for other quantities, including the spectral
function. The infinitesimal offset along the imaginary axis
when calculating the spectral function in Eq. (10) is ε =
0.05 B. Our calculations are performed with lmax = 1.
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