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Metallic quantized anomalous Hall effect without chiral edge states
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The quantum anomalous Hall effect (QAHE) is a topological state of matter with a quantized Hall resistance.
It has been observed in some two-dimensional insulating materials such as magnetic topological insulator films
and twisted bilayer graphene. These materials are insulating in the bulk but possess chiral edge states carrying
the edge current around the system. Here we discover a metallic QAHE in a topological insulator film with
a magnetic sandwich heterostructure, in which the Hall conductance is quantized to e2/h but the longitudinal
conductance remains finite. This effect is attributed to the existence of a pair of massless Dirac cones of surface
fermions, with each contributing half of the Hall conductance due to the quantum anomaly. It is not characterized
by a Chern number and is not associated with any chiral edge states. Our study offers insights into topological
transport phenomena and topological metallic states of matter.
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Introduction. The quantum anomalous Hall effect (QAHE)
is a quantum transport phenomenon in two-dimensional fer-
romagnetic materials in which the Hall resistance is quantized
to the von Klitzing constant h/e2 while the longitudinal resis-
tance disappears [1–7]. The materials are band insulators in
the bulk and possess chiral edge states carrying a dissipation-
less electric current around the system boundary [8,9]. The
electronic band structures of the materials are characterized
by the Chern number [10,11], which equals the number of
chiral edge states [12]. Over the last decade the effect has been
observed experimentally in a series of topological insulator
(TI) films and two-dimensional materials [13–24]. The picture
of the chiral edge states is also confirmed experimentally
[25,26]. Recently, the half-quantized Hall conductance was
reported in a magnetic doped TI film [27]. The power-law
decay of the Hall current indicates the possible existence of
a distinct QAHE which is not characterized by the Chern
number or chiral edge state [28,29]. This provides a possible
route to explore novel types of QAHE.

A TI film hosts a pair of massless Dirac cones of elec-
trons near the two surfaces. The exchange interaction of
magnetic ions or ferromagnetic magnetization breaks time-
reversal symmetry and may manipulate the nature of the
surface states [30]. Here we propose a unique type of QAHE
with no chiral edge states in a magnetically doped TI film in
which the Hall conductance is quantized to be e2/h while the
longitudinal conductance is finite. The Hall resistivity is then
not quantized. The magnetically doped layers are confined
near the center to form a sandwich structure, as illustrated in
Fig. 1. Based on numerical calculation and analytical analysis
of the film, it is observed that increasing the concentration
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x of doped Cr atoms or increasing the Zeeman field may in-
duce a transition of the Hall conductance from zero to −e2/h;
meanwhile, the band structure shows that no energy gap opens
as the magnetically doped layer is far away from the top and
bottom surfaces. Further analysis shows that the TI film hosts
a pair of massless Dirac fermions; one carries e2/2h, and the
other carries −e2/2h of the Hall conductance in the absence
of the Zeeman field. An increasing Zeeman field drives one
of the gapless Dirac cones and the accompanying gapped
Dirac cone to exchange their masses, and the sign of the Hall
conductance changes from e2/2h to −e2/2h. Consequently,
the total Hall conductance becomes −e2/h (the sign is deter-
mined by the direction of the Zeeman field). The longitudinal
conductance is finite, as no gap opens in the surface states, and
has a minimal value when the chemical potential sweeps the
Dirac point of the surface electrons. Hence, chiral edge states
localized near the system boundary do not exist.

Magnetic sandwich TI film. We consider a symmet-
ric TI film with a magnetic doped layer at the center
mQLX2Te3/3QLX 2−xCrxTe3/mQLX 2Te3, with X = Bi, Sb
and m = 4, as shown in Fig. 1. A larger integer m does not
change the main result in this proposal. Bi2Te3 and Sb2Te3 are
prototypes of strong TIs [31]. Here 1QL indicates a quintuple
layer of X and Te atoms and is about 1 nm in Bi2Te3. The
Dirac cone of surface states was observed explicitly using
angle-resolved photoemission spectroscopy [32,33] and was
also evidenced by a series of transport measurements. The
exchange interaction between the p-orbital electron from Bi
and Te and magnetic ions of Cr may induce a finite magne-
tization in X2−xCrxTe3 [2,30]. Tuning the concentration x of
Cr can change the exchange interaction and even makes it a
ferromagnetic insulator [34]. The magnetic element Cr was
modulation doped only near the center layer. The nondoped
layers are thick enough that the top and bottom surface elec-
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FIG. 1. (a) Schematic of the magnetic sandwich heterostructure
of a (Bi, Sb)2Te3 TI film with the concentration x of magnetically
doped Cr atoms. (b) The transition from two pairs of massless and
massive Dirac fermions with no net Hall conductance σH = 0 at low
concentration x to those with a quantized Hall conductance σH =
− e2

h at higher concentration x (the sign depends on the direction of
magnetization). C represents the Hall conductance in units of e2/h,
while the color represents the sign value of the Berry curvature,
with blue for negative and red for positive. The masses of a pair of
massless and massive Dirac fermions (in the horizontal row) at lower
energy are exchanged by increasing the concentration x, while the
higher-energy parts of the Dirac fermions remain almost unchanged.
(c) Schematic of the quantized Hall conductance σxy and (d) the
longitudinal conductivity σxx as a function of the chemical potential
μ at a higher doping concentration x.

trons do not open an energy gap. The topological nature of the
band structures of Bi2Se3 and Bi2Te3 can be well described by
the tight-binding model for the electrons of the Pz,↑ and Pz,↓
orbitals from Bi and Te or Se atoms near the Fermi energy
[31,35],

HTI =
∑

l

�
†
l M�l +

∑
l,α=x,y,z

(�†
l Tα�l+α + �

†
l+α

T †
α �l ),

(1)

where M = (m0 − 2
∑

α tα )σ0τz, Tα = tασ0τz − i λα

2 σατx, and
�

†
l and �l are the four-component creation and annihila-

tion operators at position l = (lx, ly, lz ). The Pauli matrices
σα and τα act on the spin and orbital indices, respectively.
Adapting a model homogeneous in the x − y plane leads to
t‖ = tx = ty, t⊥ = tz, λ‖ = λx = λy, and λ⊥ = λz. The mag-
netic effect induced by Cr is modeled by introducing the
Zeeman field along the z direction, VZ = ∑

l Vz(lz )�†
l σzτ0�l .

Vz(lz ) = αt⊥ in the magnetic doped layers (using t⊥ as a unit),
with lz = ±1/2, . . . ,±(mz − 1)/2, where film thickness Lz

and the magnetic layer thickness mz are assumed to be even,
and equals zero in the nondoped layers. Here we ignore the
possible change in the bulk gap m0 in X 2−xCrxTe3 caused by
doping.

We consider the periodic boundary condition in the x and
y directions. The band structure of the film is calculated nu-
merically by means of the exact diagonalization method as
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FIG. 2. The band structure near the � point with ky = 0 (a) in
the absence of magnetic doping (α = 0) and (b) in the presence of
magnetic doping (α = 0.9). The gapless dispersions for the surface
states in (a) and (b) are doubly degenerate. (c) The calculated Hall
conductance as a function of the chemical potential μ. (d) The Hall
conductance as a function of α at different chemical potentials.
We set the model parameters as λ‖ = 0.41 eV, λ⊥ = 0.44 eV, t‖ =
0.566 eV, t⊥ = 0.4 eV, m0 = 0.28 eV, a = b = 1 nm, and c = 0.5 nm
if there is no other specific indication [31]. The thickness Lz = 22,
and the magnetic layers mz = 6. One QL is about 2c = 1 nm.

shown in Fig. 2(a) in the absence of magnetic layers (α = 0)
and Fig. 2(b) in the presence of magnetic layers (α = 0.9). It is
observed that a pair of massless Dirac fermions exists in both
cases. The dispersions are doubly degenerate near the crossing
point at k = 0. The presence of the Zeeman field α does not
open an energy gap in the surface states while α varies from 0
to 0.9. It is reasonable that the massless surface electrons are
mainly located near the top and bottom surfaces, which are
far away from the magnetic ions in the magnetic layers (see
Fig. S3 in the Supplemental Material [36]). With the numeri-
cal energy eigenvalues and eigenvectors, the Hall conductance
can be calculated numerically by means of the Kubo formula
for electric conductivity [37]. The Hall conductance becomes
nonzero in the presence of α when the Fermi level crosses
the conduction and valence bands with n > 1. As shown in
Fig. 2(c), a plateau of zero Hall conductance appears near
μ = 0 for a weak field, while for a strong Zeeman field α,
a flat plateau of σH = − e2

h appears. The detailed calculation
presented in Fig. 2(d) shows the Hall conductance changes
from zero to − e2

h with increasing Zeeman field α for fixed
chemical potentials. Considering that there is no band gap
while α changes from 0 to 0.9, the longitudinal conductivity
must be finite. Thus, the appearance of the Hall conductance
indicates that it differs from the conventional QAHE in an
insulating phase.

Equivalent Dirac-like fermions. To explore the physi-
cal origin of the quantized Hall conductance, we study the
band structure of the film in the presence of the Zeeman
field. First, we adopt the Fourier transformation �lz,k =∑

lx,ly
exp[ilxkx + ilyky]�lx,ly,lz . The tight-binding model in

Eq. (1) with the Zeeman field Htot = HTI + VZ can be split
into two parts, Htot = H‖ + H1D(α). The in-plane spin-orbital
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FIG. 3. Evolution of the effective mass m̃n,χ (kx, ky = 0) (n =
1, 2). m̃1,χ and m̃2,χ (a) with χ = + at α= 0, (b) with χ = + at α=
0.9, (c) with χ = − at α = 0, and (d) with χ = − at α = 0.9.

coupling H‖ = ∑
lz,k �

†
lz,k

λ‖(sin kxσx + sin kyσy)τx�lz,k. The
part H1D(α) for each k is equivalent to a one-dimensional
TI with the k-dependent band gap m(k) = m0 − 4t‖(sin2 kx

2 +
sin2 ky

2 ) in a Zeeman field. In this case, [σz, H1D] = 0, such
that H1D can be diagonalized to have a series of energy eigen-
values m̃n,χ (kx, ky ) and eigenvectors 	̃k,n,χ = ∑

lz
Un,χ ;lz�lz,k ,

with n = 1, . . . , Lz and χ = ±. Using the eigenvectors as
a new basis, we find that Htot is equivalently reduced
to a series of two-dimensional Dirac-like models Htot ≡∑

k,n,χ=±1 	̃
†
k,n,χhn,χ (k)	̃k,n,χ , with

hn,χ (k) = λ‖(sin kxσx + sin kyσy) + m̃n,χ (k, α)σz. (2)

The energy dispersions are En,χ,± =
±

√
λ2

‖(sin2 kx + sin2 ky) + m̃2
n,χ , where m̃n,χ plays the role of

a momentum-dependent mass term for the Dirac fermions.
In the absence of magnetic doping, i.e., α = 0, H1D can

be solved exactly. For details, the solutions of the energy and
wave function can be found in Ref. [36]. The masses have
the relation m̃n,+ = −m̃n,− = mn, which gives rise to double
degeneracy in the band structure rooted in the combination
of the time-reversal symmetry and inversion symmetry. For
m(k) > 0, H1D is topologically nontrivial and has zero-energy
modes m1 = 0; for m(k) < 0, H1D is topologically trivial,
and the lowest-energy modes m1 = m(k). Here the film is
thick enough that the finite-size effect can be ignored [38].
Therefore, in Eq. (2), n = 1 corresponds to the pair of gap-
less bands shown in Fig. 2. The spatial distribution of the
wave function of m1 = 0 is mainly concentrated near the top
and bottom surfaces, as expected. The states with nonzero
m1 or at large k are spatially distributed in the bulk, which
indicates that the surface states evolve into the bulk states
with the variation of the wave vector k. Here the complete
band structure of the gapless Dirac fermions in the entire
Brillouin zone consists of the surface electrons for m(k) > 0
or small k and those extended in the z direction for m(k) < 0
or large k [see Fig. 3(a)]. For n � 2, all mn(k) at k = 0
are not equal to zero, which means the energy bands En,χ

open an energy gap at the point (see Sec. SI in Ref. [36]).
For a small k, hn,χ (k) � λ‖(kxσx + kyσy) + χmn(0)σz. In
other words, all the bands can be regarded as massive Dirac
fermions.

In the presence of magnetic doping, the Zeeman field
VZ will change the band structures by altering effective
mass m̃, while the linear part vertical to the z direction
remains unchanged due to the degrees of freedom decou-
pling. In the basis of the energy eigenstates of H1D(α) at
α = 0, the Zeeman term can be expressed as αIS (k)τ0σz,
where IS (k) is an Lz × Lz matrix (see Sec. SII in Ref. [36])
that is numerically computable. Thus, H1D is projected into
the form [

⊕Lz
n=1 mnτz + αIS (k)τ0]σz, and further diagonal-

izing this provides a bijection which maps the projected
Hamiltonian form into the mass term ⊕nm̃n,χ (k, α)σz. Con-
fining ourselves to the subspace with σz = +, we can then
track the evolution and interaction of the mass terms m̃n,χ

between n = 1 and n = 2 blocks with increasing α for a given
χ . What stands out in the process is an exotic grafting behav-
ior illustrated in Fig. 3: viewed from left to right, while the
masses m̃n,+(n = 1, 2) maintain their shapes, m̃n,−(n = 1, 2),
which represent one massless Dirac cone plus one massive
Dirac cone, will fully exchange their low-energy parts with
increasing α, i.e., massless ←→ massive. By increasing α,
m̃n=1,− and m̃n=2,− behave as if they cross around αc ≈ 0.74
and then separate, during which the detailed dynamic ex-
change is revealed (see Sec. SV in Ref. [36]). On the other
hand, what essentially remains unchanged is the high-energy
part of each cone. Then since m̃n,χ , with n = 1, 2, are natu-
rally assigned with opposite signs for their high-energy parts,
viewed from the low-energy perspective, their high-energy
masses exchange between massless and massive cones. The
induced mass exchange of the massless and massive Dirac
fermions is closely associated with the sign change of the Hall
conductance.

Quantized Hall conductance. The Hamiltonian in
Eq. (2) can be expressed in terms of the spin texture d =
(λ‖ sin kx, λ‖ sin ky, m̃n,χ (kx, ky))/En,+, hn,χ = En,+d(k) · σ .
Using the Kubo formula, the Hall conductance is
given by

σH = −e2

h

1

4π

∫
dkxdky

4π
d · [

∂kx d × ∂ky d
]
( fk,+ − fk,−), (3)

where fk,± = �(μ − En,±) is the Heaviside step function for
the Fermi-Dirac distribution at zero temperature and μ is the
chemical potential [7,39]. For the massive Dirac fermions,
the values of m̃n,χ at k = (0, 0) and k = (π, π ) have the
same sign, and band inversion does not exist in the first
Brillouin zone. The bands are always topologically trivial
such that the fully filled bands, i.e., μ = 0, always have no
Hall conductance, which is consistent with the Thouless–
Kohmoto–Nightingale–den Nijs theorem [10]. For massless
Dirac fermions, m̃n,χ = 0 near k = 0. In this regime, d ·
[∂kx d × ∂ky d] = 0, which indicates that the Berry curvature of
the band vanishes. Nonzero Berry curvature comes only from
the part of nonzero m̃n,χ or the regime of large k. The Hall
conductance is half quantized for μ located within the regime
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of m̃n,χ = 0, σH = e2

2h sgn[m̃n,χ (π, π )]. The quantization is
protected by the emergent parity symmetry near the Fermi
surface [29,40].

Based on the mass-exchange picture, we have a theoretical
explanation for the change in the Hall conductance induced
by the Zeeman field in Figs. 2(c) and 2(d). The film hosts
a series of massive and massless Dirac fermions. For our
purpose, we focus on the bands of n = 1 and n = 2 because
all other massive Dirac fermions (n � 3) make no contribu-
tion to the Hall conductance when they are fully filled for
a chemical potential near μ = 0. In the absence of the Zee-
man field, the film hosts a pair of massless Dirac fermions,
in which one has + e2

2h and the other has − e2

2h due to the
sign difference of the mass terms at large k. The total Hall
conductance is zero, as expected. The presence of a weak
Zeeman field does not change this situation. Nevertheless,
with a holistic view, when the Zeeman field is increased
further, one massless Dirac fermion and one massive Dirac
fermion exchange their low-energy masses; meanwhile, their
higher-energy parts remain unchanged but have different
signs. Equivalently, the massless Dirac fermion changes
the sign of the massive term at higher energy as viewed
from the low-energy perspective. Consequently, its Hall
conductance changes from + e2

2h to − e2

2h . During this process,
the other massless Dirac Fermion remains with its negative
half-quantized Hall conductance unchanged, and the addition
of two massless Dirac fermions gives a quantized Hall con-
ductance of − e2

2h − e2

2h = − e2

h .
Absence of chiral edge states. There are no chiral edge

states around the system boundary in these paired gap-
less Dirac fermions. The quantum Hall conductance is not
governed by the Chern number and does not satisfy the con-
ventional bulk-edge correspondence [12]. We calculated the
local density states at the x-z open surface at y = 0 with
the wave vector kx as a function of lz in Fig. 4(a), where
there is clearly no dispersion that connects the lateral sur-
face valence and conduction bands, which is opposite to
the conventional case. This illustrates explicitly that chiral
edge states do not exist along the system boundary. The
asymmetric local density of states between kx and −kx re-
flects the fact that a chiral edge current exists for the filled
bulk states. The states carrying the chiral edge current grad-
ually become prominent when immersed in the middle of
z from its top surface. Furthermore, it is found that a chiral
edge current whose amplitude is proportional to the chem-
ical potential still exists due to the time-reversal symmetry
breaking caused by the Zeeman coupling [28]. As the Zee-
man field is parallel to the lateral surface, the lateral surface
states remain gapless. For comparison, we also present the
local density of states for a magnetic sandwich heterostructure
exhibiting the conventional or insulating QAHE in Fig. 4(b).
The Hall conductance is σH = − e2

h and was measured experi-
mentally [34,41]. It is shown that a linear dispersion connects
the valence and conduction bands, evidencing the existence of
a chiral edge state. This reflects the bulk-edge correspondence
in the conventional QAHE. This is opposite to Fig. 4(a). The

(a)

(b)

(e
V
)

(e
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)

FIG. 4. The lateral local densities of states ρ(lz, kx, E ) for
(a) metallic and (b) insulating/conventional QAHE in a magnetic
topological insulator thin film. (a) The middle magnetic layer of
mz = 6. (b) The top and bottom magnetic layers of mz = 2. The
film thickness is Lz = 22, and the lattice site lz = ±1/2, . . . , ±(Lz −
1)/2. The width Ly = 20. Three equal-size plots shown from left to
right indicate the local density of states at three different positions,
lz = 10.5 (top), lz = 0.5 (middle), and lz = −10.5 (bottom). The
rightmost plots provide schematic side-view diagrams of the system,
together with the amplified local density of states near (ky, E ) ∼
(0, 0) at the y-front bottom. The Zeemam field α = 0.8.

presence and absence of the chiral edge states illustrate the
topological distinction of the two phases, although their Hall
conductances are identical.

Discussion. In the field theory, the massless Dirac fermions
possess parity symmetry. When the Dirac fermions are cou-
pled to the electromagnetic field, its action fails to restore
the symmetry in any regularization and is characterized by a
half-quantized Hall conductance. The discussion of the parity
anomaly in condensed matter dates back to the early 1980s
[42–44]. It has attracted extensive interest since the discovery
of TIs, as the massless Dirac fermions can exist on the surface
[45–47]. The film here provides a platform to explore the
related physics of the parity anomaly. The massless Dirac
fermions on the surfaces are accompanied by the presence of
the nonzero zero term m̃n,χ at large k, which plays the role of
the regulator of Dirac fermions in the field theory. Thus, the
nonzero Hall conductance is determined by just the sign of
m̃n,χ at k = 0 and large k, independent of the specific form
and the amplitude of m̃n,χ . In this sense, the present work
reflects the physics of the quantum anomaly. However, we
should keep in mind that the term has already broken the
parity symmetry explicitly.
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