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We demonstrate that a class of stable Z2 monopole charge Dirac point (Z2DP) phases can robustly exist in real
materials, which is counterintuitive: that is, a Z2DP is unstable and generally considered to be only the critical
point of a Z2 nodal line (Z2NL) characterized by a Z2 monopole charge (the second Stiefel-Whitney number
w2) with space-time inversion symmetry but no spin-orbital coupling. We explicitly reveal the higher-order
bulk-boundary correspondence in the stable Z2DP phase. We propose the alternating-twist multilayer graphene,
which can be regarded as 3D twisted bilayer graphene (TBG), as the first example to realize such stable Z2DP
phase and show that the Dirac points in the 3D TBG are essentially degenerate at high-symmetry points protected
by crystal symmetries and carry a nontrivial Z2 monopole charge (w2 = 1), which results in higher-order hinge
states along the entire Brillouin zone of the kz direction. By breaking some crystal symmetries or tailoring
interlayer coupling we are able to access Z2NL phases or other Z2DP phases with hinge states of adjustable
length. In addition, we present other 3D materials which host Z2DPs in the electronic band structures and phonon
spectra. We construct a minimal eight-band tight-binding lattice model that captures these nontrivial topological
characters and furthermore tabulate all possible space groups to allow the existence of the stable Z2DP phases,
which will provide direct and strong guidance for the realization of the Z2 monopole semimetal phases in (among
others) electronic materials, metamaterials, and electrical circuits.
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Introduction. The breakthrough in magic-angle twisted bi-
layer graphene (TBG) makes it clear that the twist, as a
powerful control method, can dramatically manipulate the
physical properties of layered materials [1–4]. In the rapid
development of this field, numerous new twisted systems
have been experimentally prepared, such as twisted tri-
layer graphene [5,6], twisted double-bilayer graphene [7,8],
alternating-twist four-layer and five-layer graphene [9],
twisted transition-metal dichalcogenide [10], twisted hexag-
onal boron nitride [11,12], etc. It opens exciting possibilities
for engineering exotic quantum states by the twist. A variety
of novel quantum states are predicted or observed experi-
mentally in the twisted systems, including unconventional
superconducting states [2,3], topological superconducting
states [13,14], quantum anomalous Hall states [4], quan-
tum spin Hall states [15], high-order topological-insulating
states [16,17], and so on [18–22].

Topological semimetals (TSMs) [23–35] are materials
whose band structures own gap-closing points, lines, or sur-
faces near the Fermi level. Recent studies show that the TSMs
with nodal lines [36–40], or Dirac points (DPs) [38,40,41],
can bear a 2D topological invariant called Z2 monopole
charge protected by the space-time inversion (PT ) symmetry
in the absence of spin-orbital coupling. The topology of the
Z2 monopole charge Dirac semimetals (Z2DSMs) is charac-
terized by the second Stiefel-Whitney (SW) number w2 (also
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called the real Chern number) [37,38,42,43]. Unlike the con-
ventional Dirac semimetals, which do not belong to any of the
four common characteristic classes, i.e., Chern class, Stiefel-
Whitney class, Pontryagin class, and Euler class, the Z2DSMs
belong to the Stiefel-Whitney class [37,44]. Previous studies

FIG. 1. (a) Top view (top panel) of an alternating-twist multi-
layer graphene and its front view (bottom panel) with hinge states.
The twisted angles of adjacent layers have the same magnitude but
opposite direction. (b) Schematic of the stable Z2 monopole Dirac
points protected by crystalline symmetry and the corresponding
higher-order topology. The stable Dirac points are at the high-
symmetry points (blue dots) and carry a nontrivial Z2 monopole
charge. Each 2D kz plane except kz = ±π can be viewed as a 2D
Stiefel-Whitney insulator, which has two zero modes (green dots) at
a pair of PT -related corners. These corner zero modes make up the
hinge states (green lines).

2469-9950/2023/108(24)/L241406(6) L241406-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1028-2454
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L241406&domain=pdf&date_stamp=2023-12-27
https://doi.org/10.1103/PhysRevB.108.L241406


QIAN, LI, AND LIU PHYSICAL REVIEW B 108, L241406 (2023)

mainly focused on the Z2 monopole charge nodal line (Z2NL)
semimetals [37,40,41], since the Z2NLs are doubly charged,
characterized by 1D winding number and the second Stiefel-
Whitney number, and the two topological charges result in
different boundary states at distinct boundaries, i.e., 2D drum-
head surface states and 1D hinge states. In contrast, the Z2

monopole charge Dirac point (Z2DP) phase was considered
a critical phase in the evolution of Z2NLs, unstable in real
materials, and having only surface Fermi arcs. However, such
surface Fermi arcs are not topologically protected [45].

In this Letter, we demonstrate the stability of Z2DPs
with crystal symmetries and clearly show the topologically
protected robust hallmark higher-order bulk-boundary corre-
spondence in the Z2DP phase. We predict the alternating-twist
multilayer graphene (ATMG), which is plotted in Fig. 1(a)
and considered as 3D TBG, as the first example of such sta-
ble Z2DSM materials from density functional theory (DFT)
calculations and analytic analysis. We take the ATMG with a
large twist angle (21.78◦) and thus strong intervalley scatter-
ing as an instance to explicitly show the DPs, Z2 monopole
charge, and higher-order hinge states. The stable DPs are
protected by PT and other crystalline symmetry operations.
We build the effective models for the 3D TBGs. By applying
strain or pressure we are able to access Z2NLs or introduce
another pair of Z2DPs resulting in the hinge states with
adjustable length. Furthermore, we generalize our discus-
sion, tabulate all possible space groups supporting the stable
Z2DPs, and present the corresponding effective models. We
suggest such stable Z2DSMs can also be realized in phonons
and metamaterials, such as acoustics, photonics, and electrical
circuits, with the allowable space groups.

Geometry and symmetry. We first introduce the crystal
structures and symmetry of 2D TBGs. The TBG is constructed
by rotating the two layers of AA-stacked bilayer graphene
around the center of the hexagonal lattice by −θ/2 and
+θ/2, respectively. For generic θ , the translation symmetry
is broken by the twist. The moiré translational symmetry
is retained for the specific twist angles, which can take
the form of θ (m, n) = arccos[(3m2 + 3mn + n2/2)/(3m2 +
3mn + n2)], where m and n are coprime positive integers [46].
The corresponding lattice constant of the moiré unit cell is
L = a

√
(3m2 + 3mn + n2)/[gcd(n, 3)], where a is the origi-

nal lattice constant and gcd represents the greatest common
divisor. Then, we consider a structure of ATMG where the
twisted angles of adjacent layers have the same magnitude but
opposite direction as shown in Fig. 1(a). The ATMG can be
viewed as a 3D TBG with two layers of graphene in each unit
cell.

The 2D TBG crystalizes in the hexagonal symmorphic
space group P622 with C6z and C2x symmetry about the
out-of-plane z and in-plane x axes but no inversion symme-
try (P). The 3D TBG belongs to the nonsymmorphic space
group P6/mmc (No. 192), which includes C6z, P , and C′

2xy =
{C2xy|00 1

2 }. Stacking gives 3D TBG some symmetry opera-
tions that 2D TBG does not have, which dramatically affects
the topology and band degeneracy of the system.

Band structure, Z2 topology, and higher-order bulk-
boundary correspondence. In stark contrast to the small twist
angle limit (� 1◦), the U (1) valley symmetry in TBGs is

FIG. 2. (a) The band gap at K point versus the commensuration
cell size N . The inset shows the band structure near K point of
the 3D TBG with N = 7 (θ = 21.78◦). (b) Brillouin zone and the
high-symmetry points. Blue dots represent the Dirac points at H/H ′

points. (c) Band structure of the 3D TBG with θ = 21.78◦ from
DFT calculation. M+

3 and M−
1 are representations of the valence

and conduction bands at M. (d) The magnified view of the regions
near K , H , and high-symmetry line KH . K6 and H1H2 are band
representations at K and H . (e) Wilson loop spectrum for the 3D
TBG on the sphere enclosing H point (blue lines) and torus of kz = 0
(red lines). (f) Hinge Fermi arcs of the 3D TBG along the kz direction.

broken at a large angle with a gap opened at the K point due
to the intervalley scattering [16,47]. The size of the gap at
K depends on the size of the commensuration cell N with
N = (L/a)2 and decays rapidly as N increases, as shown in
Fig. 2(a), and the 3D TBG with N = 7 has the largest band gap
at the K point, about 60 meV. Figure 2(c) shows the DFT band
structure of

√
7 × √

7 (N = 7, θ = 21.78◦) 3D TBG. The
magnified views of the regions near K , H , and high-symmetry
line KH are plotted in Fig. 2(d). The corresponding band
representations are also given. The band gap is about 20 meV
near K . As kz increases, the band gap becomes smaller and
smaller and finally the bands close at H . The bands are double
degenerate along the KH line protected by the C3z and PT
symmetry and become a fourfold degenerate point at H . The
band gap of 3D TBG around the K point is dramatically
affected by the layer distance. Under pressure, the band gap
near K can reach 0.1 eV at the layer distance of 2.95 Å (3.3 Å
without pressure) (see details in the Supplemental Material
(SM) [48]).

The Z2 monopole topology for a Z2DP or Z2NL can
be characterized by the second Stiefel-Whitney number w2,
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which can be calculated efficiently by using the Wilson loop
method [37]. We calculate the Wilson loop of the sphere
enclosing the DP (H point), as shown in the left panel of
Fig. 2(e). This Wilson loop spectrum exhibits w2 = 1 with the
characteristic winding of a Z2DP, as it only has one crossing
point on � = π . Normally, a nontrivial Z2NL can shrink
to a Z2DP with only critical parameters. Such Z2DPs are
not stable under the protection of PT symmetry. We point
out that one new kind of Z2DP can stably exist at certain
high-symmetry points with additional crystalline symmetry
operations forming essential degenerate points, such as in the
3D TBG. These Z2DPs are even more stable than Z2NLs
because they are pinned at high-symmetry points and there-
fore cannot be annihilated without symmetry broken.

The ATMGs (3D TBGs) with nontrivial Z2 monopole
topology have a higher-order bulk-boundary correspondence
with a hallmark hinge state, which is shown in Fig. 2(f) and
calculated by the recursive hinge Green function method, as
described in the SM [48]. To better understand the higher-
order bulk-boundary correspondence, we further calculate the
Wilson loop spectrum at the planes of kz ∈ (−π, π ), with
the kz = 0 plane shown in the right panel of Fig. 2(e). The
crossing points on � = 0 and � = π in the Wilson loop are
both odd numbers, which indicates the w2 = 1. Each slice
with a specific kz in the Brillouin zone (BZ) is a torus and can
be taken as a 2D subsystem. In the 3D TBG, the entire kz slices
except kz = ±π carry nontrivial w2 = 1. Therefore, each slice
in the region of (−π, π ) is a 2D Stiefel-Whitney insulator,
which has a pair of topologically protected corner zero modes,
as schematically shown in Fig. 1(b). Such zero modes from
all of these nontrivial kz slices make up the topologically
protected hinge states on a pair of PT -related hinges [49].

Symmetry-protected essentially degenerate Z2DPs and
effective models. At H/H ′ points of 3D TBG, the
Z2DPs are protected by not only PT symmetry but
also C±

3z, σ̃d = {σd |00 1
2 } and Mz. We first demonstrate

an essentially degenerate DP at H with these symme-
try operations. The algebra of these symmetry operations
can be written as (MzPT )2 ≡ A2 = 1, σ̃ 2

d = −1,C±
3zA =

AC±
3z,C±

3zσ̃d = σ̃dC∓
3z,Aσ̃d = σ̃dA [48]. The Bloch states can

be chosen as the eigenstates of C+
3z, denoted as |φ〉 with the

eigenvalues φ = 1, e±i 2π
3 . Since C+

3z commutes with A and

Ai = −i, the two states |ei 2π
3 〉 and A|ei 2π

3 〉 would be degen-
erate, as C+

3 A|ei 2π
3 〉 = e−i 2π

3 A|ei 2π
3 〉. Similarly, the two states

σ̃d |ei 2π
3 〉 and σ̃dA|ei 2π

3 〉 are degenerate. Since (σ̃dA)2 = −1
and 〈ei 2π

3 |σ̃dA|ei 2π
3 〉 = 0, the two degenerate states |ei 2π

3 〉
and A|ei 2π

3 〉 and their Kramers-like partners σ̃dA|ei 2π
3 〉 and

σ̃d |ei 2π
3 〉 are linearly independent. Consequently, the four

states {|ei 2π
3 〉, A|ei 2π

3 〉, σ̃d |ei 2π
3 〉, σ̃dA|ei 2π

3 〉} must be degener-
ate at the same energy, forming an essentially degenerate DP.

Constrained by these symmetry operations [48], the k· p
model around H expanded to the first order of q = k − H
reads

HDP = α(qx�x,z − qy�y,0) + qz(β1�x,x + β2�y,x ), (1)

where α and βi are real parameters and �i, j = σi ⊗ σ j . The
energy eigenvalues are EDP = ±√

α2ρ2 + β2q2
z ± 2α|β2qz|ρ

FIG. 3. (a) Band structures of the k· p model without/with a
perturbation term (blue solid/red dashed lines), which indicate a
Dirac point and nodal line, respectively. The inset shows the respec-
tive Wilson loops. (b) The band structure of the minimal TB lattice
model. (c) Wilson loops of a sphere enclosing the H point and a torus
(kz = 0 plane). (d) Hinge states of the TB model in the Z2DP phase.

with ρ =
√

q2
x + q2

y and β =
√

β2
1 + β2

2 . One can see

the fourfold degenerate DP located at qx = qy = qz = 0
[Fig. 3(a)]. To confirm the Z2 topological charge of the
model, we calculate the Wilson loop of a sphere enclos-
ing the DP, which is nontrivial with w2 = 1 [Fig. 3(a)].
A perturbation term m0σ0 ⊗ σz, which breaks the σ̃d ,
is added on the HDP and the energy eigenvalues are

ENL = ±
√

(
√

β2
2 q2

z + m2
0 ± αρ)2 + β2

1 q2
z . One can see that the

valence and conduction bands touch at qz = 0 and ρ =
|m0/α|, indicating that the Z2DP is split into a NL [Fig. 3(a)].
Moreover, the Z2 monopole charge is preserved in the NL,
resulting in a Z2NL [Fig. 3(a)]. The other NLs (ρ = 0) from
two valence or conduction bands link with the Z2NL.

To further explore the higher-order bulk-boundary corre-
spondence of the Z2DPs and get a better fitting with the
3D TBG in the band representation, we construct a minimal
tight-binding (TB) lattice model. The model assumes dxz and
dyz symmetry orbitals at the Wyckoff position 4d of a hexag-
onal lattice with nonsymmorphic space group P6/mmc. This
model can be viewed as two layers of honeycomb lattice in a
unit cell. The intralayer hopping integrals between dxz,yz-like
orbitals on each layer of the honeycomb lattice are constructed
via the Slater-Koster formalism, which reflects coexisting σ

and π bonds.
The intralayer Hamiltonian with only nearest-neighbor

hopping of each layer reads

Hintra =
∑
iμ, jν

tiμ, jνc†
iμc jν, (2)

where μ, ν = x, y represent the dxz and dyz orbitals, i, j stand
for the two sublattices of a one-layer honeycomb lattice. The
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hopping integrals tiμ, jν read

tiμ, jν = t i j
σ cos θμ,i j cos θν,i j + t i j

π sin θμ,i j sin θν,i j, (3)

where θμ,i j represents the angle between the direction of μ

and r j − ri [48]. The Slater-Koster parameters t i j
σ/π denote the

hopping integrals contributed by σ/π bonds. The interlayer
hopping has the form of

Hinter = r2 cos

(
kz

2

)
s0σ0τx + r1 cos

(
kz

2

)
syσ0τy, (4)

where the Pauli matrices s, σ , and τ act on the orbital, sublat-
tice, and layer degree of freedom, respectively. The r1 and r2

denote the hopping integrals between the orbitals in different
layers.

Therefore, the minimal eight-band model reads

H8 = Hintraτ0 + Hinter. (5)

The Hamiltonian belongs to the space group P6/mmc, which
is demonstrated in the SM [48]. The band structure shows that
a couple of DPs are pinned at H/H ′ and at the Fermi level
[Fig. 3(b)]. The degeneracy at H and the band representations
are both consistent with the 3D TBG. The nontrivial monopole
charge of the DPs are confirmed by the Wilson loop [left panel
of Fig. 3(c)]. Similarly to the above analysis, each slice in
the region of (−π, π ) is a 2D Stiefel-Whitney insulator [right
panel of Fig. 3(c)], whose corner zero modes constitute the
hinge Fermi arc, as shown in Fig. 3(d).

We also construct a Slater-Koster TB model with only pz

orbitals of carbon, which has good agreements with the DFT
results [48].

Manipulation of Z2 topological quantum states. One can
induce novel topological child phases from the Z2DP parent
phase. Adding different on-site energy of the two layers in the
minimal TB model, the symmetry C′

2xy is broken and a Z2NL
emerges and links with other NLs formed by two valence
or conduction bands, as shown in Figs. 4(a) and 4(b) [48].
Similarly to the DP phase case, each slice of kz ∈ (−π, π )
is a 2D Stiefel-Whitney insulator with a pair of topologically
protected corner zero modes. These zero modes will constitute
the topologically protected hinge states, as shown in Fig. 4(c).
Such scenario to induce the Z2NL phase can be realized in
3D TBG with uniaxial strain applied, as demonstrated in the
SM [48].

Tailoring the parameters of interlayer coupling can result
in another pair of DPs along the high-symmetry line �A in
addition to the pair of DPs at the points H/H ′, which are
labeled as DP2 and DP1, respectively [Fig. 4(d)]. The DP2
is an accidentally degenerate point while the DP1 is an es-
sentially degenerate point. Both types of DPs have nontrivial
Z2 topology. The w2 of the kz slices between two accidentally
degenerate Z2DPs become trivial [Fig. 4(e)], and the hinge
states are split into two pieces [Fig. 4(f)] [48]. As a result,
one can tailor the length of the hinge Fermi arc by tuning the
interlayer hopping parameters.

StableZ2DPs in all possible space groups beyond 3D TBG.
Since the DPs are protected by the crystal symmetry at (along)
high-symmetry points (lines), we can check their topology of
Z2 monopole charge by calculating the Wilson loop of all DPs
in the 230 type-II magnetic space groups [50–52]. Finally,

FIG. 4. (a) Band structure of the TB lattice model in a Z2NL
phase. (b) Distribution of the NLs with a special linking structure.
The red circles are the Z2NLs and the blue lines are NLs from
the two highest valence bands or two lowest conduction bands.
(c) Hinge states of the TB model in the Z2NL phase. (d) Band
structure of the minimal TB model with two pairs of Z2DPs. (e)
Wilson loops of two typical kz planes. (f) Hinge states of the TB
model with two pairs of Z2DPs.

we find six space groups can protect essentially degenerate
Z2DPs and six space groups can protect accidentally degen-
erate Z2DPs, as given in Table I. The corresponding k · p
effective models, band structures, and Wilson loop spectra are
presented in the SM [48].

The Z2DPs are widely present in the electronic band struc-
tures and phonon spectra of materials which belong to these
space groups. For example, besides the ATMG, the Z2DPs are
also present in the band structure at the P point of Si [53] with
the space group No. 206, the H point of the phonon spectrum
in LaF3 [54] with the space group No. 165, and in the phonon
spectrum of KSn [55] with the space group No. 142, as shown
in the SM [48]. Moreover, one can also construct metamate-
rials such as photonic and phononic crystals to realize Z2DP
phases based on these space groups.

Discussion. We demonstrate that Z2DPs can stably exist
in real materials and give all possible space groups to allow
the existence of Z2DPs. The nontrivial Z2 monopole charge
topology is characterized by the second Stiefel-Whitney num-
ber w2. Our research shows that the Z2DP phase is stable
and even can be observed more readily in experiments than
the Z2NL phase. This is because the Z2NL phase easily
undergoes the pair annihilation, whereas the Z2DPs stably
exist in specific high-symmetry points for all materials in the

TABLE I. List of all possible space groups with essentially or
accidentally degenerate Z2 monopole Dirac points (Z2DPs) and the
corresponding momentum distribution.

Space Group Number

Essential Z2DPs 73 (W), 142 (P), 165 (H),
192 (H), 206 (P), 230 (P)

Accidental Z2DPs 175 (�A), 176 (�A), 191–194 (�A)
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twelve allowable space groups, which we point out explicitly.
Specifically, we propose ATMGs as the first example of such
stable Z2DSM with higher-order hinge Fermi arcs, which
can be probed by scanning tunneling spectroscopy, as explor-
ing the higher-order topology in bismuth [56]. The Z2DSM
in 3D TBG enriches the topological phases in twistronics.
Based on our effective models and proposed list of allowed
space groups, the new and stable kinds of Z2DSM phases are

expected to be realized in metamaterials, such as acoustics,
photonics, and electrical circuits, thanks to the flexibility of
the building blocks.
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