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Engineering rich two-dimensional higher-order topological phases by flux and periodic driving
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Nodal-line semimetals are commonly believed to exist in PT symmetric or mirror-rotation symmetric
systems. Here, we find a flux-induced parameter-dimensional second-order nodal-line semimetal (SONLS) in
a two-dimensional system without PT and mirror-rotation symmetries. It has coexisting hinge Fermi arcs and
drumhead surface states. Meanwhile, we discover a flux-induced second-order topological insulator (SOTI).
We then propose a Floquet engineering scheme to create exotic parameter-dimensional hybrid-order nodal-line
semimetals with abundant nodal-line structures and widely tunable numbers of corner states in a SONLS and
SOTI, respectively. Our results break the perception of SONLSs and supply a convenient way to artificially
synthesize exotic topological phases by periodic driving.
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Introduction. As one of the most actively expanding fields
in physics, topological phases of matter not only enrich
the paradigm of condensed matter physics, but also have a
profound impact on quantum technologies [1–5]. Featuring
unique Fermi arcs and gapless bulk bands, Dirac [6–14], Weyl
[15–23], and nodal-line [24–29] semimetals have exhibited
novel transport phenomena due to their chiral anomaly, such
as chiral negative magnetoresistance and high carrier mobil-
ity [30–33]. Two-dimensional (2D) topological semimetals
have been proposed due to their potential applications in
semiconductor integrated circuits [34–36]. The finding of
higher-order topological phases opens up a frontier of topo-
logical physics [37–55]. Second-order topological insulators
(SOTIs) are characterized by a corner state in 2D or hinge
states in three-dimensional (3D) systems and have fantas-
tic applications [56]. Second-order nodal-line semimetals
(SONLSs) with coexisting hinge Fermi arcs and drumhead
surface states [52–54] have been predicted. Yet, the general
ways of inducing SONLSs and SOTIs are scarce.

It is generally believed that nodal-line semimetals need
the protection of either mirror-rotation or PT symmetry [57].
SONLSs also have been predicted in PT [51–53] and mirror-
rotation [54] symmetric systems. An open question is whether
SONLSs could exist without these symmetries. Meanwhile,
one of the difficulties in the application of topological phases
is that the ways to control various interactions in static systems
are limited because their features could not be adjusted once
they are fabricated. Coherent control via the periodic driving
of external fields, dubbed Floquet engineering, has become a
versatile tool in creating novel topological phases in systems
of ultracold atoms [58,59], photonics [60], and superconduc-
tor qubits [61]. Many intriguing phases unavailable in static
systems have been generated by periodic driving in a con-
trollable manner [62–71]. A natural question is if whether,
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in order to facilitate the exploration of their applications, we
can realize a free tunability and conversion of the nodal-line
structures and the topological phases of SONLSs and SOTIs
by Floquet engineering.

We here investigate the flux-induced higher-order 2D
topological phases and their Floquet engineering. An exotic
flux-induced parameter-dimensional SONLS, with the third
dimension simulated by one system parameter, is discovered
in our 2D system with neither PT nor mirror-rotation sym-
metry. Enriching the family of 2D topological phases, this
phase can be readily generalized to the 3D case. We also find
a flux-induced SOTI as a by-product. We further reveal the
wide tunability of the nodal-line structures and the topological
phases of the SONLSs and SOTIs by Floquet engineering.
Hybrid-order nodal-line semimetals, fruitful nodal-line struc-
tures, and exotic topological phases with widely tunable
numbers of zero- and π/T -mode corner states are created
easily by applying a periodic driving. Highlighting the flux
and Floquet engineering as two convenient ways to explore
exotic higher-order topological phases, our result enriches
controllability in topological physics.

Flux-induced second-order topological phases. Conven-
tionally, nodal-line semimetals exist in the systems with either
PT or mirror-rotation symmetry [57]. We explore whether
these symmetries are a prerequisite for forming nodal-line
semimetals. For this purpose, we consider a system of spin-
less fermions moving on a square lattice [see Fig. 1(a)]. Its
momentum-space Hamiltonian reads Ĥ = ∑

k Ĉ†
k[H0(k) +

H1(k)]Ĉk with Ĉ†
k = (Ĉ†

k,1 Ĉ†
k,2 Ĉ†

k,3 Ĉ†
k,4) and

H j (k) =
(

0 d j (k)
d†

j (k) 0

)
( j = 0, 1), (1)

where d0(k) = (γx + λ cos kx )τ0 − iλ sin kxτx − i(γy + λ cos
ky)τy + iλ sin kxτz, with τi being Pauli matrices and τ0 being
the identity matrix. γx/y is the intarcell hopping rate and λ

is the nearest-neighbor intercell hopping rate. Since it is a
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FIG. 1. (a) Scheme of our system. γx/y and λ are the intracell
and nearest-neighbor intercell hopping rates, m is the third-order
neighbor intercell one, and θ is the flux-induced Peierls phase. The
dashed lines denote the hopping rates with a π -phase difference
from their solid counterparts. (b) Energy spectrum and quadrupole
moment as a function of m. The inset shows coexisting hinge Fermi
arcs and drumhead surface states. Energy spectra (c) in momentum
space and (d) under the x-direction open boundary condition when
m = 1. Chiral winding numbers νx/y and nodal lines (in red lines) in
the (e) kx-m and (f) ky-m planes. (g) Nodal lines in the Brillouin zone.
(h) Phase diagram described by the bulk gap. We use γx = 0.65λ,
γy = −0.4λ, and θ = π/2.

Benalcazar-Bernevig-Hughes model, the system described by
H0(k) has chiral S = τzσ0, PT , and mirror-rotation symme-
tries and is a SOTI when |γx/y| < |λ| [72]. Inspired by the
flux-induced topological phase transition [73], we consider
third-order neighbor intercell hopping, which breaks the P
symmetry, and the application of a flux, which further breaks
the PT and mirror-rotation symmetries of H0(k). Third-order
neighbor intercell hopping is the minimally allowable hopping
to cause the overall flux of the lattice to be zero [74]. Then
we have d1(k) = m[ei(θ+kx )(τx + iτy) + e−ikx (τx − iτy)]/2 +
m[ei(θ−ky )(τz − τ0) + eiky (τ0 + τz )]/2, where m is the third-
order neighbor intercell hopping rate and θ is the flux-induced
Peierls phase. Only the chiral symmetry is present in H(k) =
H0(k) + H1(k). The absence of PT symmetry and primitive
translations due to γx �= γy �= λ causes our system not to have
projective symmetry either [75–79].

It is interesting to find that a parameter-dimensional
SONLS, where m is seen as an addition dimension besides
kx/y, is formed in our 2D system without PT and mirror-
rotation symmetries in the γx �= γy regime. The second-
order topology is characterized by the quadrupole moment
P = [ Im ln det F

2π
− ∑

n,i;m, j
An,i;m, j

2NxNy
] mod 1. Here, the elements

read Fab ≡ 〈ψa|ei2πA/(NxNy )|ψb〉, |ψα〉 (α = a, b) satisfying
Ĥ |ψα〉 = Eα|ψα〉 and Eα < 0 are the occupied eigenstates,
and the coordinate An,i;m, j = nxnyδnmδi j with i, j = 1, . . . , 4
being the sublattices and nx,y being the numbers of the unit cell
[80,81]. The energy spectrum under the open boundary con-
dition in Fig. 1(b) shows that fourfold degenerate zero-mode
corner states signified by P = 0.5 are formed. In the band-
closing parameter regime with P = 0, the dispersion relation
exhibits four Weyl points [see Fig. 1(c)]. Its energy spectrum
in the y-direction periodic boundary condition reveals that a
flat band is present between each pair of Weyl points [see
Fig. 1(d)]. It is remarkable to find that the flat band is non-
trivial in first-order topology, which can be characterized by
the winding number [3,82]

νp = 1

4π i

∫ π

−π

Tr[SQ(k)∂kpQ(k)]dkp. (2)

Here, p = x, y and Q(k) = ∑
l=1,2[|u−l (k)〉〈u−l (k)| −

|ul (k)〉〈ul (k)|], with |ul (k)〉 satisfying H(k)|ul (k)〉 =
El (k)|ul (k)〉. Figures 1(e) and 1(f) indicate that the
band-closing regimes in Fig. 1(b) hold nontrivial first-order
topology, whose boundaries form the nodal lines. The regions
with a nonzero νx/y enclosed by the nodal lines are the
drumhead surfaces. Separating the first- and second-order
phases, such nodal lines are in the second-order type, whose
distribution in the m-parametrized Brillouin zone is shown in
Fig. 1(g). Combining P and νx/y, we conclude that a SONLS
with a coexisting first-order flat band, which plays the role of
the drumhead surface states, and second-order hinge states
are formed in our m-parametrized 2D system. The inset of
Fig. 1(b) shows the coexisting hinge Fermi arcs and the
drumhead surface states. The phase diagram of the SONLS
in different θ is given in Fig. 1(h), where the nodal lines exist
in the gapless regimes. Our parameter-dimensional SONLS
is different from Refs. [51–54] and refreshes one’s general
belief that nodal-line semimetals need PT or mirror-rotation
symmetry [57]. It enriches our understanding of the 2D
topological phase and provides insights for applying 2D
materials in quantum devices.

Besides the SONLS, the flux in our system can also
induce a SOTI. When θ = π and γx = γy ≡ γ , the time-
reversal T = K , with K being the complex conjugation,
the spatial inversion P = τ0σy, and the mirror-rotation
Mxy = [(τ0 + τz )σx − (τz − τ0)σz]/2 symmetries are recov-
ered. Its topology is described by H(k, k) along the
high-symmetry line kx = ky ≡ k, which is diagonalized
into diag[H+(k),H−(k)] with H±(k) = h± · σ and h± =√

2[γ + (λ + m) cos k,±(λ + m) sin k, 0]. Thus, the bands
coalesce when |γ | = |λ + m|. It exhibits a SOTI character-
ized by the mirror-graded winding number W = W+ − W−
[83], where W± = i

2π

∫ 2π

0 〈u±(k)|∂k|u±(k)〉dk and |u±(k)〉 is
the eigenstate of H±(k). The energy spectrum under the
open boundary condition in Fig. 2(a) and the probability
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FIG. 2. (a) Energy spectrum and (c) mirror-graded winding num-
ber W in different λ when m = 0.4γ . The red solid (dashed) lines
are the dispersion relation along the high-symmetry line k = 0 (π ).
(b) Distribution of the zero-mode state. (d) Phase diagram described
by W . We use θ = π .

distribution of the zero-mode states in Fig. 2(b) show that
the system has fourfold degenerate corner states signified by
W = −1 of Fig. 2(c) when λ > γ − m and λ < −(γ + m).
The phase diagram in Fig. 2(d) verifies that the SOTI is
present when |γ | < |λ + m|.

Floquet engineering. Determined by the intrinsic param-
eters, the topological features and the nodal-line structures
cannot be changed in static systems, where the hopping pa-
rameters are fixed. We propose to conveniently control the
topological features and generate rich nodal-line structures by
Floquet engineering. First, we consider that the Peierls phase
θ is periodically driven as

θ (t ) =
{
θ1, t ∈ [nT, nT + T1),
θ2, t ∈ [nT + T1, (n + 1)T ),n ∈ Z, (3)

where T = T1 + T2 is the driving period. The periodic sys-
tem Ĥ (t ) does not have an energy spectrum because its
energy is not conserved. The Floquet theorem defines an
effective Hamiltonian Ĥeff = i

T ln ÛT from the evolution op-

erator ÛT = Te−i
∫ T

0 Ĥ (t )dt . The eigenvalues of Ĥeff are called
quasienergies [84,85]. The topological feature of the peri-
odic system is defined in the quasienergy spectrum. Applying
the Floquet theorem in our system, we have Heff(k) =
i
T ln[e−iH2(k)T2 e−iH1(k)T1 ], where H j (k) is the Hamiltonian
with θ replaced by θ j .

The topological phase transition of the periodic sys-
tem occurs not only at a zero quasienergy gap but also
at the π/T one [54,71,86], which causes the inadequacy
of the static characterization of the topological phase. We
can establish a complete description to the rich emer-
gent topological phases in our periodic system on Heff(k).
Heff(k) does not inherit the chiral symmetry of H(k)
due to [H1(k),H2(k)] �= 0. However, the winding num-
ber characterizing the first-order topology requires chiral

FIG. 3. (a) Quasienergy spectrum and quadrupole moment of
the periodic system. (b) Dispersion relation when m = 1.2λ. Chiral
winding numbers (c) ν0

x , (d) νπ/T
y , (e) ν0

x , and (f) νπ/T
y in the kx/y-m

planes. (g) Coexisting hinge Fermi arcs and drumhead surface states
in the zero mode and (h) pure drumhead surface states in the π/T
mode. (i) Zero- and (j) π/T -mode nodal lines in the Brillouin zone.
We use γx = 0.65λ, γy = −0.4λ, θ1 = 0, θ2 = π , T1 = λ−1, and
T2 = 1.5λ−1.

symmetry. We recover the chiral symmetry by making
two unitary transformations Gl (k) = ei(−1)lHl (k)Tl /2 (l = 1, 2),
which do not change the quasienergy spectrum, and obtain
H̃eff,l (k) = iT −1 ln[Gl (k)UT (k)G†

l (k)]. Then the two wind-
ing numbers νl defined in the chirally symmetric H̃eff,l (k) can
be calculated in a similar manner as Eq. (2). The first-order
topology of Heff(k) at the quasienergies α/T , with α = 0 or
π , relates to νl as να/T = (ν1 + eiαν2)/2 [65]. The number of
α/T -mode drumhead surface states is equal to 2|να/T |. The
second-order topological phase is also characterized by P.

We observe two typical regimes from the quasienergy
spectrum of Heff(k) in different m in Fig. 3(a): One has
closed quasienergy gaps and the other has gapped zero-mode
states. The second-order corner states signified by P = 0.5
are present in the regime with the gapped zero-mode states.
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Figure 3(b) reveals that the band-touching form becomes more
complicated than the static case in Fig. 1(c), which endows
us with sufficient room to adjust the nodal-line structure and
the number of the drumhead surface states by Floquet engi-
neering. The first-order topological phase is characterized by
the winding number ν

α/T
x/y in Figs. 3(c)–3(f) in the regimes

with a closed quasienergy gap. The regions with a nonzero
ν

α/T
x/y enclosed by the nodal lines are just the drumhead sur-

faces, whose boundaries match well with the projection of
the nodal lines [see the red lines in Figs. 3(c)–3(f)]. First-
order topological phases that are richer than the static case
in Figs. 1(e) and 1(f) are created by periodic driving. In par-
ticular, the phases of widely tunable ν0

x/y from −2 to 3 and

ν
π/T
x/y from −2 to 2 absent in the static case are present. Com-

bining the second-order topological phase in Fig. 3(a) with
the first-order one in Figs. 3(c)–3(f), our periodic system ex-
hibits an m-parametrized hybrid-order nodal-line semimetal.
It has coexisting second-order nodal lines in the zero mode,
which host the hinge Fermi arcs and the drumhead surface
states in Fig. 3(g), and the first-order ones in the π/T mode,
which host the pure drumhead surface states in Fig. 3(h).
The distributions of the zero- and π/T -mode nodal lines
in our periodic system in Figs. 3(i) and 3(j) show dramatic
differences from the static case in Fig. 1(g). First, the number
of zero-mode nodal lines increases. Second, the π/T -mode
nodal lines are interwoven to form a nodal net at the m = 0.1λ

plane and nodal loops at m from −1.5λ to −1.2λ. Such rich
nodal-line structures confirm the diverse topological phases
in Figs. 3(c)–3(f), which are difficult to realize in static sys-
tems. Thus, our result reveals that the topological phases and
the nodal-line structures can be well controlled by Floquet
engineering.

Next, we study the rich Floquet SOTIs by choosing γx =
γy. Setting θ = π to preserve the PT and mirror-rotation
symmetries, the driving is applied on m as

m(t ) =
{

m1, t ∈ [nT, nT + T1),
m2, t ∈ [nT + T1, (n + 1)T ). (4)

Heff(k) is derived in the same manner as above. First, the
topological description can be established on Heff(k). After
making two unitary transformations Gl (k) to Heff(k) to re-
cover the chiral symmetry, we calculate the winding numbers
Wl from H̃eff,l (k). The SOTIs in the quasienergy gaps α/T are
characterized by the mirror-graded winding number Wα/T =
(W1 + eiαW2)/2. The number of α/T -mode corner states is
equal to 4|Wα/T |. Second, it is derived from Heff(k) that a
phase transition occurs for k and the parameters satisfying
either [65,71,86]

TjE j = c jπ, (5)

or

h1 · h2 = ±1,

T1E1 ± T2E2 = cπ, (6)

with h j ≡ h j/|h j |, at zero quasienergy (or π/T ) when c j are
integers with the same (or different) parity and c is an even (or
odd) number. Using Eqs. (5) and (6) on H±(k), we obtain the
phase boundaries as follows. Equation (5) results in a phase

FIG. 4. (a) Quasienergy spectrum and (b) mirror-graded winding
number Wα/T of the periodic system when T2 = 0.3γ −1. The red solid
(dashed) line is the dispersion relation along the high-symmetry line
k = 0 (π ). Distributions of the (c) zero- and (d) π/T -mode states
in different T1. Phase diagram described by (e) W0 and (f) Wπ/T .
The white lines are from Eqs. (7) with the labeled (c1, c2). The red
solid lines are from Eqs. (8) with cπ,− = −2, 0, 2, 4 in (e), cπ,− =
−3, −1, 1, 3 in (f), and the red dashed line with c0,+ = 2, 4, 6, 8
in (e), c0,+ = 1, 3, 5, 7, 9 in (f). We use λ = 0, m1 = −0.6γ , and
m2 = 2.2γ .

transition that occurs at k satisfying
√

2[γ 2 + (λ + mj )
2 + 2γ (λ + mj ) cos k]

1
2 Tj = c jπ. (7)

h1 · h2 = ±1 in Eq. (6) needs the high-symmetry line k ≡ k̄ =
0 or π . Thus, the phase transition occurs at

√
2[|γ + (λ + m1)eik̄|T1 ± |γ + (λ + m2)eik̄|T2] = ck̄,±π.

(8)

Figures 4(a) and 4(b) show the quasienergy spectrum and
mirror-graded winding numbers Wα/T of Heff(k). It is seen
that the α/T -mode corner states are well described by Wα/T .
Their probability distributions in Figs. 4(c) and 4(d) confirm
that a SOTI is formed in both the zero and π/T modes. To give
a global picture of the SOTI, we plot in Figs. 4(e) and 4(f)
the phase diagram characterized by Wα/T in the T1-T2 plane.
Much richer SOTIs with a widely tunable number of zero-
and π/T -mode corner states than the static case in Fig. 2(d)
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are created by periodic driving. The phase boundaries are well
described by the analytical conditions of Eqs. (7) and (8).
All the results indicate that periodic driving assisted by the
flux offers us a useful way to generate exotic second-order
topological phases.

Discussion and conclusion. Our result is generalizable to
the 3D case. Replacing m in Eq. (1) by χ (kz ) = m + ξ cos(kz ),
with ξ being the interlayer hopping rate, we obtain a 3D
model. It can be verified that this 3D model still does not
have PT and mirror-rotation symmetries, but it possesses the
topological phase of a SONLS. The steplike driving scheme
can be generalized to any type of driving protocol. The higher-
order semimetals have been simulated in some materials [48],
Josephson junctions [87], and realized in classical acoustic
metamaterials [88,89]. SOTIs have been realized in various
systems [90–96]. Floquet engineering has been used to de-
sign novel topological phases in several platforms [60,61,97–
102]. The progress indicates that our result is realizable in
state-of-the-art experiments.

In summary, we have proposed a flux-induced
parameter-dimensional SONLS in a system without PT and
mirror-rotation symmetries. It enriches our understanding of
the 2D topological phase and provides different possibilities
for the application of 2D materials. We have also found that
an exotic hybrid-order nodal-line semimetal and abundant
nodal-line structures are created easily by periodic driving.
We have also discovered a flux-induced SOTI and explored its
wide tunability by Floquet engineering. Our work enriches the
family of topological semimetals and provides a convenient
way to reduce the practical difficulties in adjusting nodal-line
structures, Fermi arcs, the drumhead surface states of
SONLSs, and the numbers of corner states of SOTIs in
static systems. This significantly expands the application of
topological phases and increases their controllability.
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