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Anyonic Mach-Zehnder interferometer on a single edge of a two-dimensional electron gas
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Anyonic Fabry-Pérot and Mach-Zehnder interferometers have been proposed theoretically and implemented
experimentally as tools to probe the electric charges and statistics of anyons. The experimentally observed
visibility of Aharonov-Bohm oscillations is maximal at a high transmission through an interferometer but simple
theoretical expressions for the electric currents and noises are only available at low visibility. We consider an
alternative version of a Mach-Zehnder interferometer, in which anyons tunnel between copropagating chiral
channels on the edges of quantum Hall liquids at the filling factors n/(2n + 1). We find simple exact solutions
for any transmission at a suitably chosen ratio of the edge-channel lengths. The solutions allow a straightforward
interpretation in terms of fractional charges and statistics. Our results also apply to the recently observed
quantized plateaus in the fractional Chern insulator MoTe2.
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A key concept in the field of topological matter is fractional
statistics of excitations. It can be defined for extended objects
[1,2] in three dimensions (3D) and point anyons in two [3–6]
and sometimes three dimensions [7].

So far the evidence of topological systems with fractional
statistics has been limited to 2D. Anyonic statistics were pro-
posed in putative topological superconductors [8] and RuCl3,
Ref. [9], but the physics of those materials remains contro-
versial. Very recently, evidence of a fractional Chern insulator
state in twisted MoTe2 has been reported [10,11]. The bulk
of research on topologically ordered materials has focused on
the fractional quantum Hall effect [12] (FQHE).

Several experiments produced evidence of anyonic statis-
tics in FQHE states. Non-Abelian statistics at the filling factor
ν = 5/2 was demonstrated with the heat conductance tech-
nique [13,14]. Anyon colliders [15–18] have been used to
probe Abelian statistics at ν = 1/3 and 2/5. The most direct
and intuitive approach to probing statistics consists in inter-
ferometry [3,19]. The idea is to split a beam of anyons into
two beams on two sides of a localized anyon and measure
the interference phase which depends on the mutual statis-
tics of traveling and localized particles. This can be done
in two ways. The Fabry-Pérot interferometry [20] involves
two constrictions between two contrapropagating edge modes
[Fig. 1(a)]. In a Mach-Zehnder interferometer [21,22], two
copropagating modes are connected by two tunneling contacts
and an Ohmic contact is placed in its center [Fig. 1(b)]. There
are also interesting multiterminal versions of interferometry
[23–26].

Despite early promising results [27,28], a convincing
realization of interferometry proved challenging. Evidence
of fractional statistics in the simplest ν = 1/3 state from
Fabry-Pérot interferometry [29] arrived only in the year 2020.
A Mach-Zehnder interferometer [30] in the same FQHE state
was only realized in the year 2023. The difficulties were in
part due to Coulomb effects [31] and edge reconstruction [32].

Another issue consisted in the difficulty of a theoretical anal-
ysis for strong tunneling between the two edges of the device.
Simple theoretical results are only available for weak tunnel-
ing, where the visibility of the Aharonov-Bohm oscillations
is low. This is different from the integer quantum Hall effect
(IQHE), where simple exact solutions exist for any visibility.

Here, we focus on another interferometer geometry that
has been considered [33] in IQHE (Fig. 2). The geometry
more directly parallels that of the original Mach-Zehnder
interferometers studied in optics. As shown in Fig. 2, two
tunneling contacts are created between two copropagating
channels on the same edge. To facilitate tunneling, an elec-
tric potential difference V is applied on the same side of
the device. In our case, the outer mode is maintained at
V through an Ohmic contact S with respect to the grounded
inner mode through Ohmic contact G. A similar geometry was
implemented [34,35] for the tunneling between the fractional
edge modes separating ν = 0 from ν = 1/3 and ν = 1/3 from
ν = 2/3, 3/5, and 1. This choice of FQHE modes results in es-
sentially the same physics as in the standard Fabry-Pérot setup
since the boundaries between ν = 1/3 and ν = 2/3, 3/5, and
1 contain upstream modes. In this Letter we observe that the
geometry of Fig. 2 can be used to create a true Mach-Zehnder
interferometer in FQHE with the tunneling between copropa-
gating modes and no Ohmic contacts inside the interferometer.

A remarkable feature of this geometry is that it allows an
easy exact solution for any visibility, including the exper-
imentally optimal regime. Unlike most previous treatments
of quantum Hall interferometers, we do not need to resort
to perturbation theory. The solution is possible due to two
key simplifications in comparison with the standard geome-
tries. In contrast to the Fabry-Pérot setup, anyons cannot
make multiple loops in the device. In contrast to the stan-
dard Mach-Zehnder setup, the localized topological charge
in the interferometer remains fixed during an experiment.
Interestingly, the exact solution has essentially the same
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FIG. 1. Schematics of the (a) Fabry-Pérot and (b) Mach-Zehnder
interferometers. Quantum point contacts (QPCs) bring the edges near
to facilitate tunneling. Current flows into the device through Ohmic
contact S. (a) The Fabry-Pérot interferometer involves tunneling
between two contrapropagating edge modes. The current measured
at drain D2 involves paths that braid around a localized anyon
(marked by ×). Therefore, it is sensitive to anyon statistics. (b) In a
Mach-Zehnder interferometer, two copropagating modes are con-
nected by the tunneling contacts. A common implementation
requires the placement of an Ohmic contact (D2) inside the inter-
ference loop. Hence, each tunneling event changes the localized
topological charge in the device.

structure as in IQHE and contains information about the
fractional charge and statistics of anyons. Note that this in-
terferometer is not expected to show Coulomb-dominated
behavior [31].

We consider an edge of an FQHE liquid with the filling
factor ν = n/(2n + 1). The bulk FQHE liquid is a daughter
state [36] of the liquid with ν = (n − 1)/(2n − 1). Multiple
representations of its edge physics are known. It will be most
convenient for us to follow the hierarchical picture [36]. In
this picture, the edge can be understood as a collection of
copropagating modes separating filling factors k/(2k + 1) and
(k − 1)/(2k − 1), where k = 1, . . . , n. Figure 2(a) illustrates
an interferometer constructed from the channel separating
ν = (k + 1)/(2k + 3) and ν = k/(2k + 1), and the adjacent
channel separating ν = k/(2k + 1) and ν = (k − 1)/(2k − 1).
The incompressible region between the channels supports
quasiparticles of charge e/(2k + 1). Such quasiparticles can
tunnel between the two channels at the two constrictions. The
Hamiltonian is the sum of the chiral Luttinger liquid Hamil-
tonians for the two channels plus two operators describing
quasiparticle tunneling at the constrictions. Crucially, the scal-
ing dimension of those operators is 1 just as in an IQHE
system, which allows electron tunneling between two chiral
noninteracting Fermi gases. This scaling dimension is respon-
sible for the exact solubility of the model via fermionization.

While our results do not depend much on k, we will
focus on the simplest case of the bulk filling factor 2/5
[Fig. 2(b)]. There are two edge channels [36] which separate
ν = 0 from ν = 1/3 and ν = 1/3 from ν = 2/5. The charge
of the tunneling anyon is e/3. This choice of filling factors is
directly relevant to the recently discovered [37–40] fractional
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FIG. 2. Schematics of the Mach-Zehnder geometry considered in
this work. The edge of a ν = n/(2n + 1) liquid contains n copropa-
gating modes on either edge of a two-dimensional electron gas. On
the right-moving edge, current flows into the device through Ohmic
contact S to one of the edge modes. Two adjacent copropagating
edge modes are brought near to facilitate quantum tunneling. The
localized anyon in the shaded region between the two constric-
tions is marked by ×. This geometry establishes an analogy with
an optical Mach-Zehnder interferometer (inset) where, in contrast
to the magnetic flux, the optical path length serves as a useful
probe. (a) The edge mode, separating ν = (k − 1)/(2k − 1) and
ν = k/(2k + 1) incompressible states, is maintained at the potential
bias V with respect to the edge mode separating ν = k/(2k + 1) and
ν = (k + 1)/(2k + 3), where k = 1, . . . , n − 1. The tunneling anyon
carries a charge e/(2k + 1). (b) We choose a representative system
of ν = 2/5 where the two copropagating edge modes φ 1

3
and φ 1

15
are

separated by the ν = 1/3 incompressible liquid, facilitating anyon
tunneling of charge e/3.

quantum Hall effect at zero magnetic field in MoTe2, where
the observed plateaus are ν = 2/3 and ν = 3/5.

The action is the sum of three contributions,

A =
∫

dxdtLe −
∫

dt (T1 + T †
1 ) −

∫
dt (T2 + T †

2 ), (1)

where T1 and T2 describe anyon tunneling at the two constric-
tions and Le is the edge Lagrangian density,

Le = − h̄

4π
[3∂tφ1/3∂xφ1/3 + 3v1/3(∂xφ1/3)2

+ 15∂tφ1/15∂xφ1/15 + 15v1/15(∂xφ1/15)2], (2)
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with the two Bose fields φ1/3 and φ1/15 describing the charge
density on the outer and inner edge modes, respectively:
ρ1/3 = e∂xφ1/3/2π and ρ1/15 = e∂xφ1/15/2π . The edge-mode
velocities are v1/3 and v1/15. The operators

T1 = �1 exp[iφ1/3(0) − 5iφ1/15(0)], (3)

T2 = �2 exp[iφ1/3(L1/3) − 5iφ1/15(L1/15)], (4)

transfer an e/3 quasiparticle from the outer to inner edge.
There are no Klein factors as explained after Eq. (6). The am-
plitudes �i contain information about the charge and statistics
of the tunneling quasiparticle. We denote the phase of �1 as
φ. The phase of �2 = |�2|eiα can be represented as the sum
α = φ + α0 + αAB + αs of some nonuniversal phase φ + α0,
the Aharonov-Bohm phase αAB, and the statistical phase αs.
The contribution φ + α0 is determined by microscopic details
and does not depend on the magnetic field. The phase αAB is
proportional to the product of the anyon charge e/3 and the
magnetic flux through the area between the two channels [the
shaded area in Fig. 2(b)]. The statistical phase φs = 2πNa/3,
where Na is the number of anyons localized inside the interfer-
ometer. This phase jumps when a new anyon enters the device
in response to a change of the magnetic field. We assume
that the left constriction has coordinate x = 0 in both edge
channels. In general, the lengths of the two channels between
the constrictions are different. That is why the fields φ1/3 and
φ1/15 are taken at different values of x in the definition of T2.

The electric current operator is defined as the commutator
of the tunneling operator T1 + T2 + H.c. with one-half times
the charge difference between the two modes. Hence,

I = −i
e

3h̄
[T †

1 − T1 + T †
2 − T2]. (5)

We will also need the correlation functions of the tunneling
operators [36],

〈exp[iφ1/3(t, a1/3 + b1/3) − 5iφ1/15(t, a1/15 + b1/15)]

× exp[−iφ1/3(0, a1/3) + 5iφ1/15(0, a1/15)]〉

= (πT/h̄)2

sin
1
3
[
δ + i πT

h̄

(
t − b1/3

v1/3

)]
sin

5
3
[
δ + i πT

h̄

(
t − b1/15

v1/15

)] .

(6)

The exponents in the above expression add up to two. This
reflects the scaling dimension of one for T1,2. The operators
T1,2 commute as locality demands. Note a difference from
the usual Mach-Zehnder setup where locality requires Klein
factors in tunneling operators.

The electrical potential difference between the channels is
conveniently described in the interaction representation [22]
by changing �1,2 → �1,2 exp(−ieV t/3h̄).

As a warming-up exercise, we consider the case of a single
constriction, �2 = 0. By rescaling the x coordinate for each
channel we can make the edge velocities equal. Let us rescale
the coordinates so that the edge velocities become u. Let us
next introduce new Bose fields in place of φ1/3 and φ1/15:

φ1 =
√

5 + 1

2
φ1/3 − 5 − √

5

2
φ1/15, (7)

φ2 =
√

5 − 1

2
φ1/3 + 5 + √

5

2
φ1/15. (8)

The action becomes

A = − h̄

4π

∫
dtdx

2∑
k=1

∂x(∂t + u∂x )φk

−
∫

dt[�1 exp (iφ1 − iφ2) + H.c.]. (9)

This action can be fermionized [41] in terms of Fermi
operators ψk = exp(iφk ), where we ignore a dimensional
normalization constant. Such a constant enters the relation
between the tunneling amplitudes �i and the observable
transmission probabilities. We will ignore the normalization
constant below since our primary goal consists in connecting
the transmission probabilities of the two individual constric-
tions with the transmission of the interferometer. We rewrite
(9) as a free-fermion action:

A = ih̄
∫

dtdx
2∑

k=1

ψ
†
k (∂t + u∂x )ψk

−
∫

dt[�1ψ
†
2 (0)ψ1(0) + H.c.]. (10)

This model can be interpreted as the edge of an IQHE system
at ν = 2. One just needs to remember that the physical current
(5) is three times less than the current in the IQHE model and
that the physical voltage V is three times higher than the effec-
tive voltage in the IQHE model. Hence, the physical current
is 1/3 of the tunneling current in the model (10) evaluated
at V/3.

We will solve the model with the equation of motion ap-
proach. To avoid a delta function of the coordinate in the
equation of motion, we rewrite the tunneling term as an
integral over a small vicinity of the origin, ψ

†
2 (0)ψ1(0) →

1
ε

∫ ε

0 dxψ†
2 (x)ψ1(x), where ε → 0. The equations of mo-

tion for the mode ψ1,2(x, t ) = ψ1,2(x) exp(−iEt/h̄) of energy
E = ukh̄ are

(k + i∂x )ψ1 = �∗
1

εuh̄
θ (x[ε − x])ψ2, (11)

(k + i∂x )ψ2 = �1

εuh̄
θ (x[ε − x])ψ1. (12)

We find two independent solutions,

(a) ψ1(x) = eikx and ψ2(x) = 0 (x < 0),

ψ1(x) = t1eikx and ψ2(x) = r1eikx (x > 0), (13)

(b) ψ1(x) = 0 and ψ2(x) = eikx (x < 0),

ψ1(x) = −r∗
1 eikx and ψ2(x) = t1eikx (x > 0),

(14)

where the transmission and reflection amplitudes between
the two copropagating channels are t1 = cos(|�1|/uh̄) and
r1 = −i exp(iφ) sin(|�1|/uh̄), respectively. The current can be
computed from the energy-independent reflection |r1|2 into
the parallel copropagating channel for fermions. It is tempera-
ture independent and equals 〈I〉 = e2|r1|2V/9h. The maximal
tunneling conductance of e2/9h is achieved at |r1| = 1. Inter-
estingly, it is greater than the conductance e2/15h of the inner
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channel. This happens due to Andreev reflection as discussed
in Ref. [42].

We now map the problem with two constrictions onto free
fermions. There is an essential difference from the single
constriction case. Indeed, in that case, the relevant correla-
tion functions of the tunneling operators always have b1/3 =
b1/15 = 0 in Eq. (6). As a result, the correlation functions
are precisely the same in our problem and for the tunneling
operator of free fermions. With two constrictions this is not
necessarily the case. Fermionization only works if either the
travel times between the two constrictions along the two edge
channels are equal, L1/3/v1/3 = L1/15/v1/15, or if the differ-
ence of the travel times is much less than the thermal and
voltage times ∼T −1 and ∼(eV )−1, respectively. The latter
condition is always satisfied if the interferometer is shorter
than the thermal and voltage lengths but it can also work
for an arbitrary large interferometer. Corrections due to the
difference τ of the travel times are proportional to the small
parameter τ max(T, eV )/h̄.

We thus focus on the regime where fermionization applies.
Besides the transmission and reflection amplitudes t1 and r1

for the first constriction, we define the transmission and re-
flection amplitudes t2 and r2 for the second constriction. The
absolute values of t1,2 and r1,2 can be found experimentally
by measuring transport through a single constriction when the
second constriction is open. Probability conservation demands
that |ti|2 + |ri|2 = 1 and the absolute values of the transmis-
sion and reflection amplitudes are between 0 and 1. The
relative phase of r1 and t1 is −i exp(iφ) as discussed above.
Similarly, the relative phase of t2 and r2 is −i exp(iα) =
−i exp[i(φ + α0 + αAB + αs)]. The total reflection amplitude
for free fermions is r = r2t1 + r1t2. This yields the following
current between the inner and outer edges of the interferome-
ter in the FQHE regime:

〈I〉 = e2V

9h
|r2t1 + r1t2|2

= e2V

9h
[|r1t2|2+ |r2t1|2+ 2|r1r2t1t2| cos(α0+ αAB+ αs)].

(15)

A change �� of the magnetic flux between the edge channels
results in the change �αAB = 2π��/3�0, where �0 is a
flux quantum. As the magnetic flux changes, quasiparticles
or quasiholes enter the device, and αs jumps by 2π/3.

We now turn to the electric noise, for which an exact result
can also be obtained. The zero frequency noise is defined
[43] as

S =
∫ ∞

−∞
dt[〈ID(0)ID(t ) + ID(t )ID(0)〉 − 2〈ID〉2], (16)

where ID is the current in drain D1 or D2 and angular brackets
denote the average. Our starting point is a general equa-
tion [44] for the noise in chiral systems with tunneling

S = ST − 4T
∂〈I〉
∂V

+ 4GT, (17)

where ST = ∫ ∞
−∞ dt[〈I (0)I (t ) + I (t )I (0)〉 − 2〈I〉2] is the

noise of the tunneling current I [Eq. (5)], and G is e2/3h
or e2/15h for the outer or inner channel, respectively.
The same equation applies to the noise in any of the two
channels in the free-electron model (10), where the tunneling
current operator is 3I (t ) and G = G0 = e2/h. We also should
remember that the voltages differ by a factor of 3 in the FQHE
and free-fermion problems mapped onto each other.

An exact solution [45] is available for the noise S = SF in
the free-fermion problem,

SF = 2eV G0|r|2(1 − |r|2)

[
coth

(
eV

2T

)
− 2T

eV

]
+ 4G0T,

(18)

where r = r2t1 + r1t2 is the total reflection amplitude. We now
use Eq. (17) to compute ST = STF for free fermions:

STF(V ) = 2eV G0|r|2(1 − |r|2)

[
coth

(
eV

2T

)
− 2T

eV

]

+ 4|r|2G0T . (19)

Finally, we compute the noise S in the original model

S = 1

9
STF(V/3) − 4G0T |r|2

9
+ 4GT

= 2eV

27
G0|r|2(1 − |r|2)

[
coth

(
eV

6T

)
− 6T

eV

]
+ 4GT .

(20)

The flux dependence enters through the coefficient

|r|2(1 − |r|2) = R0(1 − R0) − 2R2
1

+ 2R1(1 − 2R0) cos(α0 + αAB + αs)

− 2R2
1 cos[2(α0 + αAB + αs)], (21)

where R0 = |r1t2|2 + |r2t1|2 and R1 = |r1t1r2t2|. Thus, there
are exactly two nonzero harmonics in the flux dependence.
Only the second harmonics survives at |t1| = |r1| = |t2| =
|r2| = 1/

√
2.

In summary, we propose an anyonic Mach-Zehnder in-
terferometer with two copropagating edge channels and no
Ohmic contact inside the device. The topological charge in-
side the device does not change after each tunneling event.
Anyons, traveling through the device, cannot make multiple
loops around localized particles. These properties open a way
for a simple exact solution for the electric current and noise.
The magnetic-field dependencies of the current and noise
contain information about fractional charge and fractional
statistics.
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