
PHYSICAL REVIEW B 108, L241301 (2023)
Letter

Spin splitting and disorder of Landau levels in HgTe-based Dirac fermions
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This study conducts experimental exploration into a system of two-dimensional Dirac fermions utilizing a
critical-thickness HgTe quantum well in weak magnetic fields. The formation and evolution of Shubnikov–de
Haas oscillations in the magnetotransport and the capacitive response are studied, complemented by calculations
of Landau levels (LLs). It is shown that the behavior of the LLs is influenced not only by the linear dispersion
law of the carriers and the Zeeman splitting, but also by the splitting of the Dirac cones in zero magnetic field
caused by interface inversion asymmetry. The measured value of the splitting is 1.5 meV. The behavior of the
zero LL is studied and its spin splitting is demonstrated. It is shown that the broadening of the zero LL is several
times higher than that of the other levels due to the lack of charge impurity screening.
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Massless Dirac fermion systems, similar to graphene, can
be realized in HgTe quantum wells with a critical thickness
of 6.3 . . . 6.6 nm. At this thickness the energy spectrum
changes from direct to inverted [1]. Such systems are of
interest because of their linear dispersion law and their
strong spin-orbit interaction. In this system classical transport
[2–6], quantum transport [1,3,7–12], and cyclotron resonance
[13–17] were investigated, the density of states (DoS) was
measured [18], and the quantization of the Faraday rotation
was discovered [19].

Although numerous methods have been applied and di-
verse results have been obtained, with a considerable body
of work dedicated to band structure and Landau level (LL)
calculations [1,14,15,20–25], the experimental data currently
available on the characteristics of these levels remains re-
markably incomplete. On the one hand, the study of cyclotron
resonance has allowed us to confirm the existence of the Dirac
spectrum and the nonequidistance of LLs [13,14,16]. On the
other hand, the cyclotron resonance obeys selection rules pro-
hibiting spin flips when the orbital number changes by 1. It is,
therefore, insensitive to Zeeman splitting. Magnetotransport
measurements are not subject to these limitations. However,
previous research has primarily focused on the quantum Hall
effect (QHE) in high magnetic fields [8,10] or on the hole side,
where Fermi-level pinning and the observation of ultralong
QHE plateaus for Dirac holes are observed due to the presence
of side valleys with heavy holes [9,12]. At the same time, the
region of weak magnetic fields, where the features of the Dirac
spectrum should be most evident, is virtually unexplored ex-
perimentally.

The charge neutrality point is of particular interest. In
quantizing magnetic fields, the zero LL is a characteristic
fingerprint of the Dirac fermion system [26,27]. In graphene,
due to the presence of two valleys and spin, it is fourfold de-
generate, but because of the interaction effects the degeneracy
can be lifted [28]. However, due to the small magnitude of
the interaction effects and the small value of the g factor, the

degeneracy lifting is observed at rather high magnetic fields.
In the QHE regime, the conductivity of graphene at the Dirac
point can be due to both the weakly conducting bulk and the
counterpropagating dissipative edge states [29]. A different
behavior can be expected in HgTe Dirac fermion quantum
wells because of the large Zeeman splitting, which could open
a gap at the Dirac point. The QHE near the charge neutrality
point has been studied in detail in semimetallic HgTe quantum
wells (QWs) [30,31] and, to a lesser extent, in QWs of critical
thickness [6,11] or close to it [32], but with a focus on strong
magnetic fields or mesoscopic samples. Thus, the behavior of
the system of Dirac fermions at the charge neutrality point at
the transition from weak to quantizing magnetic fields remains
poorly understood.

The present work focuses on the study of Landau levels
in a (013)-oriented 6.6-nm-thick HgTe quantum well [see
Fig. 1(a)] in quantizing but relatively weak (less than 3 Tesla)
magnetic fields at temperatures of 1.5–10 K. We performed
combined magnetotransport and capacitance measurements.
Due to the high sensitivity of the transport measurements and
the possibility to measure the DoS directly by the capacitive
technique, we were able to study the zero LL in detail and to
demonstrate its splitting in a strong field. The samples investi-
gated were ten-pin gated Hall bars with a size of 450 × 50 µm
and a total capacitance of 36 pF. Magnetotransport measure-
ments were performed using a four-terminal scheme with
lock-in detection at a frequency of 4–12 Hz and a drive current
of 10–100 nA, which prevents heating effects. The capacitive
measurements were performed according to a scheme similar
to that described in [18,33]: a small oscillating voltage Vac was
applied to the gate at frequency f against a constant bias Vg,
while the quantum well was at zero potential. The magnitude
of the AC current, phase-shifted by 90 degrees with respect
to the AC voltage, reflected the capacitance of the structure.
The parameters Vac, f , and T were varied as a function of the
magnetic field in order to eliminate both resistive effects and
the effect of DoS smearing by temperature and drive voltage,

2469-9950/2023/108(24)/L241301(6) L241301-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0639-8980
https://orcid.org/0009-0007-7474-102X
https://orcid.org/0000-0002-9630-9787
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L241301&domain=pdf&date_stamp=2023-12-19
https://doi.org/10.1103/PhysRevB.108.L241301


D. A. KOZLOV et al. PHYSICAL REVIEW B 108, L241301 (2023)

FIG. 1. (a) Cross section of the investigated structure.
(b) Schematic band structure of the system. While the conduction
band consists of simple spin-degenerate Dirac cones, the valence
band has both a region with a linear dispersion law (Dirac holes)
and side valleys with heavy holes. The side valleys in the valence
band are located ≈25 meV below the Dirac point. (c) Gate voltage
dependence of the longitudinal resistance ρxx (red line, left axis) and
the capacitance (blue line, right axis) at B = 0 and T = 1.5 K. (d),
(e) Fermi energy vs gate voltage (d) and the DoS vs Fermi energy
(e) extracted from the capacitance data.

while achieving the highest possible signal-to-noise ratio. The
parameters used were Vac = 20 . . . 100 mV, f = 83 . . . 4 Hz,
T = 1.5 . . . 10 K, where the first number of the respective
range corresponds to zero magnetic field and the second one
to B = 3 T.

The measured dependencies of ρxx(Vg) and C(Vg) are
shown in Fig. 1(c). The Dirac point (DP) is located at Vg =
−0.18 V near the maximum of ρxx and the minimum of C. As
one moves away from the DP to the right, the electron density
in the system increases and a smooth decrease in resistance
and increase in capacitance is observed. From the measured
capacitance and following the previously developed approach
[18], we extracted the dependencies of the Fermi energy EF

FIG. 2. (a) Gate voltage dependence of the longitudinal conduc-
tivity σxx, measured for B = 0, 0.3 . . . 1.5 T, and T = 1.5 K. For
clarity, curves measured at nonzero magnetic fields are multiplied
by the factor shown in parentheses. The minima and corresponding
filling factors are indicated by the numbered vertical arrows. (b) Gate
voltage dependence of the Hall conductivity σxy, measured for B =
0.1 . . . 1.5 T in steps of 0.1 T. In both panels, “DP” denotes the Dirac
point. The inset: the zoomed region shows the formation of the first
hole plateau. The experimental data are shown only in the range of
0.1 . . . 0.6 T.

[Fig. 1(d)] and the DoS [Fig. 1(e)] on the gate voltage. On the
electron side, we can clearly see that the DoS depends almost
linearly on the Fermi energy. It reaches a value of 80 meV at
Vg = 2 V. On the left side of the DP, Dirac holes coexist with
heavy holes [9,12,18]. The presence of heavy holes leads to
a rapid increase of the DoS, and thus to the pinning of the
Fermi level at about −25 meV below the DP [Fig. 1(d)], and
causes the measured capacitance to saturate to the value of the
geometric capacitance [Fig. 1(c)].

Figure 2 shows the dependencies of the conductivity tensor
components σxx(Vg) and σxy(Vg) in magnetic fields up to 1.5 T,
calculated by tensor inversion from the measured ρxx and
ρxy data. These dependencies show a transition from classical
transport to the QHE regime, accompanied by the formation
of a series of distinct minima in σxx and plateaus in σxy.
The most striking effect is the strong asymmetry between
electrons and holes: first, the QHE on the hole side is formed
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in a magnetic field of only 0.4 T (and even at 0.15 T when
measured at lower temperatures [9]), while on the electron
side it requires twice the field. Second, the plateaus on the
hole side are anomalously long, and from 0.7 to 1.5 T, only
one plateau with fixed σxy = −e2/h is observed. Both features
are explained by the coexistence of Dirac (light) and heavy
holes: while the former are responsible for the formation of
the plateaus, the latter are localized and play a role of charge
reservoir [9,12,34]. The anomalous length of the plateau is
related to the exchange of light and heavy holes, implementing
the QHE reservoir model. A similar effect was later discov-
ered in graphene on some substrates and is known as “giant
QHE” [35]. The second feature, i.e., the formation of the
plateau at ultralow fields, is associated with the effect of an
increased quantum lifetime of Dirac holes in comparison to
the Dirac electrons in the presence of the heavy holes. The
heavy holes, due their high value of the effective mass and
the valley degeneracy, are characterized by a very high DoS
value. In turn, the efficiency of charge impurities screening is
proportional to the DoS, resulting in a reduced scattering rate
of the Dirac holes and a significant increase of their quantum
lifetime.

The QHE on the electron side in Fig. 2(b) shows up to five
electronic plateaus of σxy, which become blurred for higher
filling factors. This behavior reflects the peculiarity of Dirac
fermion systems, where the distance between neighboring
LLs decreases with increasing ν. It could be explained by
the magnetic field dependence of the LLs in the simplest ap-
proximation, fitted to the four-zone Bernevig-Hughes-Zhang
(BHZ) Hamiltonian [1,22],

E±
n (B) = α

√
nB ± gμBB/2, (1)

where n = 0, 1, 2 . . . is the Landau quantum number, α =
25 meV T−1/2 is a numerical coefficient, g = 50 is the ef-
fective g factor, μB is the Bohr magneton, with gμB =
3.5 meV T−1, and ± denotes different spin orientations. From
formula (1) it can be seen that in weak magnetic fields the
distance between Landau gaps characterized by odd filling
factors is larger than the distance between spin-split gaps
(even filling factor), with the maximum distance for filling
factor ν = 1. These calculations agree with the experimental
σxx(Vg) values at B = 1.5 T [Fig. 2(a)]: the deepest minima
of the conductances are observed at ν = 1 and ν = 3, while
the minima at ν = 2, 4, and 6 are significantly less deep.
At higher filling factors, the amplitude of the conductivity
oscillations associated with even and odd filling factors be-
come equal. For the most accurate calculation it is necessary
to use the more complicated six- or even eight-band Kane
Hamiltonian [20,23]. However, on the electron side and in
weak magnetic fields (below 2 T), very similar results are
obtained with all three approaches.

Let us analyze the behavior of the measured conduc-
tivity oscillations in the limit of weak magnetic fields.
Figure 3(b) shows a two-dimensional map of the second
derivative of the conductance with respect to the gate voltage
d2σxx(B,Vg)/dV 2

g . From the depth of the minima at different
filling factors, one can estimate the size of the corresponding
energy gap. The red and magenta dots in Fig. 3 indicate the
points Bν where minima of the conductivity with filling factor
ν first occur. For odd filling factors (red dots), a clear trend of

FIG. 3. (a) LLs calculated on the basis of the BHZ model with
interface inversion asymmetry taken into account with cone splitting
γ = 1.5 meV [24,25]. Numbers denote filling factors, counting the
number of occupied Landau levels. The magnetic field axis is the
same as in panel (b). (b) Two-dimensional map of the second deriva-
tive d2σxx(B,Vg)/dV 2

g . The blue color corresponds to minima of σxx,
yellow to maxima. Numbers, as in panel (a), denote the correspond-
ing filling factors. Green dashed lines mark the behavior of Dirac
holes LLs [12]. In both panels the dots indicate the points Bν where
the minima of the conductivity oscillations with the filling factor ν

appear first: red dots correspond to odd filling factors, magenta dots
correspond to even ones. The position B1 of the first red dot was
determined from the σxx(Vg) data in Fig. 2.

Bν toward increasing B with increasing ν is observed. This is
consistent with formula (1) and reflects the decreasing energy
gap for larger ν. The behavior of Bν for even filling factors
(magenta dots), reflecting spin gaps, turns out to be less trivial.
For ν = 2 the gap opens at a field of 0.8 T, which exceeds both
B1 = 0.25 T and B3 = 0.65 T and thus qualitatively agrees
with the theoretical expectation described by Eq. (1). How-
ever, all subsequent spin gaps open in a magnetic field smaller
than 0.5 T, i.e., 2–2.5 times smaller than the field for the
neighboring odd filling factors.

In order to explain the observed behavior of the spin
gaps, we performed the LL calculations based on the four-
zone BHZ Hamiltonian with an additional factor taken into
account, namely, the IIA asymmetry [24,25]. The asym-
metry reflects the real atomistic structure of the quantum
well and leads to the B = 0 Dirac cone splitting. The orig-
inal BHZ Hamiltonian parameters (the band constants A =
373 meV nm, B = −857 meV nm2, D = −682 meV nm2;
the electron and hole g factors gE = 18.5 and gH = 2.4) were
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taken from the paper of Büttner et al. [1]. The Dirac cone
splitting amplitude γ was used as a single fitting parameter.
The best fit was obtained for γ = 1.5 meV, and the result of
the calculation is shown in Fig. 3(a). Note that the optimal
value of γ varies from 1.3 to 1.7 meV for different energy
ranges, giving an average value of 1.5 meV. When IIA is
taken into account, the calculation agrees well with the ex-
perimental data. This is illustrated by the red and magenta
dots in Fig. 3(a), which are taken from panel (b). It can
be seen that the distance between neighboring LLs for odd
(red) and even (magenta) filling factors are quite similar, if
compared at same Fermi energy (i.e., the gap for ν = 5 should
be compared with ν = 8). The comparison at the same energy
is essential, because the efficiency of impurities screening and
thus the LLs’ broadening depend on energy. The magnitude
of disorder has its maximum near the DP and can reach
10–15 meV [18].

To check the last assumption we studied the zero LL. The
nature of the QHE state with ν = 0 differs from all other QHE
states with integer filling factors. In Dirac fermion systems,
the ν = 0 state may be formed either by a spin-degenerate
half-occupied zero LL, or its degeneracy could be lifted be-
cause of the spin splitting [29]. However, in both cases the
values of σxx and σxy tend to be zero due to bulk localiza-
tion. Alternatively, the spin splitting of the zero LL could
be accompanied by the formation of two counterpropagating
(electron and hole) edge channels, which could enhance the
conductivity. However, these channels are not protected from
backscattering and therefore the conductivity remains low.
Note that the double-peak structure of σxx shown in Fig. 2(a)
stems from resistivity tensor inversion and is not a signature
of spin splitting. Thus the local transport response turns out
to be weakly sensitive to the Landau zero-level splitting. To
solve this problem we used capacitive magnetospectroscopy,
which directly probes the value of the DoS for arbitrary filling
factors.

The results of the magnetocapacitance measurements
C(Vg) are shown in Fig. 4(a). The pronounced Shubnikov–
de Haas (SdH) oscillations in C(Vg) can only be observed
from B = 1.5 T on due to the lower sensitivity compared to
transport measurements. To improve the signal, the calculated
differential signal δC = C(Vg, B) − C(Vg, B = 0) is shown in
Fig. 4(b). In the differential signal, the SdH oscillations start
to appear at around 0.8 T. However, even at B = 1 T, not all
gaps are resolved—only the largest Landau gaps with corre-
sponding filling factors ν of 1 and 3 are observed, while the
oscillations at higher gate voltages reflect the spin gaps with
filling factors 6, 8, 10, and so on. The observed behavior is
consistent with the magnetotransport data and the LL calcula-
tions. The absence of some minima can be explained by their
smaller energy gaps.

The zeroth LL, a characteristic and the most remarkable
footprint of Dirac fermions, appears in the capacitance sig-
nal already at B = 0.2 T and is the dominant maximum in
Fig. 4(b). However, at fields below 1 T there is not even a hint
of Zeeman splitting. The zeroth LL becomes clearly visible as
a separate maximum in the nondifferential capacitance signal
only from B = 2 T on. At this field all SdH oscillation minima
except ν = 0 and 2 are already resolved. Finally, the splitting
of the zeroth LL appears at B ∼ 3 T, where a small and broad

FIG. 4. (a) Gate voltage dependence of the capacitance C, mea-
sured at B = 0, 0.5 . . . 3 T and T = 1.5 − 10 K. For clarity, the
curves are shifted vertically. Dashed lines show the zero-field traces
as a guide. The Dirac point “DP” is marked by a vertical arrow,
“ν = 0” marks the local capacitance minima, associated with the
zeroth Landau-level splitting at B = 3 T. (b) The differential capac-
itance δC(Vg, B) = C(Vg, B) − C(Vg, B = 0) measured at B = 0, 0.1
. . . 1 T and T = 1.5 K. The curves for finite B are shifted both on
the x and y axes to enhance visibility. The numbers denote the filling
factors ν.

minimum can be observed close to the Dirac point. That the
spin splitting of the zeroth LLs occurs at a significantly larger
magnetic field than for any other one supports the hypoth-
esis of stronger disorder and broadening. According to our
calculations, the value of the spin gap for ν = 0 at B = 3 T
is around 10 meV, which is 2 times bigger then the gap for
ν = 1, clearly seen in the capacitance at B = 1 T. Note that
the small deviation of the QW thickness from the critical
value could open a small gap between valence and conduction
bands also affecting the splitting of zero LL; however, our
previous measurements at low temperatures up to 0.2 K [3,9]
and zero magnetic field proved that this energy gap is absent
or insignificant.

In summary, the experiments show that for odd filling
factors ν the SdH oscillations are resolved at magnetic field
values that increase monotonically with increasing ν. This
is consistent with the simplest model [Eq. (1)] describing
LLs in Dirac fermion systems. The behavior of SdH oscilla-
tions with even filling factors, i.e., those associated with spin
gaps, differs significantly from the simplest model. First, SdH
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oscillations with even filling factors of 6 and higher are
formed in a magnetic field that is 2–2.5 times smaller than the
field required to form neighboring SdH oscillations with odd
filling factors. Second, the oscillations for small even ν appear
at much stronger fields, reaching its maximum for ν = 0 at a
magnetic field of ∼3 T. The observed spin gaps are explained
by the presence of an interface inversion asymmetry [24,25]
with a magnitude of γ = 1.5 meV and enhanced disorder at
the Dirac point. The obtained value of γ is almost an order

of magnitude smaller than expected from an interfacial atom-
istic calculation [24], but it qualitatively agrees with a recent
THz spectroscopy study [15] with an even smaller value of
0.6 meV.
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