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Field-driven spatiotemporal manipulation of Majorana zero modes in a Kitaev spin liquid

Chihiro Harada , Atsushi Ono , and Joji Nasu
Department of Physics, Tohoku University, Sendai 980-8578, Japan

(Received 15 May 2023; revised 2 November 2023; accepted 1 December 2023; published 20 December 2023)

The Kitaev quantum spin liquid possesses two fractional quasiparticles, itinerant Majorana fermions and
localized visons. It provides a promising platform for realizing a Majorana zero mode trapped by a vison
excitation. This local mode behaves as a non-Abelian anyon capable of applications to quantum computation.
However, creating, observing, and manipulating visons remain challenging even in the pristine Kitaev model.
Here, we propose a theory to control visons enabled by a time-dependent local magnetic field in the Kitaev spin
liquid. Examining the time evolution of the magnetic state, we demonstrate that a vison follows a locally applied
field sweeping in the system. We clarify that one can move a vison accompanied by a Majorana zero mode by
choosing the velocity and shape of the local field appropriately. In particular, the controllability of visons using
local fields shows nonlinear behavior for its strength, which originates from interactions between Majorana
fermions and visons. The present results suggest that itinerant Majorana fermions other than zero modes play
a crucial role in vison transport. Our finding will offer a guideline for controlling Majorana zero modes in the
Kitaev quantum spin liquid.
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Electron correlations in solids bring about exotic ground
states with strong quantum entanglement, and resultant ele-
mentary excitations possess completely different natures from
electrons. Amongst others, elementary excitations behaving
like independent particles emergent from an electron divided
are called fractional quasiparticles. Elucidating their proper-
ties is one of the main subjects in modern condensed matter
physics. A representative example of fractional quasiparti-
cles is a Majorana fermion, which is identical to its own
antiparticle [1]. The fractionalization into multiple Majo-
rana quasiparticles can cause non-Abelian anyonic statistics
between them, which is applied to topological quantum
computation [2–5]. Therefore, manifestations of Majorana
quasiparticles have been intensively investigated in many-
body quantum states, such as unconventional superconductors
[6–10] and fractional quantum Hall systems [11–14].

A quantum spin model proposed by Kitaev offers another
platform of Majorana fermions [15]. This model, composed
of simple interactions between S = 1/2 quantum spins, ex-
hibits a quantum spin liquid (QSL) as its ground state.
Elementary excitations from the QSL are described by two
fractional quasiparticles: Majorana fermions and local exci-
tations termed visons [16–22]. Under magnetic fields, the
Majorana fermion system is topologically nontrivial, which
results in a Majorana fermion with zero energy, called a
Majorana zero mode, bound by each vison. This composite
quasiparticle behaves as a non-Abelian anyon similar to a
zero-energy Majorana state trapped by a vortex in supercon-
ductors. Recent extensive investigations have clarified that the
Kitaev model can be realized in transition metal compounds
[23–28], metal-organic frameworks [29], and cold atom sys-
tems [30–33]. In particular, the half-integer quantized thermal
Hall effect inherent to topological Majorana fermions has
been reported to be observed in the ruthenium compound
α-RuCl3 under magnetic fields [34–37]. While the presence

of the quantization has still been under debate [38–40], this
material is believed to be a promising candidate for the Ki-
taev QSL with non-Abelian anyons. For applications of the
Kitaev systems to quantum computing, one needs to create,
observe and manipulate vison excitations as desired. Several
proposals for observing visons have been made via scanning
tunneling microscope (STM) and atomic force microscope
measurements [41–48] and interferometry for Majorana edge
modes [49–51] in this context. However, less is known about
how to manipulate a vison with a Majorana zero mode, even
in the pristine Kitaev model.

In this Letter, we theoretically propose a way to control
visons using a local magnetic field in the Kitaev QSL. We
introduce the Kitaev model under a weak uniform magnetic
field. This field makes each vison excitation accompanied by
a Majorana fermion but does not invest itinerant nature to
visons. Here we show that visons can be spatiotemporally
manipulated by applying a local field sweeping across the sys-
tem. We also reveal optimal conditions of the moving velocity
and intensity of the local field to control a vison. Furthermore,
we find a nonlinearity for the local field caused by interactions
between itinerant Majorana fermions and visons, which are
crucial for vison manipulations.

We start from the Kitaev model under a uniform magnetic
field as follows [15]:

HK = −J
∑
〈 j j′〉γ

Sγ

j Sγ

j′ − κ
∑

〈〈 j j′ j′′〉〉γ γ ′γ ′′

Sγ

j Sγ ′
j′ Sγ ′′

j′′ , (1)

where Sγ
j is the γ component of an S = 1/2 spin at site

j on a honeycomb lattice. The first term represents the
bond-dependent Ising-type interaction between spins on near-
est neighbor (NN) γ bond 〈 j j′〉γ (γ = x, y, z) [Fig. 1(a)]
with the exchange constant J , and the second term stands
for an effective field leading to a chiral spin liquid with a
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FIG. 1. (a) Honeycomb lattice cluster with open boundaries in-
cluding N = 24 spins on which the Kitaev model is defined. Blue,
green, and red lines represent the x, y, and z bonds, respectively, and
filled (open) circles stand for sites belonging to the A (B) sublattice.
The origin of the spatial coordinate is taken at the center of the
cluster, and each hexagon is labeled by p with the central hexagon
as p = 0 and numbered along the X direction. In a similar manner,
sites are numbered with j along xy bonds toward the X direction such
that the uppermost site of the central hexagon with p = 0 is j = 0.
(b) Two flux configurations with a vison at p = 0 and 1 associated
with Z2 variables with ηr = −1 on the z bonds shown by dashed
lines. The matrix element of Sz on the yellow site ( j = 1) is nonzero
between two flux configurations.

topologically nontrivial gap. The latter is given as the product
of three spins on neighboring three sites 〈〈 j j′ j′′〉〉γ γ ′γ ′′ con-
sisting of γ and γ ′′ bonds with γ ′ being neither γ nor γ ′′.
This term has been proposed to originate from higher-order
perturbations for the Zeeman term [15] and �′ interactions
[52,53] and has been discussed as an independent term from
magnetic fields [54–57]. By performing the Jordan-Wigner
transformation along chains composed of x and y bonds, we
can rewrite Eq. (1) using two Majorana fermions c j and c̄ j at
each site as [58–63]

HK = − J

4

∑
[ j j′]x

ic jc j′ − J

4

∑
[ j j′]y

ic jc j′ − J

4

∑
[ j j′]z

ηr ic jc j′

− κ

8

∑
〈〈 j j′ j′′〉〉zxy

ηr ic jc j′′ − κ

8

∑
〈〈 j j′ j′′〉〉xyz

ηr ic jc j′′

− κ

8

∑
〈〈 j j′ j′′〉〉yzx

ic jc j′′ , (2)

where the spin operator on sublattice A (B) is given
by (Sx

j , Sy
j , Sz

j ) = 1
2 (c jτ j,−c̄ jτ j, ic j c̄ j ) [ 1

2 (c̄ jτ j,−c jτ j, ic̄ jc j )]
with τ j = ∏

j′< j (−2Sz
j′ ) [see Fig. 1(a)]. Here, [ j j′]γ is the

ordered NN pair and ηr = ic̄ j c̄ j′ on z bond r, where j ( j′)
belongs to sublattice A (B). The quantity ηr exists also on the
z bond of neighboring three sites 〈〈 j j′ j′′〉〉zxy and 〈〈 j j′ j′′〉〉xyz.
Since ηr commutes with HK and satisfies η2

r = 1, it is a
local Z2 conserved quantity. We also introduce a physical lo-
cal conserved quantity as Wp = 26 ∏

j∈p S
γ j

j on each hexagon
plaquette p with γ j being the bond type not belonging to
the hexagon loop at site j. This quantity relates to ηr as
Wp = ηr1ηr2 , where r1 and r2 are the two z bonds on the
hexagon p. The ground state of HK belongs to the sector
with all Wp being +1, called flux-free. Then, the elementary

excitations are described by two quasiparticles: itinerant Ma-
jorana fermions c j and local excitations flipping Wp to −1.
The latter quasiparticles are termed visons.

Figure 1(b) shows two single-vison excitations, where a
vison is located at the endpoint of the string crossing z bonds
with ηr = −1. To manipulate visons, we need to consider
an external field with nonzero matrix elements between the
two configurations. One of the simplest ways is introducing a
local magnetic field for Sz

1 at the yellow site j = 1 shown in
Fig. 1(b) [55,64]. Since Sz

1 anticommutes with ηr0 being the
z bond connected with the site j = 1, it causes the hopping
of a vison between neighboring hexagon plaquettes. We intro-
duce the time-dependent local fieldHh(t ) = −∑

j h j (t )Sz
j for

spatial and temporal control of visons.
In the present study, we apply the Hartree-Fock

approximation to the Majorana fermion representation of
H = HK +Hh(t ); the third, fourth, and fifth terms in Eq. (2)
are decoupled as ic̄ic̄ j icic j � 〈ic̄ic̄ j〉icic j + ic̄ic̄ j〈icic j〉 −
〈icic̄ j〉ic j c̄ j − icic̄ j〈ic j c̄ j〉 + 〈icic̄ j〉ic j c̄i + ici c̄ j〈ic j c̄i〉 with
a constant. The obtained mean-field Hamiltonian HMF(t )
is given by a following bilinear form of Majorana
fermions {γl} = {c1, c2, · · · , cN , c̄1, c̄2, · · · , c̄N }: HMF =
i
4

∑
ll ′ γlAll ′γl ′ + C, where N is the number of sites, C is a

constant, and A is a 2N × 2N real skew symmetric matrix
[65].

We calculate the time evolution based on the von
Neumann equation and solve it by the fourth-order
Runge-Kutta method with the step size �t [66–69]. As
an initial state at tin = 0, we impose no local magnetic
field with Hh(tin ) = 0, where Wp and ηr are conserved
quantities. Numerical calculations are performed with
�t/J−1 = 0.01 (h̄ = 1 is assumed) on the hexagon-type
cluster with N = 1734, which is straightforwardly obtained
by extending the cluster shown in Fig. 1(a) [65]. The width
of the cluster for the X direction is 33, where the length
of the primitive translation vectors is unity. We compute
the expectation value of Wp and local density of states
(LDOS) g j (ε; t ) for the Majorana fermions c j at site j,
which is defined to satisfy the normalization

∫ ∞
0 g j (ε; t )

dε = 1. The details are given in the Supplemental
Material [65].

Here, we show the results for the time evolution of a
vison in the presence of spatially and temporally dependent
local field Hh(t ). In the initial state, a vison is located at
(X,Y ) = (pin, 0) with pin = −6, namely Wpin = −1 and other
Wp are +1 [see Fig. 2(a)]. The local field is applied for the
sites j = 2pin + 1, 2pin − 1, · · · , 5, where jmin = 2pin + 1 is
the upper right site of the hexagon pin, as a shifted rectan-
gular field h j (t ) = AR(t ; (T + �T )( j − jmin)/2, T ) with the
amplitude A and delay time �T [see Fig. 2(k)]. R(t ; t0, T ) =
θ (t − t0)θ (t0 + T − t ) is a rectangular function starting from
t0 with the width T and θ (t ) is the Heaviside step function. We
set the parameters as A/J = 0.1, T/J−1 = 69, �T/J−1 = 10,
and κ/J = 0.05. Figures 2(a)–2(e) show the snapshots of the
spatial map for 〈Wp〉. We find that the vison moves to the right
side by following the motion of the local field and its shape
is largely intact by time evolution. Figure 2(l) shows the time
evolution of the vison density Dp on the hexagons whose cen-
ters are located on the Y = 0 line, where Dp = (1 − 〈Wp〉)/2.
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FIG. 2. (a)–(e) Spatial map of Wp under the time-dependent local field at (a) t = 0, (b) t/J−1 = 160, (c) t/J−1 = 320, (d) t/J−1 = 480, (e)
t/J−1 = 640. (f)–(j) Corresponding figures for low-energy LDOS glow

j . (j)–(m) Time evolutions of (j) the local fields hj , (k) vison density Dp,
and (m) low-energy LDOS gsum

p on the hexagon plaquette p.

The NN hopping of a vison occurs while the rectangular local
field is applied, and the vison almost perfectly moves to the
neighboring site.

Figures 2(f)–2(j) show the snapshots of the low-energy
LDOS glow

j (t ), where glow
j (t ) = ∫ εm

0 g j (ε; t )dε with εm/J =
10−3. At t = 0, the large spectral weight of the low-energy
LDOS is observed at the corners of the hexagon with a
vison, corresponding to a Majorana zero mode. The zero
mode clearly follows the vison moving to the right side while
maintaining its spatial shape in time evolution. This feature
is also seen in Fig. 2(m), showing the low-energy LDOS on
the hexagon plaquette p, gsum

p (t ) = ∑
j∈p glow

j (t ). The present
results suggest that a vison is accompanied by a Majorana zero
mode even while a time-dependent local field drives a vison.
Note that this field-driven vison manipulation is sensitive to
the parameters of the local field. When one changes the value
of A, the wave packet of a vison spreads out and the quasi-
particle picture collapses regardless of its propagation [65].
The results imply that the shape of the local magnetic field is
crucial in manipulating a vison.

To examine this feature in more detail, we introduce a sim-
ple setup, where a vison is located at p = 0 in the initial state
and the local magnetic field is applied to the spin at site j = 1
as a quenched field with h1(t ) = Aθ (−t ) [see Fig. 1(b)]. Since
W0 and W1 do not commute with Sz

1, their expectation values
should change by the local field quench. On the other hand,
in the present initial condition, the relation 〈W0 + W1〉 = 0,
namely D0 + D1 = 1, is maintained even in the presence of
the local field. Figures 3(a)–3(c) show the time evolutions
of D0 and D1 for κ/J = 0.05 for several A. In the case of
A/J = 0.06, D1 takes a maximum Dmax

1 � 0.2 at t/J−1 � 50

and turns to decrease and oscillate over time. On the other
hand, at A/J = 0.08, the time evolution of D1 exhibits a com-
pletely different behavior; the maximum value Dmax

1 reaches
almost one for A/J = 0.08, suggesting that the hopping of a
vison from p = 0 to p = 1 occurs. Further increasing A, the
time evolution of D0 and D1 appear to be cosine-type. Note
that D1 takes a maximum at t = tmax ∼ 69J−1 at A/J = 0.1,
corresponding to the time width T of the local field for con-
trolling a vison, used in Fig. 2.

FIG. 3. (a)–(c) Time evolution of the vison densities Dp at p =
0, 1 after abruptly introducing the local field with (a) A/J = 0.06,
(b) 0.08, and (c) 0.1 at the site j = 1 [see Fig. 1(b)]. The filled circles
denote the maximum of D1. (d) A dependence of the maximum Dmax

1

for several κ . (e) Contour plot of Dmax
1 on the A-κ plane. The red line

represents Acr = 0.032κ−0.25.
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FIG. 4. Plot of Dmax scaled by Acr for the horizontal axis in
Fig. 3(d). Dmax in the two-state model is also shown by a red line
as a function of |β|/α.

We also find the existence of a threshold Acr for the lo-
cal field intensity; the vison hopping assisted by the local
field does not occur below Acr but the field is capable of
manipulating visons above Acr. The value of Acr can be de-
termined by observing the maximum of D1, defined as Dmax

1 .
Figures 3(d) and 3(e) display Dmax

1 as a function of A for
several κ and its contour map on the A-κ plane [70]. These
results clearly show the presence of Acr at which Dmax

1 abruptly
changes to one. Furthermore, Acr decreases with increasing
κ . This result suggests that, if the background uniform field
κ is weak, a stronger local field A is needed for the vison
manipulation, but a weak local field can move the vison when
the uniform field is strong. This is a trade-off relation be-
tween the uniform field and local field intensities. Moreover,
we find Acr � 0.032κ−0.25 by fitting Acr, which is shown in
Fig. 3(e) as a red line. Using the values of Acr, we rescale the
A dependence of Dmax

1 as presented in Fig. 4. All data almost
collapse to a single curve, suggesting the presence of universal
behavior in vison hoppings.

Here, we discuss the origin of the threshold behavior for
the vison hopping triggered by the local field. We construct
a simplified low-energy model to consider the two states
presented in Fig. 1(b), where the upper and lower states are
denoted as |�0〉 and |�1〉, respectively. The time-dependent
wave function is written as |�(t )〉 = c0(t )|�0〉 + c1(t )|�1〉
with the coefficients c0(t ) and c1(t ), whose time evolutions
are determined by the Schrödinger equation i∂|�(t )〉/∂t =
Hlow|�(t )〉. We assume the effective HamiltonianHlow as the
following form:

Hlow =
(−2α�(t ) β

β∗ 2α�(t )

)
, (3)

where �(t ) = |c0(t )|2 − |c1(t )|2, which causes a nonlinearity
in the system. The off-diagonal terms with the coefficient
β arise from the local magnetic field applied at site j = 1,
and |β| is expected to be given by A|〈�1|Sz

1|�0〉| with the
local-field intensity A. On the other hand, the diagonal term
with the real coefficient α mainly originates from interactions
between Majorana fermions and visons intrinsic in the Kitaev
model, which causes vison localization [71]. We impose c0

(t = 0) = 1 and c1(t = 0) = 0 as initial conditions and cal-
culate their time evolutions [65]. Since |cp(t )|2 (p = 0, 1) is
regarded as the probability of the vison existing at p, we

FIG. 5. (a),(b) Spatial maps of Wp (a) before and (b) after intro-
ducing the time-dependent magnetic field hj (t ) applied for the six
yellow sites shown in (a) as a rectangular function AR(t ; 0, T ) with
A/J = 0.04 and T/J−1 = 171. (c)–(f) Same plots for hj (t ) applied
to (c),(d) the six and (e),(f) the 24 yellow sites as a Gaussian function
Ae−(t−tc )2/2σ 2

with A/J = 0.08, σ/J = 100 and tc/J−1 = 300. (g)–(l)
Corresponding plots to (a)–(f) for low-energy LDOS glow

j . In these
simulations, we set κ/J = 0.05.

assume Dp = |cp(t )|2, and Dmax
1 is determined similarly to the

Hartree-Fock calculations. This quantity is plotted as a func-
tion of |β|/α in Fig. 4(b) as a red line, which exhibits a jump
at |β|/α = 1. The line well coincides with the Hartree-Fock
results scaled by Acr, implying that the low-energy two-state
model can well account for the vison hopping in the lattice
system.

In the case with |β|/α 
 1, the diagonal term giving
the nonlinearity can be neglected and |c1(t )|2 = sin2 |β|t ,
indicating tmax = π/(2|β|). The previous studies suggested
|β|/A = |〈�1|Sz

1|�0〉| � 0.23 at κ/J = 0.05 [55,64], leading
to tmax/J−1 � 68 for A/J = 0.1. The estimation of tmax is
consistent with the Hartree-Fock result shown in Figs. 2 and
3(c). Thus far, we assume that the local magnetic field is
constant for t . Even if one considers the time-dependent local
field h1(t ), which gives rise to the t dependence for β, the con-
dition for |c1(tmax)|2 = 1 is determined only by the integral as∫ tmax

tin
|β(t )|dt = π/2. The result will offer a simple guideline

for manipulating a vison.
To advance the practical application of vison manipulation,

we investigate several variations of local fields. As illustrated
in Fig. 5, a localized vison can be moved by the local fields
applied to neighboring six sites as rectangular and Gaussian
functions and also by the field applied even to adjacent 24
sites. These calculations suggest that visons are not addi-
tionally excited by the local fields with spatial distributions.
This is interpreted as follows. When applying a local magnetic
field to a specific site adjacent to a vison, the vison moves to
the neighboring plaquette because the local magnetic field hy-
bridizes two different states whose energies are degenerate. In
contrast, a local field applied at a site without visons possibly
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creates a pair of two visons in addition to an existing one,
which demands a nonzero excitation energy [15]. Therefore,
even if local magnetic fields with spatial distributions are
employed beyond the field at a specific site, the excitation gap
prevents the creation of visons and ensures the manipulation
of a vison while preserving its shape. Furthermore, we have
verified that a Majorana zero mode is always accompanied
by the vison motions, as depicted in Figs. 5(g)–5(l). These
results imply that the Majorana zero mode can be manipulated
even by using local magnetic fields applied to multiple sites in
wider regions beyond the application only to a specific site.

Within our framework, the required local-field strength
and the upper limit of its sweeping speed are estimated at
∼1 T and ∼10 m/s, respectively, for the Kitaev candidate
material α-RuCl3 with J � 100 K [28,72–74] and κ/J � 0.05
[75]. While the field strength is larger than that given by
recent STM technique generating nanoscale magnetic fields
at present [76], our study will provide a possible route to
spatiotemporal manipulation of a vison and stimulate the
development of experimental research. Here, we propose sev-
eral routes to reduce the required magnetic field. Based on the
present study, we find that Acr decreases with increasing κ as
shown in Fig. 3(e), suggesting that the increase of the uniform
effective field results in the reduction of the required field
strength. We have also confirmed that extending the region
of an applied local field also enables manipulating a vison

in lower local fields. This phenomenon originates from the
presence of multiple sites at which the local fields contribute
to the hopping of a vison [55,64]. Furthermore, selecting
candidate materials with smaller energy scales of the Kitaev
interaction [29,77] is also effective to reduce the the required
field strength.

In summary, we have demonstrated that a vison ac-
companied by a Majorana zero mode can be manipulated
spatiotemporally by a locally applied magnetic field sweeping
in the Kitaev model under a uniform effective field. Increasing
the intensities of the local and uniform fields enhances con-
trollability due to interactions between visons and itinerant
Majorana fermions. Notably, the vison gap plays a crucial
role in the stable manipulation of a vison. Our finding sheds
light on the impact of many-body effects of fractional quasi-
particles on the vison manipulation and paves the way for
achieving topological quantum computation in Kitaev spin
liquids.

Parts of the numerical calculations were performed in the
supercomputing systems in ISSP, the University of Tokyo.
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Research from JSPS, KAKENHI Grant No. JP19K03742,
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