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Scaling of entanglement entropy at quantum critical points in random spin chains
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We study the scaling properties of entanglement entropy (EE) near the quantum critical points in interacting
random antiferromagnetic (AFM) spin chains. Using density-matrix renormalization group, we compute the half-
chain EE near the topological phase transition between the Haldane and random singlet phases in a disordered
spin-1 chain. It is found to diverge logarithmically in system size with an effective central charge c.x = 1.17(4) at
the quantum critical point (QCP). Moreover, a scaling analysis of EE yields the correlation length exponent v =
2.28(5). Our unbiased calculation establishes that the QCP is in the universality class of the infinite-randomness
fixed point predicted by previous studies based on the strong disorder renormalization group technique. However,
in the disordered spin-1/2 Majumdar-Ghosh chain, where a valence bond solid phase is unstable to disorder, the
crossover length exponent obtained from a scaling analysis of EE disagrees with the expectation based on the
Imry-Ma argument. We provide a possible explanation.
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Introduction. Entanglement entropy (EE) measures gross
quantum mechanical correlations between different parts of
a system and incorporates experimentally observable quan-
tities in an agnostic manner. It has recently been a subject
of extensive investigation as a paradigm for understanding
and classifying a wide range of quantum phases and phase
transitions (QPTs) [1-15]. The list includes topological phe-
nomena where it has been especially useful [16-25], in
addition to conventional symmetry breaking, impurity-driven
phases, [6,8,26], etc. Particularly appealing aspects of EE are
it being a diagnostic for QPTs, a tool for extracting univer-
sal scaling behavior, and new characterizations such as the
(effective) central charge [6,8,18,27,28] and topological en-
tanglement entropy [16,17,29]. The extent to which it can be
practically useful, in extracting quantitative properties essen-
tial to classifying the QPTs, continues to be an exciting area
of research.

One-dimensional spin chains with randomness have been
of interest for several decades [30-39]. A frequent theme in
these systems is the emergence of infinite-randomness fixed
points (IRFPs). Pioneering works [6] and subsequent stud-
ies [8,26,40—48] have established that different IRFPs can
be distinguished from each other using the properties of EE,
in particular via the “effective” central charge that controls
the scaling of EE with the logarithm of size of a subsys-
tem [49]. The exact results have been primarily obtained
using the archetypal strong disorder renormalization group
(SDRG) that becomes exact as the width of disorder distri-
bution approaches infinity. However, several impurity-driven
transitions occur at zero and finite disorder strengths where
SDRG is not applicable, at least on the lattice scale. Hence
alternate methods, that can provide independent and unbiased
perspectives, are vital to exploring the properties of EE at
these critical points.

In this Letter, we utilize the density-matrix renormaliza-
tion group (DMRG) that is a powerful technique for solving

2469-9950/2023/108(24)/L241113(6)

[241113-1

interacting low-dimensional systems and that has recently
been improved for applications in problems involving ran-
domness [50-55] (details of our DMRG approach can be
found in the Supplemental Material [56]). We investigate the
behavior of EE at the topological phase transition between
the Haldane [57-59] and random singlet phases in a spin-1
chain. The former is a symmetry-protected topological phase
that is known to be stable up to a finite disorder strength
owing to its gapped nature. It transitions into a random sin-
glet phase (RSP) upon increasing disorder beyond a critical
value [36,37,60,61]. The quantum critical point is proposed
to be an IRFP in Refs. [8,37,39]. EE was studied in Ref. [8]
using the SDRG technique applied to a domain wall picture
and they found that it diverges with system size L logarith-
mically, i.e., S = %‘f logL + - - -, with cer = 1.232. Here, L
is the number of spins in an open chain and we take S to
be the midchain EE. Additionally, the correlation length crit-
ical exponent v was predicted to be approximately 2.30 in
Ref. [37].

Since this fixed point exists at an intermediate disorder
strength, SDRG is not applicable for the initial steps. One may
ask therefore if the critical point could be in a different univer-
sality class than the aforementioned IRFP. We investigate this
question using DMRG that, as we show, can solve weak to in-
termediate disordered Hamiltonians if used carefully, exactly
where SDRG is not trustworthy. Rather than the Heisenberg
model, we study the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model [57] which has a short coherence length and is exactly
solvable. We add randomness such that it becomes and flows
to the same RSP as the Heisenberg model at large disorder.
By studying EE scaling with the system size at the critical
point, we obtain c.f = 1.17(4) and a correlation length expo-
nent v = 2.28(5) that agree with the SDRG-based predictions
of Refs. [8,37], respectively. This confirms that the Haldane
phase to RSP transition is indeed in the same universality class
as the IRFP studied in these works.

©2023 American Physical Society
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FIG. 1. (a) Excess half-chain entanglement entropy AS = S — 2log?2 vs disorder strength W for various chain lengths L in a random
spin-1 chain [Eq. (1)]. It is averaged over Np = 16 000 disorder realizations except for L = 112 where Np = 12 540. The solid lines are fits
to independent interpolating functions at each L. (b) A least-squares error fit of maxima of AS against log L gives an effective central charge
cetr = 1.17(4). (c) Power-law scaling analysis of half width at half maximum on the left side of AS, i.e., AW,y ~ L% . Peak positions Wax

are nearly independent of L (inset).

As a second example of disorder-induced quantum
criticality, we add randomness to the Majumdar-Ghosh
model [62,63] such that the second-nearest-neighbor antifer-
romagnetic exchange term is suppressed at large disorder and
the ground state is in the same universality class as spin-1/2
RSP. Without disorder, it breaks translational invariance spon-
taneously by forming a dimerized state that was found to be
unstable to an arbitrarily small amount of disorder in favor of
an RSP phase [64]. Here, we compute the midchain EE in its
weak disorder regime and observe critical scaling, confirming
this expectation. Further, we obtain the crossover length scale
exponent v = 1.16(5) via a scaling analysis of EE. Surpris-
ingly, this is different than the expectation of v = 2 based on
an Imry-Ma [65] type argument presented in Ref. [64].

Random biquadratic coupling AFM spin-1 model. We con-
sider the following random biquadratic coupling model for the
spin-1 chain,

L-1

H =[S Siz1 + Di(S; - Siy1)], ey

i=1

where S; correspond to the spin operators of a spin-1 at the
ith site. In the absence of impurities, we take J; = 3D; = J
so that one obtains the AKLT model where the ground state
is in the universality class of the Haldane phase. This state
can be understood as a dimerized phase of a spin-1/2 chain of
length 2L where each spin-1 is split into two spin-1/2’s. The

spin-1/2’s at the edges of an open chain are unpaired and the
ground state manifold consists of four states with an energy
splitting decreasing exponentially in size. Let us introduce
disorder using a power-law distribution of J;’s:

1 T\

PJ) = W (Q_o> O[J (20 — )1, (2)
J?

D=5 3)

We have (logJ) =log 2y — W and the standard deviation
Ologs = W, hence W corresponds to the strength of disorder.
Since €2 is an unimportant energy scale for EE calculation,
we choose it by setting ), log J; = 0. Importantly, Eq. (3) en-
sures that in the W — 0 limit, one recovers the AKLT model.
Moreover, in the W — oo limit, D; < J;/3 and are irrelevant
perturbations to the RSP fixed point in the spin-1 Heisenberg
model as shown in the Supplemental Material [56].

Critical scaling at Haldane-RSP QCP. In Fig. 1, we plot
the midchain von Neumann EE versus disorder strength for
various chain lengths of the model in Eq. (1). It is defined as
follows,

S = —Tr[pa log pal, 4

where ps is the density matrix of the left half chain. We
assume that the ground state is an SU(2) singlet, hence EE
at W = 0 is a constant equal to 2 log 2 that we subtract from
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all data points. The excess EE, AS, shows a clear maximum at
a critical disorder strength W = W, where W, is nearly inde-
pendent of size. Further, the maximum increases with L, and is
consistent with a logarithmic divergence in L. Consequently,
we interpret W, as the critical point between the Haldane
phase and RSP.

Our strategy for extracting W, and other critical properties
is as follows. We fit the data points at each size near the critical
point to an independent interpolating function chosen to be a
Gaussian envelope times a fourth-order polynomial in W. This
function is then used for further analysis as opposed to the
raw data. We fit the maximum EE, AS;,,x(L), to the following
expression:

ASpan(L) = % log L + ASp. (5)

We obtain ces = 1.17(4). This is within two standard devia-
tions of cer = 1.232 predicted in Ref. [8].

We assume that the excess EE follows critical scal-
ing in the thermodynamic limit of the form AS(W,L) =
ASmax (L) fI(W — W,)L'/V]. This predicts that the half width
at half maximum to the left side, AWy, scales as L~1/".
The resulting best-fit value, v = 2.28(5), is very close to the
SDRG prediction, v = 2.3, made in Ref. [38]. We note that
v depends somewhat on the precise feature of the EE fitted.
We believe this is because higher moments of the curves may
not have reached the scaling limit and may require data from
larger sizes. Moreover, we use only the left side of maxi-
mum. On the right side, we expect a RSP with ¢ = log3 ~
1.099 [8]. At large sizes, EE is not expected to reduce by more
than 11% from its critical value to the one in RSP. Moreover,
DMRG simulations tend to be less reliable at large W due to
the wide disorder distribution at both lattice and renormalized
scales.

Random second-nearest-neighbor Majumdar-Ghosh spin-
1/2 model. We next consider the Majumdar-Ghosh AFM spin-
1/2 chain with nearest-neighbor coupling J and next-nearest-
neighbor coupling K = J/2. We introduce disorder in both J
and K, so our Hamiltonian reads

L-1 L2
H =Y JiSi-Si1+ ) KiSi-Sipa. (©)
i=1 i=1
In the absence of disorder, J; = 2K; = J. We take L to be
an even number so that the ground state is unique and cor-
responds to singlets at bonds labeled by 2n — 1/2 where
n=1,...,L/2. The disorder distribution for J;’s is the same
as in Eq. (2). As in the previous case, K;’s are chosen such
that one obtains the random Heisenberg model at W — co. In
particular, we choose

JiJiv1
— Lt 7
2% @)

We refer the reader to Refs. [56,66] for a discussion of SDRG
equations and the irrelevance of K; at the RSP in the spin-1/2
Heisenberg model.

Scaling near the valence bond solid (VBS) state in a
spin-1/2 chain. There are a few subtleties in the quantitative
interpretation of the scaling behavior in the spin-1/2 model.
First, the RSP has power-law spin-spin correlations, hence,
the correlation length is infinite. We expect the transition to

i

involve a diverging crossover length scale &...ss above which
the VBS state disappears. Second, as we confirm below,
the transition takes place at W = 0. Therefore, any posi-
tive power of the disorder strength W can serve the role of
a tuning parameter making the exact value of the critical
exponent v parametrization dependent. In analogy with a
temperature-induced ferromagnet-to-paramagnet transition in
a one-dimensional pure quantum Ising model, we choose the
tuning parameter to be an energy scale. The standard deviation
of J, that has dimensions of energy, is *W Qy at W <« 1. Thus
we define v via the scaling relation Wégr{)‘gs = const. More
precisely, v determines the scaling dimension of the relevant
parameter W at the VBS fixed point.

In Fig. 2, we present and analyze the data for the random
spin-1/2 chain of Eq. (6). At W = 0, midchain EE is zero
at the bond indexed by (L + 1)/2. It increases monotonically
with W and saturates to a size-dependent value. We fit our data
for EE to the following functional form,

2 3
SOV L) = S, () ST @W + BLW? + y LW+ 1

2
@®)

where S (L) is EE extrapolated to the infinite disorder limit
and a(L), B(L), y(L) are fitting parameters for each size
L. Sw(L) is found to diverge logarithmically with L as in
Eq. (5) with cer = 0.66(2). Reference [6] predicts cer =
log2 =~ 0.693 in the RSP of a spin-1/2 chain, within two
standard deviations of our numerically computed value. This
agreement implies that our spin-1/2 model transitions from
the VBS to RSP phase as disorder is introduced. Importantly,
we do not observe other features in the EE suggesting that the
transition is a direct one.

Based on the expectation that the VBS phase is unstable to
disorder, we consider the scaling ansatz S(W, L) = f(WL!/")
near W =0 and in the thermodynamic limit. In order to
extract the crossover length exponent v, we find it useful to
reparameterize the data using x = log W and transforming the
scaling ansatz to the following:

S(x,L)=F<x+lO%L>. )

Further, the derivative of S(x, L) with respect to x displays
a peak that is a clear feature of the transition and is reliable
for a finite-size scaling analysis. Its position, i.€., X = Xpeak
is determined purely by the function F(y) through the re-
lation F”(y) = 0. Hence the scaling ansatz predicts Xpcax =
X0 — lof L using which we obtain v = 1.16(5). A consequence
of our scaling assumption is that the width of the dS/dx
curve must become independent of size in the thermodynamic
limit. In the inset of Fig. 2(c), we plot the full width at half
maximum Axyg, vs 1/L. While a significant irrelevant correc-
tion is present, it nevertheless approaches a constant in the
thermodynamic limit.

Our crossover length exponent is significantly different
than the prediction of Ref. [64] who used an argument anal-
ogous to Imry-Ma [65] based on the domain wall picture.
Since the EE measures quantum entanglement, a quantum
mechanical property, whereas the Imry-Ma argument is essen-
tially a classical argument for the domain size, the apparent

1L241113-3
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FIG. 2. (a) S vs W for various chain lengths L in the random spin-1/2 model [Eq. (6)]. (b) S extrapolates to So.(L) in the W — oo limit
from which we extract c.f. (c) dS/dx obtained from the fitting functions where x = logW. (d) Power-law scaling analysis of peak positions
Winax = €™ In the inset, full widths at half maxima Ax,, of dS/dx curves are plotted vs L.

discrepancy could be argued away by positing that EE mea-
sures a quantum subleading length, not the domain size. We
speculate this might be related to the quantum wandering of
domain walls. Other possibilities include a complete modifi-
cation of the domain wall picture due to quantum fluctuations,
or strong finite-size effects for sizes studied here.

Discussion. We have shown that ground state entanglement
entropy (EE) can not only detect quantum phases and phase
transitions (QPTs) in random spin chains but is also useful for
characterizing their critical scaling behaviors. EE computed
using DMRG in our work has provided important indepen-
dent perspectives to the strong disorder renormalization group
(SDRG) technique. This is especially needed because SDRG
may not be valid when the quantum critical point (QCP)
occurs at zero or finite disorder strength. Our study suggests
that the DMRG technique could be used to study other one-
dimensional models with disorder as a complement to other
approaches such as SDRG.

At the Haldane phase to random singlet phase (RSP)
transition in a spin-1 chain, the effective central charge and

correlation length exponent extracted from the behavior of
EE are consistent with previous studies. This provides an
independent and unbiased confirmation that the QCP is in
the same universality class as the infinite-randomness fixed
point proposed by studies based on SDRG. On the other hand,
the crossover length scale exponent computed using EE in the
disordered Majumdar-Ghosh model differs significantly from
prior theoretical predictions [64,65] and we discussed possible
causes above. However, we leave a detailed study of this issue
to future work.
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