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We present a framework for analyzing Mott insulators using a material-based tight-binding model. We start
with a realistic multiorbital Hubbard model and derive an effective model for the localized electrons through the
second-order perturbation theory with respect to intersite hopping. This effective model, known as the Kugel-
Khomskii model, is described by SU(N) generators, where N is the number of localized states. We solve this
model by the mean-field theory that takes local correlations into account and reveal spin-orbital ordered states. To
include spatial correlations, we apply the classical Monte Carlo based on the path-integral approach with SU(N)
coherent states, and also derive the equation of motion for spin-orbital degrees of freedom. Our approach enables
quantitative analysis of Mott insulator materials with a small intersite quantum correlation. The 5d-pyrochlore
oxide is used here as a demonstration.
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Introduction. Multiorbital systems with strongly correlated
electrons have been attracting attention due to their diverse
physical phenomena, such as electronic ordering and multi-
ferroic behavior. It is crucial to uncover their material-specific
physical properties in order to make a serious comparison
with experimental results. In materials with weakly correlated
electrons, density functional theory (DFT)-based calculations
have been successful in describing their electronic proper-
ties. On the other hand, in the strongly correlated regime, it
is useful to construct a tight-binding model using localized
Wannier functions and subsequently employ a multiorbital
Hubbard model with local Coulomb repulsive interactions as
a fundamental model. Unfortunately, it is extremely difficult
to perform the calculations in a realistic setting due to the
immense numerical cost. A theoretical framework that is ap-
plicable to realistic strongly correlated electron systems is
highly desired, which will enable material prediction through,
for example, high-throughput screening [1].

In the present work, we focus on the Mott insulators where
the electrons are localized with a strong local Coulomb inter-
action. Even in this case, the spin-orbital degrees of freedom
generate a number of interesting phenomena such as magnetic
orderings, multiferroic behaviors, and spin liquids [2–10].
The low-energy effective model with localized electrons is
known as the Kugel-Khomskii model, in which both the spin
and orbital degrees of freedom are involved [11–27]. The
realistic localized models have been discussed for the spin
model [28–39] and eg/t2g-multiorbital systems [40–46]. The
DFT+DMFT approaches have also been employed for the
analysis [28,39–42,47–49]. In order to study arbitrary Mott
insulator materials, however, a more general framework is
needed that can be applied at a reasonable computational cost
to general multiorbital systems with spin-orbit interactions
and any number N of localized states per atom.

In this Letter, we propose a general framework to per-
form calculations for the spin-orbital Mott insulators, which
is not restricted to specific systems. We develop a realistic
spin-orbital model based on the tight-binding model derived

from first-principles calculations and the local Coulomb in-
teraction with Slater-Condon parameters. The model contains
N2 − 1 spin-orbital degrees of freedom and is described by
SU(N) generators. When analyzing the model, while a fully
quantum analysis is not feasible because of the huge com-
putational cost, we use the classical Monte Carlo with the
SU(N) coherent state [50–52], in addition to the standard
mean-field theory. The SU(N) coherent state has been used for
the spin systems [53–62], and here we apply it to the realistic
spin-orbital model. While the quantum-mechanical intersite
correlations at very low temperatures are not incorporated in
our theory, our method captures the characteristic physics at
finite temperatures in a realistic setup for any Mott insulators
with a reasonable numerical cost.

We will take the pyrochlore oxide Cd2T2O7 as an example.
This is suitable as a prototype material for the demonstration
of our framework due to its complicated electronic structure:
the four transition-metal T atoms in unit cell (specified as
sublattice indices A, B, C, D), large spin-orbit interaction, and
t2g three orbitals of 5d electrons with trigonal symmetry at T
atom site [63,64] (see Fig. 1). In addition, their noncollinear
magnetic structures are well studied both theoretically and
experimentally [65,66]. Hence the applicability to this proto-
typical material Cd2T2O7 demonstrates the versatility of our
method.

Realistic spin-orbital model. The realistic effective model
for the localized electrons is constructed based on the mul-
tiorbital Hubbard model derived from first-principles calcu-
lations. Let us begin with the Hamiltonian H = Hloc + Ht ,
where

Ht =
∑
〈i j〉

∑
ab

tab
i j c†

iac jb + H.c. (1)

describes the intersite hopping term. The operator cia annihi-
lates the electron at the atom site i with the spin (σ )-orbital
(γ ) index a = (γ , σ ). The symbol 〈i j〉 indicates the summa-
tion with respect to the pairs of atomic sites, and includes
the terms other than those of the nearest-neighbor sites. The
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FIG. 1. Single-site eigenenergy levels for Cd2T2O7, which corre-
sponds to Ht = 0. We choose U = 4 eV and J/U = 0.1, which is
comparable to the previous study [71]. The vertical axis shows the
energy measured from the lowest energy at each n. The inset is the
crystal structure of Cd2T2O7, where only T and O atoms are shown
for clarity [72].

local part Hloc is further divided into three components as
Hloc = HU + HSOC + HCEF, which are the Coulomb inter-
action, the spin-orbit coupling and the local crystalline electric
field, respectively. The Coulomb interaction is written as

HU =
∑

iγ1γ2γ3γ4σσ ′
Uγ1γ2γ3γ4 c†

iγ1σ
c†

iγ2σ ′ciγ4σ ′ciγ3σ , (2)

which is parameterized by the Slater-Condon parameters as
typically used in LDA+U or LDA+DMFT framework [67].
Specifically for the three orbital case as in t2g orbital, the
standard Slater-Kanamori form is employed: Uγ γ γ γ = U/2,
Uγ γ ′γ γ ′ = U ′/2, Uγ γ ′γ ′γ = Uγ γ γ ′γ ′ = J/2 for γ �= γ ′ (U ′ =
U − 2J) and the other terms are zero.

In the following, we take the tight-binding model of T =
Os derived from an electronic-structure calculation [68]. Since
the band structure [see Fig. 2(a)] is similar to that of other
materials with different fillings such as T = Re [69,70], we
use the data of the T = Os case also for other electron fillings.

We analyze the multiorbital Hubbard model in the strong
coupling limit (U → ∞), where the electrons are localized.
First of all, we derive the eigenenergies and eigenfunctions
in the atomic model with only Hloc, which is necessary
for specifying the model Hilbert space at low energies, i.e.,
the number N of the localized states. Figure 1 shows the
single-site eigenenergy diagram of Hloc for each number n
of electrons per T atom. When we focus on the odd number
of the filling n, there are only doubly degenerate states corre-
sponding to the Kramers doublet.

In this paper, we choose n = 1 for a demonstration of our
scheme, which allows us to choose the size of the model space
as N = 2, 4, 6 based on Fig. 1. We call them SU(2), SU(4),
and SU(6) models, respectively. The SU(N) model contains
N2 − 1 operators for each atom. The procedure for the sim-
plest N = 2 case is summarized in the Supplemental Material
(SM) [68]. Although the dimension of the model Hilbert space
may be dependent on the lattice site, we here take the same N
for all the sites.

FIG. 2. (a) Electronic energy bands for Cd2T2O7. The vertical
axis is measured from the bottom of the bands. The horizontal dashed
lines express the chemical potential for each n. (b) Bosonic energy
spectra Imχ (q, ω)/ω for the SU(6) model at T = 10−3 eV. The left
panel shows the dispersion for the spin, while the orbital excitation
spectra is shown in the right panel.

In order to understand the validity of the low-energy model,
it is convenient to recognize the three energy scales: the in-
tersite interaction I ∼ zt2/U with a coordination number z,
the energy difference between the different electron numbers
U , and the single-site energy splitting � (	 U ) for a fixed
number of electrons. The localized electron model is justified
for U 
 I , which is the necessary condition for the present
framework. If � 
 I is satisfied, the SU(2) model is justified
for n = 1. Otherwise, the SU(6) model needs to be considered
for a quantitative analysis.

Let us now evaluate whether the above relation is satisfied.
In our model, the maximum absolute value of the nearest-
neighbor intersite hopping is estimated to be t ∼ 0.2 eV.
Substituting this value into the above expression, we obtain
the intersite coupling constant as I ∼ 0.06 eV with z = 6 for
the number of nearest-neighbor sites of the pyrochlore lattice.
According to Fig. 1, the energy gap between the ground state
and the first excited state for n = 1 is � ∼ 0.2 eV. Conse-
quently, the assumption � 
 I is not fully justified, and this
may lead to a quantitative difference between the SU(2) and
the SU(4) or the SU(6) model. A comparison of the number
of the model Hilbert space will be addressed later.

Once the model space is specified, we treat the intersite
Hamiltonian Ht as a perturbation to obtain the effective
Hamiltonian, which gives correct eigenenergies within the re-
stricted Hilbert space [73–77]. While there are several choices
of the form of the effective Hamiltonian, the Hermitian Hamil-
tonian (des Cloizeaux type) is easier to be handled [75,76]. We
focus on the two atoms, which are connected by the hopping
matrix Ht , and expand this two-site Hamiltonian up to the
second order of Ht [68]. Thereby we obtain the matrix ele-
ment of the effective Hamiltonian whose size is N2×N2. We
can rewrite the obtained effective Hamiltonian by complete
local operators Oi at the site i. We employ the numerical cal-
culation with matrix multiplications for this procedure [78].
Collecting all the combinations of the two-site Hamiltonians,
we obtain the following realistic spin-orbital model:

Heff [O] =
∑
〈i j〉

∑
ξξ ′

Iξξ ′
i j Oξ

i Oξ ′
j −

∑
i

∑
ξ

H ξ
i Oξ

i , (3)
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where both the zeroth- and second-order contributions
are involved in this effective Hamiltonian. The second
term describes the SOC and CEF effects in the origi-
nal electron systems. We have defined the local operators
Oξ

i = ∑
αβ Oξ

αβ |α〉i i〈β| (α = 1, · · · , N , ξ = 0, · · · , N2 − 1),
where |α〉i is a state vector in the model Hilbert space at
site i. We use the matrices Oξ

αβ with completeness and or-
thonormality [e.g., for single orbital model, we take the SU(2)
generators, which are the Pauli matrices] [68]. We empha-
size that this Hamiltonian is derived from the first-principles
calculation data, where the tunable parameters are only the
local Coulomb interaction parameters U and J . In the actual
calculation, the data of Iξξ ′

i j is outputted with the data structure
similar to the original input of t ab

i j .
Since it is in general difficult to interpret the physical

meaning of the local operators Oξ
i , it is desirable to transform

them into physical quantities defined in terms of the original
electronic system. Let us consider the local physical quantity
Ai. This can be a spin or orbital operator if we choose the form
of Ai = 1

2

∑
ab Aabc†

iacib where the matrix A is composed of a
direct product of the matrices in spin and orbital spaces. By
using the projection operator onto the model Hilbert space,
P = ∏

i

∑
α |α〉i i〈α|, we obtain

PAiP =
∑

ξ

Oξ
i

∑
αβ

i〈α|Ai|β〉iO
ξ

βα. (4)

We can get the matrix element i〈α|Ai|β〉i by analyzing Hloc.
Thus, once the expectation value of Oi is obtained by solving
the model in Eq. (3), any local physical quantities can be
evaluated through this formula. For example, we can calculate
the magnetic moment by a linear combination of the spin
(Ai = Si) and the magnetic orbital moment (Ai = Li) [68]. In
addition, it is notable that one can choose the local many-body
physical quantities, such as double occupancy expressed as
Ai = ∑

γ c†
iγ↑c†

iγ↓ciγ↓ciγ↑, which are not usually considered
in conventional spin-orbital models.

The correlation functions are also useful quantities. When
we consider the linear response against a small fictitious field
conjugate to Oξ

i , the dynamical susceptibilities are given by

χ
ξξ ′
i j (iν) =

∫ 1/T

0
dτ

[〈
Oξ

i (τ )Oξ ′
j

〉 − 〈
Oξ

i

〉〈
Oξ ′

j

〉]
eiντ , (5)

where Oξ
i (τ ) = eτH Oξ

i e−τH . τ is the imaginary time in
the Heisenberg picture, and ν = 2πmT (m ∈ Z) is a bosonic
Matsubara frequency. We have taken kB = 1. Using Eq. (4),
the susceptibility can be transformed into the physical suscep-
tibilities defined in terms of the original electron operators.
The information of any spin-orbital excitation is encoded in
Eq. (5). For example, we can obtain the dispersion of the
orbiton, which is a quasiparticle describing the excitation of
the orbital [13,17,19].

Mean-field theory. Since the obtained localized model con-
tains quantum effects, it is still very hard to be solved. In the
following, we introduce several approximate methods to solve
the realistic spin-orbital model given in Eq. (3). The most
fundamental approximation is the mean-field theory. Defining
the effective field H̃ ξ

i = H ξ
i − ∑

j �=i,ξ ′ Iξξ ′
i j Mξ ′

j , the mean-field

Hamiltonian is written as

HMF = −
∑

i

∑
ξ

H̃ ξ
i Oξ

i −
∑
〈i j〉

∑
ξξ ′

Iξξ ′
i j Mξ

i Mξ ′
j . (6)

We have defined Mξ
i = Tr(Oξ

i e−HMF/T )/Tr e−HMF/T . In the
mean-field calculation, we focused on q = 0 type orderings.
This is justified by the classical Monte Carlo calculation as
discussed later [see Fig. 4(b)].

We also evaluate the dynamical susceptibilities with the
random phase approximation as

χ̂ (q, ω) = χ̂0(ω)[1̂ + Î (q)χ̂0(ω)]−1, (7)

where the hat (ˆ) symbol represents the matrix with respect
to the index ξ , and 1̂ is the identity matrix. We have defined
the local susceptibility by χ̂0(ω) = χ̂ii(ω + i0+), which is
evaluated by the local mean-field Hamiltonian.

First of all, we show in Fig. 2(b) the spin-orbital excitation
spectra of the realistic spin-orbital model, which is contrasted
against the fermionic excitation of the original tight-binding
electrons in Fig. 2(a). We take the SU(6) model at n = 1 and
T = 10−3 eV. The left panel of Fig. 2(b) is the spin-orbital
entangled spectra probed by spin, which corresponds to the
dispersion of the magnon. More specifically, we have consid-
ered the dynamical correlation function of the spin operator
in Eq. (4). The gapped excitation reflects the presence of
the spin-orbit coupling. The right panel is the spectra for the
nonmagnetic orbital (quadrupole) moment (see Ref. [68] for
the definition of the orbital moment). This orbital excitation is
unique to the SU(6) model, although the magnon dispersion
is captured already in the SU(2) model.

We show the temperature dependence of the order pa-
rameters at A sublattice in Fig. 3(a) for the SU(6) model.
The symbols S, L, Q, G, and T are the spin, magnetic orbital,
electric orbital (quadrupole), electric dipole, and magnetic
octupole moments, respectively [68]. Qxy, Qyz, and Qzx mo-
ments gradually increase with decreasing temperature. These
three components take the same value, reflecting the three-
fold rotational symmetry along the local [1,1,1] direction. At
low temperatures with T � 10−2 eV, the magnetic ordering
occurs, whose order parameters are described by S, L, and
T . We also show the q = 0 component of the diagonal sus-
ceptibilities at A sublattice in Fig. 3(b), where the magnetic
susceptibilities (S, L, T ) diverge. The magnetic structures
at T = 10−3 eV are shown at Fig. 3(c), which displays the
all-in–all-out (AIAO) structure and the antiparallel alignment
of S and L moment. The AIAO-type magnetic ordering in
5d-pyrochlore oxides has been suggested both theoretically
and experimentally [65,66,71,79–81].

The temperature dependence of the thermodynamic quan-
tities per site are shown in Fig. 3(d), with which we compare
the results of the SU(2,4,6) models. All of the models have
an anomaly in the specific heat (bottom panel) around Tc �
10−2 eV, which signals a second-order phase transition. The
SU(6) model has a smaller magnetic transition temperature
compared to the SU(2,4) cases. The single site entropy (top
panel) has a ln 2 plateau for the SU(4) and the SU(6) model
just above Tc, and it deviates from ln 2 reflecting the additional
degrees of freedom at higher T . The specific heat above Tc
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FIG. 3. Temperature dependence of (a) the order parameters and
(b) the q = 0 component of the static diagonal susceptibilities at A
site for the SU(6) model obtained by the mean-field analysis. The
blue, orange, green, red, and purple lines show the spin, magnetic
orbital, electric orbital, electric dipole, and magnetic octupole, re-
spectively. (c) Sketches for the spin (S) and the magnetic orbital
moment (L) of the SU(6) model at T = 10−3 eV. (d) Temperature
dependence of the entropy (top panel) and the specific heat (bottom
panel) with the circles, crosses and triangles for the SU(2), SU(4),
and SU(6) models, respectively. For clarity, the specific heat is verti-
cally shifted for the SU(4,6) models.

shows Schottky peaks originating from the local energy-level
splitting.

Classical model. We can also solve the model by applying
the classical approximation to Eq. (3). In this method, we can
examine the effect of the nonlocal correlation. We employ
the path-integral formalism using a coherent state [52,55],
with which we derive both the classical partition function and
equations of motion. The coherent state is defined for each site
i by

|i〉 =
N∑

α=1

cα (i )|α〉i, (8)

where |α〉i is a quantum state basis. i is a set of local continu-
ous variables: i = {ξ1i, . . . , ξN−1,i, ϕ1i, . . . , ϕN−1,i}, each of
which is written as pi [p = 1, . . . , 2(N − 1)] [68]. Here
ξ1i,··· ∈ [0, π/2] and ϕ1i,··· ∈ [0, 2π ), respectively, correspond
to the generalized versions of polar angle and azimuthal angle
of the spin in the SU(2) model.

The partition function is written as Z = ∫
D� e−S , where

the action is [53]

S =
∫

dτ (〈�|∂τ |�〉 + 〈�|Heff |�〉). (9)

We have defined |�〉 = ∏
i |i〉 at an imaginary time τ .

The quantum-mechanical operator Oi is now replaced by
the classical variable: Oξ (i ) = 〈�|Oξ

i |�〉. Based on these

FIG. 4. (a) Temperature dependence of the specific heat per site
for the SU(2,4,6) models indicated by circles, crosses and trian-
gles, respectively, which are obtained by the classical Monte Carlo
method. The black dotted lines for the SU(2,4) models are the results
with Nsite = 256 (= 4×43). (b) Temperature dependence of the q = 0
component of the diagonal susceptibilities at A site for the SU(6)
model.

expressions, the classical model can be rigorously derived by
using the coherent state path integral method that omits the
Berry phase term, as in the spin model [82]. We can also show
that the classical free energy is always larger than the quantum
one [83], and it is ensured that the lowest-free-energy state
in the classical model is energetically closest to the genuine
quantum state.

The model can be numerically simulated by using the
classical Monte Carlo method. We use the local Metropolis
update and the replica exchange method, which allows us
to simulate the systems with various temperatures efficiently
[84]. In addition, we also apply the overrelaxation update [85]
for the more efficient simulation. The overrelaxation update
in the present case consists of microcanonical moves that does
not alter the energy. For the SU(2) case, the local spin vector is
rotated around the local effective field by the angle π [86,87].
However, this cannot be directly extended to SU(N) case, and
the consideration based on the coherent state is needed.

To perform the overrelaxation update for the SU(N) case,
let us focus on the one lattice site i, and then its effective local
Hamiltonian is written as Hloc,i = −∑

ξ H̃ ξ
i Oξ (i ) where

the effect of the surrounding sites is included in H̃ ξ
i = H ξ

i −∑
j �=i,ξ ′ Iξξ ′

i j O( j ), which is not dependent on i. We can cast
it into the coherent state representation as

Hloc,i =
∑
αβ

hαβ (i)c∗
α (i )cβ (i ) =

∑
γ

�γ (i)|dγ (i )|2,

(10)

where the diagonalization is performed in the rightmost side
by the unitary matrix V : dγ = ∑

α V †
γαcα . It is apparent at this

point that the energy does not change by the phase transfor-
mation dγ → dγ eiθγ for any θγ , with which the coherent state
is transformed as i → ′

i. The parameter θγ is determined to
minimize the norm of the inner product 〈i|′

i〉 (see Ref. [68]
for more details). This update makes it efficient to sample
different configurations. We note that the above procedure
involving coherent state reproduces the overrelaxation update
usually used for the SU(2) case.

We show the numerical result of the classical Monte Carlo
in Fig. 4. The calculation is performed for a finite-sized
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lattice with Nsite = 108 (= 4×33) atoms where the lattice is
created using primitive translation vectors. The temperature
dependence of the specific heat is shown in Fig. 4(a) for
the SU(2,4,6) models. At low temperatures, the specific heat
takes 2(N − 1)× 1

2 for the SU(N) model, which satisfies the
equipartition theorem. Compared to the corresponding results
of the mean-field calculation in Fig. 3(d), every model has the
suppressed transition temperatures down to Tc ∼ 10−3 eV be-
cause of the incorporation of spatial fluctuations. Figure 4(b)
shows the q = 0 component of the static susceptibilities for
the SU(6) model. For T � 10−3 eV, each component of the
magnetic moments takes the huge values, showing the feature
of second-order phase transition. The electric (Q, G) suscep-
tibilities are characteristic for the SU(6) model and are absent
in the SU(2) model.

Classical equation of motion. Using the path-integral
approach, our framework can further address the thermody-
namic nonequilibrium state. The equation of motion itself
has already been derived by Zhang-Batista [55]. Their deriva-
tion is based on the Heisenberg equation of motion of Oξ

i ,
which gives N2 − 1 equations. In terms of the parameters
of the coherent states, on the other hand, we only need
2(N − 1) equations. Hence some of those equations should be
redundant.

Here, taking a different approach, we derive the least
2(N − 1) equations based on the principle of least action in
Eq. (9) [82,88]. The resultant equation of motion for the local
variable is given by

∑
q

Bpq(i)
∂qi

∂τ
= − ∂H

∂pi
, (11)

where H = 〈�|Heff |�〉 and the Berry curvature matrix is
defined by

Bpq(i) =
∑

α

(
∂c∗

α (i )

∂pi

∂cα (i )

∂qi
− ∂c∗

α (i )

∂qi

∂cα (i )

∂pi

)
,

(12)

with p, q = 1, . . . , 2(N − 1). Changing the time variable as
τ → it , we obtain the real-time equation of motion. Since
the analytic form of the Berry curvature matrix is obtained
once the specific coherent state is given in Eq. (8), the
even-dimension antisymmetric matrix B in Eq. (11) is easily
inverted numerically. Thus the explicit equation of motion
is obtained for the 2(N − 1) classical variables, and will be
used for a nonequilibrium dynamics in a realistic setup. The
relation to the equations in Ref. [55] is not apparent but can

be deduced from the equation

−∂Oξ
i

∂τ
=

∑
pq

B−1
pq (i)

∂Oξ
i

∂pi

∂H
∂qi

, (13)

which derives from Eq. (11). The right-hand side is reminis-
cent of the commutator [Oξ

i ,Heff ]. The above equation of
motion employing the SU(N) coherent state allows us to
analyze not only the effect of space-time fluctuations on the
ordered state, but also transport phenomena. The excitation
spectra calculated from the obtained real-time equation of
motion are expected to be the same as those from the flavor
wave theory [56].

Summary and outlook. We have proposed the numerical
calculation method for generic spin-orbital Mott insulators
with N localized states, using SU(N) generators. Material-
based analyses of spin-orbital Mott insulators with effective
SU(2) models are limited to magnetic degrees of freedom. In
contrast, our SU(N) formalism allows us to consider the elec-
tric degrees of freedom. Moreover, our framework can address
many-body quantities such as double occupancy, which are
not considered in conventional spin-orbital models.

We have applied this framework to 5d-pyrochlore oxides
as a demonstration. The results from mean-field theory and
classical Monte Carlo show the AIAO-type ordering with
various spin-orbital order parameters and corresponding spin-
orbital excitations, which substantiate the effectiveness of our
approach. Our framework enables comprehensive analysis of
various physical phenomena for materials with small quantum
fluctuations. Although experimental results on Mott insulators
in 5d-pyrochlore oxides with n = 1 are absent at present,
application of our method to existing Mott insulators will
provide useful insights by directly comparing the results with
experiments.

We note that we cannot analyze exotic quantum states
such as quantum liquids using the mean-field or the classi-
cal solvers. To address nonlocal quantum effects, quantum
solvers, such as exact diagonalization or quantum Monte
Carlo methods, are needed. A composite approach that inte-
grates quantum, mean-field, and classical solvers will lead to
a quantitative and systematic analysis of realistic spin-orbital
Mott insulators such as iridates, trihalides, or organic com-
pounds where strong quantum fluctuations exist. A detailed
comparison between simulation results and experiments will
provide us a deeper understanding of the Mott insulators,
which leads to a design of functional materials.
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125109 (2019).
[25] J. Nasu and M. Naka, Phys. Rev. B 103, L121104 (2021).
[26] G. Khaliullin, D. Churchill, P. P. Stavropoulos, and H.-Y. Kee,

Phys. Rev. Res. 3, 033163 (2021).
[27] D. I. Khomskii, ECS J. Solid State Sci. Technol. 11, 054004

(2022).
[28] G. Zhang, E. Gorelov, E. Koch, and E. Pavarini, Phys. Rev. B

86, 184413 (2012).
[29] A. Chiesa, S. Carretta, P. Santini, G. Amoretti, and E. Pavarini,

Phys. Rev. Lett. 110, 157204 (2013).
[30] Y. Yamaji, Y. Nomura, M. Kurita, R. Arita, and M. Imada,

Phys. Rev. Lett. 113, 107201 (2014).
[31] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett. 112,

077204 (2014).
[32] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, Phys. Rev. B

93, 214431 (2016).
[33] S. M. Winter, K. Riedl, and R. Valentí, Phys. Rev. B 95,

060404(R) (2017).
[34] D. Kurzydłowski and W. Grochala, Phys. Rev. B 96, 155140

(2017).
[35] A. Chiesa, E. Macaluso, P. Santini, S. Carretta, and E. Pavarini,

Phys. Rev. B 99, 235145 (2019).
[36] Z. Huang, D. Liu, A. Mansikkamäki, V. Vieru, N. Iwahara, and

L. F. Chibotaru, Phys. Rev. Res. 2, 033430 (2020).

[37] D. A. S. Kaib, S. Biswas, K. Riedl, S. M. Winter, and R. Valentí,
Phys. Rev. B 103, L140402 (2021).

[38] D. Churchill and H.-Y. Kee, Phys. Rev. B 105, 014438 (2022).
[39] D. Fiore Mosca, L. V. Pourovskii, and C. Franchini, Phys. Rev.

B 106, 035127 (2022).
[40] E. Pavarini, E. Koch, and A. I. Lichtenstein, Phys. Rev. Lett.

101, 266405 (2008).
[41] E. Pavarini and E. Koch, Phys. Rev. Lett. 104, 086402 (2010).
[42] C. Autieri, E. Koch, and E. Pavarini, Phys. Rev. B 89, 155109

(2014).
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