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Thermodynamics and fractal Drude weights in the sine-Gordon model
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The sine-Gordon model is a paradigmatic quantum field theory that provides the low-energy effective descrip-
tion of many gapped one-dimensional systems. Despite this fact, its complete thermodynamic description in all
its regimes has been lacking. Here, we fill this gap and derive the framework that captures its thermodynamics
and serves as the basis of its hydrodynamic description. As a first application, we compute the Drude weight
characterizing the ballistic transport of topological charge and demonstrate that its dependence on the value of
the coupling shows a fractal structure, similar to the gapless phase of the XXZ spin chain. The thermodynamic
framework can be applied to study other features of nonequilibrium dynamics in the sine-Gordon model
using generalized hydrodynamics, opening the way to a wide array of theoretical studies and potential novel
experimental predictions.
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I. INTRODUCTION AND SUMMARY

Transport properties such as electric conductivity provide
fundamental insight into the dynamics of condensed matter
[1]; however, their description is especially challenging in the
case of strongly correlated systems [2]. In particular, inte-
grable quantum many-body systems display many anomalous
properties [3] due to ergodicity breaking. In the case of trans-
port, the effects of nonergodicity are captured by the Mazur
inequality [4,5], and are primarily characterized by ballistic
transport and finite Drude weights [6,7]. It has been studied
quite intensively for the XXZ spin chain [8–11], where a strik-
ing “fractal” structure of the spin Drude weight was observed
in the gapless phase [12–16], a phenomenon also known as
“popcorn” Drude weights [17]. Recently, the framework of
generalized hydrodynamics (GHD) [18–22] has led to a dif-
ferent approach to transport properties and, in particular, the
computation of Drude weights [23–27]. An experimental pro-
tocol to determine Drude weights was also proposed recently
in Ref. [28].

In this work, we consider ballistic transport of topological
charge in the sine-Gordon model, which is a paradigmatic
integrable quantum field theory with numerous applications to
condensed matter physics [29,30] with the Hamilton operator

H =
∫

dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 − λ cos(βφ)

]
, (1)
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where φ(x) is a real scalar field, β is the coupling, and
λ sets the mass scale. In particular, it is a model for a
one-dimensional (1D) Mott insulator with applications to
quasi-1D antiferromagnets, carbon nanotubes, and organic
conductors [31,32], where electric conduction corresponds
to transport of the topological charge carried by kink exci-
tations. It can also be realized in experiments with trapped
ultracold atoms [33–36], which provide a well-controlled
platform for studying nonequilibrium dynamics. In particu-
lar, the topological charge can be exploited in experiments
to characterize the soliton dynamics [36]. Other proposed
realizations are via quantum circuits [37] or coupled spin
chains [38].

The main stumbling block preventing progress in mod-
eling the nonequilibrium dynamics in this important model
has been the absence of an explicit thermodynamic descrip-
tion for general couplings, despite its known exact scattering
theory [39,40]. Thermodynamic Bethe ansatz (TBA) systems
for the sine-Gordon model have so far only been formulated
explicitly for special values of the coupling [41–43], although
a corresponding set of functional relations (the so-called Y
system) was conjectured for the general case in Ref. [44].
Our first main result consists of the TBA system for generic
couplings with the corresponding dressing relations, which
provides flexibility for applications to experiments by allow-
ing generic values of the coupling parameter. We then exploit
the TBA system to obtain the second main result: the Drude
weight for charge transport in the sine-Gordon model. We
demonstrate that the Drude weight considered as a function
of the sine-Gordon coupling displays a fractal structure, as
shown in Fig. 1.
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FIG. 1. Drude weight in the sine-Gordon model calculated from Eq. (7) as a function of the coupling strength β2/8π for (a) high,
(b) moderate, and (c) low temperatures, at values of ξ with at most two magnonic levels in the TBA system (3). The Drude weight was
computed at discrete points which are joined by a red line in the plot to emphasize their discontinuous nature. At high temperatures, the fractal
structure is washed out, while it gets more pronounced as the temperature is lower. We verified that the results from the bipartition protocol
Eq. (8) agree with the TBA results within 0.1% relative difference. The dashed line in (a) is the high-T limit Eq. (9), while in (c) the dotted
blue line is the low-T prediction for the reflectionless points (11), and the black dashed line shows (10). The vertical grid lines in (b) and
(c) indicate the reflectionless points. Note also the logarithmic scale in (c).

II. THERMODYNAMICS OF THE SINE-GORDON MODEL

The particle spectrum of the model is characterized in
terms of the renormalized coupling constant ξ = β2/(8π −
β2). It consists of a doublet of topologically charged kinks of
mass M, and, in the attractive regime 0 < ξ < 1, also of their
neutral bound states (breathers) of masses mBk = 2M sin kπξ

2
with 1 � k � nB = �1/ξ�. The topological charge density
and current are ρq = β∂xφ/2π and jq = −β∂tφ/2π .

Thermodynamics at a given temperature T and chemi-
cal potential μ conjugate to the topological charge can be
computed using the TBA [45–47]. For the so-called reflec-
tionless points 1/ξ = nB − 1 where all scattering is purely
transmissive, it can be formulated in terms of the physical
excitations (two kinks and nB breathers) [47]. However, for
generic couplings, it is given in terms of three kinds of excita-
tions: a single solitonic excitation S accounting for the energy
and momentum of the kinks, breathers Bi (i = 1, . . . , nB),
and additional massless auxiliary excitations (“magnons”)
which account for the topological charge carried by the kinks.
Magnons can be classified by writing ξ as a (unique) simple
continued fraction,

ξ = 1

nB + 1

ν1 + 1

ν2 + · · ·

≡ 1

nB + 1

α

, (2)

with νk magnon species at level k. We restrict our attention to
cases with at most two magnonic levels, but extending to the
general case is straightforward [48,49].

Thermodynamic states corresponding to generalized Gibbs
ensembles and containing an extensive number of particles
can be characterized in terms of total and root densities ρ tot

a (θ )
and ρr

a(θ ) describing the density of available and filled levels
for excitation of type a per unit rapidity θ and per unit volume.
It is convenient to introduce the so-called pseudoenergies

εa(θ ) that parametrize the occupations as [1 + eεa (θ )]−1 =
ρr

a/ρ
tot
a and satisfy equations following from the minimization

of the free energy. We found that the TBA system of the
sine-Gordon model can be written in the concise form

εa = wa +
∑

b

Kab ∗ (
σ

(1)
b εb − σ

(2)
b wb + Lb

)
, (3)

where La(θ ) = log(1 + e−εa (θ ) ) and the star denotes convolu-
tion. The free energy f density is given by

f = −T
∑

a

∫
dθ

2π
MaLa(θ ) cosh θ . (4)

The kernels Kab(θ ) originate from the scattering of the exci-
tations and can be encoded in a diagram [41,50] as shown in
Fig. 2 . The driving terms wa(θ ) carrying the dependence on
the generalized chemical potentials (temperature T and the
chemical potential μ in thermal equilibrium) and the factors
σ (1,2)

a are given in Table I.
The above TBA system, our first main result, can be vali-

dated by cross-checking its predictions for the free energy in
(neutral) thermal states against the so-called nonlinear integral
equation [51,52] as reported in Ref. [48], and in the high-
temperature limit [λ = 0 in (1)] we recover the free energy
of the free massless boson.

Conserved charges with values Qa(θ ) assigned to excita-
tion a with rapidity θ are also affected by the finite densities
of excitations, and their dressed values Qdr

a can be obtained by
solving the dressing equations [48]

ηa Qdr
a = Qa +

∑
b

Kab ∗ [(
σ

(1)
b − ϑb

)
ηb Qdr

b − σ
(2)
b Qb

]
, (5)

with ϑa(θ ) = ρr
a(θ )/ρ tot

a (θ ) denoting the filling fractions. The
total densities themselves can be obtained as 2πρ tot

a (θ ) =
(∂θ pa)dr(θ ), where pa(θ ) = Ma sinh θ is the bare momentum
of excitation type a with rapidity θ . The signs ηa ensure
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FIG. 2. Diagram encoding the TBA kernels Ki j (θ ) in terms of their Fourier transforms K̃ab(t ) = ∫
dθ/2π Kab(θ )e−iθt for the generic case

with two magnonic levels (for the exceptions cf. Ref. [48]). The diagram is similar to the one presented in Ref. [50] for the boundary sine-
Gordon model. The kernel parameters are p0 = ν1 + 1/ν2, p1 = 1, p2 = 1/ν2.

the positivity of the densities and are given in Table I. The
effective velocity of excitations as a function of their rapidity
θ can be obtained as veff

a (θ ) = (∂θea)dr(θ )/(∂θ pa)dr(θ ), where
ea(θ ) = Ma cosh θ is the bare energy [20,53,54].

III. DRUDE WEIGHT FOR THE TOPOLOGICAL CHARGE

Our TBA system can form the basis of the generalized
hydrodynamics of the sine-Gordon model and can be used to
compute various physical quantities in and out of equilibrium.
We focus on the Drude weight of the topological charge de-
fined from the connected current correlator as

Dq = lim
τ→∞

1

2τ

∫ τ

−τ

dt
∫

dx 〈 jq(x, t ) jq(0, 0)〉c, (6)

which can be expressed from the TBA as [23,24,27]

Dq =
∑

a

∫
dθρ tot

a (θ )ϑa(θ )[1 − ϑa(θ )]
[
veff

a (θ )qdr
a (θ )

]2
, (7)

where qdr
a (θ ) is the dressed topological charge of excitation

a with rapidity θ . Solving the TBA system (3) for different
values of T and ξ (with μ = 0), evaluating the dressed quan-
tities using (5), and substituting them into (7) results in the
data shown in Fig. 1.

Another way to obtain the Drude weights is to consider
a bipartitioned initial state with a small chemical potential
difference δμ between the half-systems x > 0 and x < 0.
Initial densities on the two sides can be obtained from the
dressing equation (5) using the appropriate solution of the
TBA system (3) with finite temperature T and chemical po-
tentials μ = ±δμ/2, and the subsequent time evolution can
be computed by a simple application of the GHD as described
in Ref. [48]. The asymptotic current profile is a limit along
“rays” j(ζ ) = limt→∞ j(x = ζ t, t ), and the Drude weight is
[14,25]

Dq = ∂

∂δμ

∫
dζ j(ζ )

∣∣∣∣
δμ=0

. (8)

We verified that this method gives the same result as Eq. (7)
within the attainable numerical precision.

IV. SPECIAL CASES

Besides numerical results, we can also obtain analytic ex-
pressions in appropriate limits. For high temperatures T/M 

1, the fractal structure is suppressed and the Drude weight is

TABLE I. Driving terms, topological charges, and factors corresponding to the excitations in the TBA system (3) and dressing equation (5)
for two magnonic levels in the generic case (see Ref. [48] for other cases).

Excitations Labels w q η σ (1) σ (2)

Breathers Bi, i = 1, ..., nB MBi cosh(θ )/T 0 +1 +1 +1
Soliton S M cosh(θ )/T +1 +1 0 0
First-level intermediate magnons mj , j = 1, ..., ν1 − 1 0 −2 j −1 +1 0
First-level last magnon mν1 0 −2 +1 +1 0
Second-level intermediate magnons mν1+k , k = 1, ..., ν2 − 2 0 −2(1 + k ν1) +1 +1 0
Second-level next-to-last magnon mν1+ν2−1, (k = ν2 − 1) 2(1 + ν1 ν2)μ/T −2(1 + k ν1) +1 +1 0
Second-level last magnon mν1+ν2 2(1 + ν1 ν2)μ/T −2 ν1 −1 0 0
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a continuous function of the renormalized coupling ξ [48]:

Dhigh-T
q = 2T

π

ξ

ξ + 1
= T β2

4π2
. (9)

In this regime, the dynamics is independent of the coupling
λ in (1) and is described by a free massless boson, which
reproduces (9) by an easy derivation [48].

In the opposite limit of low temperature T/M � 1 and
for a single magnonic level in the repulsive regime (i.e., ξ =
2, 3, . . . ), the analytic result is [48]

Dlow-T
q = e−M/T

√
2T 5/2

π3/2M3/2

2π/ξ − sin(2π/ξ )

ξ sin2(π/ξ )
. (10)

In the attractive regime, at reflectionless couplings ξ =
1/(nB − 1), we find in the low-temperature limit

Dlow-T
q = 2

∫
dθ

2π

M cosh θ e−M cosh θ/T

(1+e−M cosh θ/T )2 tanh2 θ (11)

independent of the coupling. This result can be obtained sim-
ply by considering the kinks and antikinks as noninteracting
fermions with energy M cosh θ and velocity tanh θ , since
in the absence of the massless magnons all excitations are
massive, and therefore the effects of the scattering embodied
in the integral terms of Eqs. (3) and (5) are exponentially
suppressed [48].

As shown in Fig. 1, these analytic limiting cases agree very
well with the numerical values computed from (7).

V. DISCUSSION AND OUTLOOK

We have demonstrated the existence of a nonzero Drude
weight of the topological charge in the sine-Gordon model,
which under Mazur’s inequality strongly suggests the exis-
tence of yet unknown conserved quantities that are odd under
charge conjugation. Moreover, it has a fractal structure (as
argued recently in Ref. [17]), which is the only appearance of
such a commensurability effect so far besides the prototypical
XXZ spin chain.

The Drude weight (cf. Fig. 1) has some interesting
properties. First, we note that Dq approaches zero at the
Kosterlitz-Thouless point β2/8π = 1, as demonstrated by the
numerical data and also by the explicit expression (10) for
low temperatures. The numerical computations show that the
Drude weight goes to zero at all finite T for ξ → ∞, hence
from Eq. (9) it follows that the limits ξ → ∞ and T → ∞ do
not commute. Second, the values of Dq for a fixed number N
of magnonic levels appear to form regular sequences when
considered as a function of the deepest level integer νN in
the continued fraction expansion (2) with all other (lower
level) integers kept fixed, as demonstrated in Fig. 3. Third,
increasing the depth of the continued fraction (2), i.e., the
number of magnonic levels N , suppresses the fractal struc-
ture, suggesting that for irrational values of the coupling ξ

corresponding to infinite continued fractions, the values of the
Drude weight Dq lie on a limiting envelope curve. In fact, the
Drude weight Dq for an irrational ξ is expected to be suc-
cessively approximated by truncating the continued fraction

FIG. 3. A close-up view of the fractal structure of Drude weights
from Fig. 1 (b) (T =M/2) with separate markings for different
numbers of magnon levels. Green diamonds: reflectionless couplings
(N = 0, no magnons), blue squares: N = 1 magnonic level, red tri-
angles: N = 2 magnonic levels.

expansion (2) progressively deeper, i.e., with an increasing
number of magnonic levels [16].

In addition to the results for the Drude weights, the TBA
system (3) and the associated dressing equations (5) open
the way to applications of generalized hydrodynamics to the
sine-Gordon model at generic values of the coupling. We
demonstrated the application to nonequilibrium dynamics by
studying a partitioning protocol [48], but more general in-
homogeneous setups can be studied providing predictions
relevant to condensed matter and cold atom experiments. It is
especially interesting in view of studies of generalized hydro-
dynamics in atom chip experiments [55], given the realization
of the sine-Gordon model in this setting [35]. Phase imprint-
ing and the ability of designing arbitrary space-dependent op-
tical potentials in coupled atomic condensates allows for the
study of controlled nonequilibrium situations [56,57]. Apart
from the topological charge, transport of other quantities, such
as the energy, can also be studied. Fluctuations, full counting
statistics, and dynamical correlations of vertex operators can
also be described via the ballistic fluctuation theory [58,59],
extending the recent study [60], which we expect to provide
another manifestation of the fractal structure. Finally, it would
be very interesting to analyze the diffusive corrections to the
ballistic behavior and the possibility of superdiffusion [61],
which we plan to address in a forthcoming publication.
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Steinigeweg, and M. Žnidarič, Finite-temperature transport in
one-dimensional quantum lattice models, Rev. Mod. Phys. 93,
025003 (2021).

[4] P. Mazur, Non-ergodicity of phase functions in certain systems,
Physica 43, 533 (1969).

[5] M. Suzuki, Ergodicity, constants of motion, and bounds for
susceptibilities, Physica 51, 277 (1971).

[6] H. Castella, X. Zotos, and P. Prelovšek, Integrability and ideal
conductance at finite temperatures, Phys. Rev. Lett. 74, 972
(1995).

[7] J. Sirker, Transport in one-dimensional integrable quantum sys-
tems, SciPost Phys. Lect. Notes, 2020 17 (2020).

[8] X. Zotos, F. Naef, and P. Prelovsek, Transport and conservation
laws, Phys. Rev. B 55, 11029 (1997).

[9] X. Zotos, Finite temperature Drude weight of the one-
dimensional spin-1/2 Heisenberg model, Phys. Rev. Lett. 82,
1764 (1999).

[10] J. Benz, T. Fukui, A. Klümper, and C. Scheeren, On the finite
temperature Drude weight of the anisotropic Heisenberg chain,
J. Phys. Soc. Jpn. 74, 181 (2005).

[11] J. Herbrych, P. Prelovšek, and X. Zotos, Finite-temperature
Drude weight within the anisotropic Heisenberg chain, Phys.
Rev. B 84, 155125 (2011).

[12] T. Prosen, Open XXZ spin chain: Nonequilibrium steady state
and a strict bound on ballistic transport, Phys. Rev. Lett. 106,
217206 (2011).

[13] T. Prosen and E. Ilievski, Families of quasilocal conservation
laws and quantum spin transport, Phys. Rev. Lett. 111, 057203
(2013).

[14] E. Ilievski and J. De Nardis, Microscopic origin of ideal con-
ductivity in integrable quantum models, Phys. Rev. Lett. 119,
020602 (2017).

[15] M. Ljubotina, L. Zadnik, and T. Prosen, Ballistic spin transport
in a periodically driven integrable quantum system, Phys. Rev.
Lett. 122, 150605 (2019).

[16] U. Agrawal, S. Gopalakrishnan, R. Vasseur, and B. Ware,
Anomalous low-frequency conductivity in easy-plane XXZ
spin chains, Phys. Rev. B 101, 224415 (2020).

[17] E. Ilievski, Popcorn Drude weights from quantum symmetry, J.
Phys. A Math. Gen. 55, 504005 (2022).

[18] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Transport
in out-of-equilibrium XXZ chains: Exact profiles of charges and
currents, Phys. Rev. Lett. 117, 207201 (2016).

[19] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent
hydrodynamics in integrable quantum systems out of equilib-
rium, Phys. Rev. X 6, 041065 (2016).

[20] B. Doyon, Lecture notes on generalised hydrodynamics,
SciPost Phys. Lect. Notes, 2020 18 (2020).

[21] F. H. Essler, A short introduction to generalized hydrodynam-
ics, Physica A, 2022 127572 (2022).

[22] A. Bastianello, B. Bertini, B. Doyon, and R. Vasseur, Intro-
duction to the special issue on emergent hydrodynamics in
integrable many-body systems, J. Stat. Mech. (2022) 014001.

[23] B. Doyon and H. Spohn, Drude weight for the Lieb-Liniger
Bose gas, SciPost Phys. 3, 039 (2017).

[24] E. Ilievski and J. De Nardis, Ballistic transport in the one-
dimensional Hubbard model: The hydrodynamic approach,
Phys. Rev. B 96, 081118(R) (2017).

[25] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore,
Bethe-Boltzmann hydrodynamics and spin transport in the XXZ
chain, Phys. Rev. B 97, 045407 (2018).

[26] A. Urichuk, Y. Oez, A. Klümper, and J. Sirker, The spin Drude
weight of the XXZ chain and generalized hydrodynamics,
SciPost Phys. 6, 005 (2019).

[27] J. De Nardis, B. Doyon, M. Medenjak, and M. Panfil, Cor-
relation functions and transport coefficients in generalised
hydrodynamics, J. Stat. Mech. (2022) 014002.

[28] C. Karrasch, T. Prosen, and F. Heidrich-Meisner, Proposal for
measuring the finite-temperature Drude weight of integrable
systems, Phys. Rev. B 95, 060406(R) (2017).

[29] A. M. Tsvelik, Quantum Field Theory in Condensed Matter
Physics (Cambridge University Press, Cambridge, 2003).

[30] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs on Physics (Clarendon Press,
Oxford, 2004).

[31] D. Controzzi, F. H. L. Essler, and A. M. Tsvelik, Dynamical
properties of one dimensional Mott insulators, in New Theoreti-
cal Approaches to Strongly Correlated Systems, edited by A. M.
Tsvelik (Springer Netherlands, Dordrecht, 2001), pp. 25–46.

[32] F. H. L. Essler and R. M. Konik, Application of massive inte-
grable quantum field theories to problems in condensed matter
physics, in From Fields to Strings: Circumnavigating Theoreti-
cal Physics: Ian Kogan Memorial Collection (in 3 Vols), edited
by M. Shifman et al. (World Scientific, Singapore, 2005), pp.
684–830.

[33] J. I. Cirac, P. Maraner, and J. K. Pachos, Cold atom simulation
of interacting relativistic quantum field theories, Phys. Rev.
Lett. 105, 190403 (2010).

[34] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M.
Gustavsson, M. Dalmonte, G. Pupillo, and H.-C. Nägerl, Pin-
ning quantum phase transition for a Luttinger liquid of strongly
interacting bosons, Nature (London) 466, 597 (2010).

[35] T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer,
F. Cataldini, T. Langen, T. Gasenzer, J. Berges, and J.
Schmiedmayer, Experimental characterization of a quan-
tum many-body system via higher-order correlations, Nature
(London) 545, 323 (2017).

[36] E. Wybo, A. Bastianello, M. Aidelsburger, I. Bloch, and M.
Knap, Preparing and analyzing solitons in the sine-Gordon
model with quantum gas microscopes, PRX Quantum 4,
030308 (2023).

[37] A. Roy, D. Schuricht, J. Hauschild, F. Pollmann, and H. Saleur,
The quantum sine-Gordon model with quantum circuits, Nucl.
Phys. B 968, 115445 (2021).

[38] E. Wybo, M. Knap, and A. Bastianello, Quantum sine-Gordon
dynamics in coupled spin chains, Phys. Rev. B 106, 075102
(2022).

[39] A. B. Zamolodchikov, Exact two-particle S-matrix of quantum
sine-Gordon solitons, Commun. Math. Phys. 55, 183 (1977).

[40] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized
S-matrices in two dimensions as the exact solutions of certain
relativistic quantum field theory models, Ann. Phys. 120, 253
(1979).

L241105-5

https://doi.org/10.1088/1742-5468/2016/06/064010
https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1103/PhysRevLett.74.972
https://doi.org/10.21468/SciPostPhysLectNotes.17
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevLett.82.1764
https://doi.org/10.1143/JPSJS.74S.181
https://doi.org/10.1103/PhysRevB.84.155125
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.122.150605
https://doi.org/10.1103/PhysRevB.101.224415
https://doi.org/10.1088/1751-8121/acaa77
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.21468/SciPostPhysLectNotes.18
https://doi.org/10.1016/j.physa.2022.127572
https://doi.org/10.1088/1742-5468/ac3e6a
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.21468/SciPostPhys.6.1.005
https://doi.org/10.1088/1742-5468/ac3658
https://doi.org/10.1103/PhysRevB.95.060406
https://doi.org/10.1103/PhysRevLett.105.190403
https://doi.org/10.1038/nature09259
https://doi.org/10.1038/nature22310
https://doi.org/10.1103/PRXQuantum.4.030308
https://doi.org/10.1016/j.nuclphysb.2021.115445
https://doi.org/10.1103/PhysRevB.106.075102
https://doi.org/10.1007/BF01626520
https://doi.org/10.1016/0003-4916(79)90391-9


NAGY, KORMOS, AND TAKÁCS PHYSICAL REVIEW B 108, L241105 (2023)

[41] A. Zamolodchikov, On the thermodynamic Bethe ansatz equa-
tions for reflectionless ADE scattering theories, Phys. Lett. B
253, 391 (1991).

[42] R. Tateo, The sine-Gordon model as SO(2n)1×SO(2n)1
SO(2n)2

perturbed
coset theory and generalizations, Int. J. Mod. Phys. A 10, 1357
(1995).

[43] B. Bertini, L. Piroli, and M. Kormos, Transport in the sine-
Gordon field theory: From generalized hydrodynamics to
semiclassics, Phys. Rev. B 100, 035108 (2019).

[44] R. Tateo, New functional dilogarithm identities and sine-
Gordon Y-systems, Phys. Lett. B 355, 157 (1995).

[45] C. N. Yang and C. P. Yang, Thermodynamics of a one-
dimensional system of bosons with repulsive delta-function
interaction, J. Math. Phys. 10, 1115 (1969).

[46] M. Takahashi, Thermodynamics of One-Dimensional Solvable
Models (Cambridge University Press, Cambridge, 1999).

[47] A. B. Zamolodchikov, Thermodynamic Bethe ansatz in rela-
tivistic models. Scaling three state Potts and Lee-Yang models,
Nucl. Phys. B 342, 695 (1990).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.L241105 describing (1) details of the
TBA system and the dressing equations, (2) the bipartitioning
protocol, and (3) the analytic evaluation of limiting cases. The
Supplemental Material also contains Refs. [62–67].

[49] B. C. Nagy, G. Takács, and M. Kormos, Thermodynamic Bethe
Ansatz and Generalised Hydrodynamics in the sine-Gordon
model, arXiv:2312.03909 [cond-mat.str-el].

[50] E. Boulat, Full exact solution of the out-of-equilibrium bound-
ary sine Gordon model, arXiv:1912.03872 (2019).

[51] A. Klümper, M. T. Batchelor, and P. A. Pearce, Central charges
of the 6- and 19-vertex models with twisted boundary condi-
tions, J. Phys. A: Math. Gen. 24, 3111 (1991).

[52] C. Destri and H. J. de Vega, Unified approach to thermodynamic
Bethe ansatz and finite size corrections for lattice models and
field theories, Nucl. Phys. B 438, 413 (1995).

[53] M. Borsi, B. Pozsgay, and L. Pristyák, Current operators
in Bethe ansatz and generalized hydrodynamics: An exact
quantum-classical correspondence, Phys. Rev. X 10, 011054
(2020).

[54] B. Pozsgay, Algebraic construction of current operators
in integrable spin chains, Phys. Rev. Lett. 125, 070602
(2020).

[55] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, Gener-
alized hydrodynamics on an atom chip, Phys. Rev. Lett. 122,
090601 (2019).

[56] M. Pigneur, T. Berrada, M. Bonneau, T. Schumm, E. Demler,
and J. Schmiedmayer, Relaxation to a phase-locked equilibrium
state in a one-dimensional bosonic Josephson junction, Phys.
Rev. Lett. 120, 173601 (2018).

[57] M. Tajik, B. Rauer, T. Schweigler, F. Cataldini, J. Sabino, F. S.
Møller, S.-C. Ji, I. E. Mazets, and J. Schmiedmayer, Design-
ing arbitrary one-dimensional potentials on an atom chip, Opt.
Express 27, 33474 (2019).

[58] B. Doyon and J. Myers, Fluctuations in ballistic transport
from Euler hydrodynamics, Ann. Henri Poincaré 21, 255
(2020).

[59] J. Myers, J. Bhaseen, R. J. Harris, and B. Doyon, Transport
fluctuations in integrable models out of equilibrium, SciPost
Phys. 8, 007 (2020).

[60] G. Del Vecchio Del Vecchio, M. Kormos, B. Doyon, and A.
Bastianello, Exact large-scale fluctuations of the phase field in
the sine-Gordon model, arXiv:2305.10495 (2023).

[61] V. B. Bulchandani, S. Gopalakrishnan, and E. Ilievski, Su-
perdiffusion in spin chains, J. Stat. Mech. (2021) 084001.

[62] G. Fehér and G. Takács, Sine-Gordon form factors in finite
volume, Nucl. Phys. B 852, 441 (2011).

[63] M. Takahashi, One-dimensional Hubbard model at finite tem-
perature, Prog. Theor. Phys. 47, 69 (1972).

[64] J. Mossel and J.-S. Caux, Generalized TBA and generalized
Gibbs, J. Phys. A: Math. Theor. 45, 255001 (2012).

[65] G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight vertex
SOS model and generalized Rogers-Ramanujan type identities,
J. Stat. Phys. 35, 193 (1984).

[66] T. R. Klassen and E. Melzer, The thermodynamics of purely
elastic scattering theories and conformal perturbation theory,
Nucl. Phys. B 350, 635 (1991).

[67] T. Nakanishi and S. Stella, Wonder of sine-Gordon Y-systems,
Trans. Amer. Math. Soc. 368, 6835 (2016).

L241105-6

https://doi.org/10.1016/0370-2693(91)91737-G
https://doi.org/10.1142/S0217751X95000656
https://doi.org/10.1103/PhysRevB.100.035108
https://doi.org/10.1016/0370-2693(95)00751-6
https://doi.org/10.1063/1.1664947
https://doi.org/10.1016/0550-3213(90)90333-9
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L241105
http://arxiv.org/abs/arXiv:2312.03909
http://arxiv.org/abs/arXiv:1912.03872
https://doi.org/10.1088/0305-4470/24/13/025
https://doi.org/10.1016/0550-3213(94)00547-R
https://doi.org/10.1103/PhysRevX.10.011054
https://doi.org/10.1103/PhysRevLett.125.070602
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1364/OE.27.033474
https://doi.org/10.1007/s00023-019-00860-w
https://doi.org/10.21468/SciPostPhys.8.1.007
http://arxiv.org/abs/arXiv:2305.10495
https://doi.org/10.1088/1742-5468/ac12c7
https://doi.org/10.1016/j.nuclphysb.2011.06.020
https://doi.org/10.1143/PTP.47.69
https://doi.org/10.1088/1751-8113/45/25/255001
https://doi.org/10.1007/BF01014383
https://doi.org/10.1016/0550-3213(91)90159-U
https://doi.org/10.1090/tran/6505

