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Motivated by recent experiments observing the nonlinear planar Hall effect (NPHE) in nonmagnetic topolog-
ical materials, we employ the density matrix method to consider all the intraband and interband transitions. This
gives a deeper insight for the different mechanisms of NPHE on the same footing beyond the semiclassical theory.
Under broken time-reversal symmetry, besides the usual Berry curvature dipole (BCD) contribution, there exists
the quantum metric (QM) induced NPHE, which includes the intrinsic and extrinsic components, and exists even
within the band gap. This QM term extends the Berry-connection polarizability (BCP) theory which captures
only the intrinsic contribution and cannot be applied to the case with finite scattering and nonzero frequency.
Moreover, we reveal that the underlying physics of BCP originates essentially from the combination of three
interband transitions (injection, shift, and anomalous), very differently from the BCD which is only contributed
by an anomalous mechanism. We compare different mechanisms by calculating the NPHE on the surface states
of topological insulators and find that the NPHE from different mechanisms exhibits different dependence on the
in-plane magnetic field and the chemical potential. Our theory provides an alternative perspective to understand
the complicated lineshapes of the NPHE observed near the Dirac point.
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Introduction. The planar Hall effect (PHE), manifesting
itself as a detectable transverse voltage in response to a mag-
netic field applied in the plane of the sample and electric
current, received great attention in quite a few nonmagnetic
topological materials, such as Weyl/Dirac semimetals [1]
and three-dimensional topological insulators (TIs) [2–5]. Re-
cently, the PHE was extended to the nonlinear regime, and
the nonlinear PHE (NPHE) was experimentally confirmed
in several experiments [6–9]. On surface states of TIs, He
et al. ascribe the NPHE to the conversion of a nonequilibrium
spin current into a charge current under the application of
an in-plane magnetic field [6,7], and Dyrdal et al. attribute it
to spin-momentum-locking inhomogeneities [10,11]. Yasuda
et al. regarded the asymmetric magnon scattering as a possible
origin of nonlinear PHE in magnetic TIs [8,9]. Observation of
NPHE suggests a convenient and sensitive transport probe of
the magnetic proximity effect in magnetic-insulator/TI het-
erostructures [12]. By breaking the time-reversal symmetry
(TRS) of TIs with magnetic doping, the Culcer group [13]
identified a new resonant photovoltaic effect and Kim et al.
[14] reported a pure shift spin current.

The famous nonlinear theory at a low-frequency electric
field was proposed by Sodemann and Fu [15], based on the
Boltzmann equation, which pointed out that the nonlinear Hall
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effect (NHE) is related to the nonlinear Drude term arising
from the intraband effects and Berry curvature dipole (BCD)
from the abnormal velocity induced by Berry curvature (BC).
Under TRS but broken inversion symmetry (IS), only the BCD
contributes to the NHE. Since BCD-induced NHE is related
to topology and geometry property of materials, it receives
extensive attention in Weyl semimetals [16–21] and in TIs
[22]. The strong NHE appears in anisotropic or tilted bands for
noncentrosymmetric transition metal such as WTe2 [22–24].
When this semiclassical theory is applied to the system with
broken TRS, the nonlinear Drude term also explains the unidi-
rectional magnetoresistance [6] or NPHE [7] very well for the
chemical potential away from the Dirac point. Nevertheless,
when the chemical potential is in the vicinity of the Dirac
point, there are many behaviors [12,25] of the NPHE or the
unidirectional magnetoresistance that cannot be interpreted
even with BCD. Thus, it is highly desirable to revisit the
nonlinear-response theory near the Dirac point. In observing
the PHE, the applied in-plane magnetic field breaks the TRS.
We know that for TRS-broken systems, besides the BCD,
there is another electric-field induced interband transition
mechanism, namely Berry-connection polarizability (BCP)
[26]. The BCP is directly associated with the quantum metric
(QM) and has recently received great attention [27–30]. Based
on the semiclassical theory, the BCP is derived as an intrinsic
second-order correction of an electric field in the dc limit.
On the other hand, it is well known that in photocurrents
the interband transitions include anomalous, injection, and
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shift mechanisms [20,31–35]. The BCD, stemming from the
abnormal velocity of wave-packet dynamics in semiclassical
theory, essentially originates from the dc-limited anomalous
mechanism of interband transitions [20] while the other con-
tributions from the injection and shift mechanisms can be
negligible [34–37]. In contrast, which mechanism of inter-
band transitions contributes to the BCP is unknown, and
moreover the BCP, capturing only the intrinsic contribution,
also cannot be applied to the scattering or finite frequency
situation.

In this Letter, we give a deeper insight into the different
nonlinear-response mechanisms of NPHE in the nonlinear-
response theory by considering all the geometry-related
interband transitions near the Dirac point based on the density
matrix method. Here, we bridge between dc current (includ-
ing BCP) and photocurrent, and reveal that the mechanism
of BCP originates essentially from the combination of three
interband transitions (injection, shift, and anomalous), very
differently from the BCD which is only contributed by an
anomalous mechanism. We obtain a more general version of
the BCP, i.e., Eqs. (7)– (9), which are suitable for arbitrary
frequency and finite scattering, extending the BCP based on
the classical theory. In the zero frequency and scattering-free
case, they reduce to the usual BCP. Using these formulas,
we further discuss the NPHE in the vicinity of the Dirac
point of the TI surface states. We find that the NPHE due to
BCP and BCD conductivities exhibits different dependence
on the in-plane magnetic field and chemical potential, from
which one can identify BCP mechanism from the others and
understand the complicate line shape of the NPHE near the
Dirac point.

Theory for second-order nonlinear response. Considering
a time dependent but spatially uniform electric field E(t ) =
E(ω)e−iωt + c.c., the coupling of the light or an alternating
electric field can be introduced into the Hamiltonian in the
length gauge [38,39]:

H (k, t ) = H0(k) + eE(t ) · r, (1)

where H0(k) is the unperturbed Hamiltonian, satisfying
H0(k)|n〉 = εn|n〉 with |n〉 being the periodic part of the nth
Bloch state. In order to obtain the nonlinear response, we
begin with the quantum Liouville equation [34,40], for the
density matrix ρ(t ), which reads

ih̄ρ̇ (i)
nm(t ) = εnmρ (i)

nm(t ) + [eE(t ) · r, ρ (i−1)(t )]nm − i�ρ (i)
nm(t ).

(2)

Here, εnm = εn − εm, and we expand the density matrix
in powers of the electric field as ρnm(t ) = ρ (0)

nm + ρ (1)
nm (t ) +

ρ (2)
nm (t ) + · · · , where superscripts indicate the order in the

electric field. The equilibrium density matrix is ρ (0)
nm = fnδnm,

where fn is the equilibrium Fermi-Dirac distribution fn =
1/[1 + e(εn−μ)/kBT ] with μ the chemical potential and T the
temperature. In Eq. (2), we take a simple relaxation time
approximation with � as the relaxation rate. The complex
role of disorders on the nonlinear conductivity is indeed a
subject of current intense investigation [41–47], but here we
simplify it in order to emphasize the E(t )-induced interband
contributions.

Performing the Fourier transformation formation of
Eq. (2) and following a standard perturbation theory
[38,39,48–51] (see the Supplemental Material [52]),
one can obtain the second-order current as jγ (2) =∑

βα σ γ ;βα (ω1, ω2)Eβ (ω2)Eα (ω1), where σγ ;βα (ω1, ω2)
is the frequency-dependent second-order conductivity
tensor. Afterwards, we will focus on the rectified current
ω1 = −ω2 = ω and the same discussion is suitable for the
second harmonic ω1 = ω2. We denote the total conductivity
as σγ ;βα (ω) = − e3

2h̄

∫
dk

(2π )d σγ ;βα (ω, k), with σγ ;βα (ω, k) =
σ

γ ;βα

Dr (ω, k) + σ
γ ;βα
an (ω, k) + σ

γ ;βα

in (ω, k) + σ
γ ;βα

sh (ω, k),
respectively, stemming from the Drude, anomalous, injection,
and shift components, where γ is the direction of current and
β/α is one of applied electric fields, and d is the dimension
of system.

The nonlinear Drude term σ
γ ;βα
Dr (ω, k), arising from the

intraband Fermi-surface shift by E(t ), can expressed with the
effective mass 1

Mβγ
n

= ∂
∂kβ

∂εn
∂kγ

as

σ
γ ;βα

Dr (ω, k) =
∑

n

1

i�(h̄ω + i�)

∂ fn

Mβγ
n ∂kα

+
(

α ↔ β

ω ↔ −ω

)
,

(3)

where (α ↔ β, ω ↔ −ω) denotes swap of the indices, which
can contribute to the longitudinal and Hall currents but van-
ishes under TRS. For the dc limit, σγ ;βα

Dr is dependent on 1/�2.

All the other conductivities including the anoma-
lous σ

γ ;βα
an (ω, k), injection σ

γ ;βα

in (ω, k), and shift terms
σ

γ ;βα

sh (ω, k) originate from interband transitions either in the
first-order ρ (1)

nm or second-order nondiagonal density matrix
ρ (2)

nm . They are related to the non-Abelian Berry connec-
tion [38,53] Anm = 〈n|i∂k|m〉, and can be separated into the
band-resolved BC part with 

γβ
nm = i(Aγ

nmAβ
mn − Aγ

mnAβ
nm) and

the band-resolved QM part with Gγ β
nm = 1

2 (Aγ
nmAβ

mn + Aγ
mnAβ

nm)
[54–56]. For the TRS case, the QM parts vanish and only the
BC parts exist, given by (see the Supplemental Material [52])

σ
γ ;βα

an,BC (ω, k) = i

h̄ω + i�

∑
m �=n

ε2
mn

�2 + ε2
nm

γβ
nm

∂ fn

∂kα

+
(

α ↔ β

ω ↔ −ω

)
, (4)

σ
γ ;βα

in,BC (ω, k) = i

2

∑
n �=m

( fn − fm)βα
nm

(h̄ω − εmn)2 + �2

∂εnm

∂kγ

+
(

α ↔ β

ω ↔ −ω

)
, (5)

σ
γ ;βα

sh,BC (ω, k) = −
∑
n �=m

1

�2 + ε2
nm

iεnm( fn − fm)/2

(h̄ω − εnm)2 + �2

×
[(

(h̄ω − 2i�)εnm − ε2
nm + i�h̄ω

)
Qγ ;βα

nm

− i�εnm(h̄ω − εnm)γα
nm

�2 + ε2
nm

∂εnm

∂kβ

]

+
(

α ↔ β

ω ↔ −ω

)
. (6)
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Here, for �, h̄ω � |εnm|, the anomalous conductivity
σ

γ ;βα

an,BC (ω, k) reduces to the famous BCD nonlinear Hall

conductivity [15]. Since 
γβ
nm = 0 if γ = β, there is not longi-

tudinal conductivity for σ
γ ;βα

an,BC (ω, k). The contribution from

σ
γ ;βα
in,BC (ω, k), arising from the difference of band-diagonal

electron velocities between empty and occupied states, van-
ishes for ω = 0 due to αβ

nm = −βα
nm. σ

γ ;βα

sh,BC (ω, k) is relevant
to the difference between the real-space center of charge
for the valence and conduction bands, determined by an
extended BC Qγ ;βα

nm = i([Dγ Aβ]nmAα
mn − [Dγ Aβ]mnAα

nm) with
shift vector [Dγ Aβ]nm = [ ∂

∂kγ
− i(Aγ

nn − Aγ
mm)]Aβ

nm [38,39].

σ
γ ;βα

sh,BC (ω, k) can be negligible at low frequency compared
with BCD for �, h̄ω � |εnm|. Therefore, for the TRS case,
the dominant term is σ

γ ;βα

an,BC (ω, k) or BCD, in agreement with
semiclassical theory [15]. Notice that the BCD in Eq. (4) still
provides an extrinsic contribution for NHE.

For the TRS-broken case, except for the contribution
from the above BC parts, the anomalous, injection, and shift
terms also contribute the current through extra QM-related
conductivities, which are derived as (see the Supplemental
Material [52])

σ
γ ;βα

an,QM (ω, k) = −i�

h̄ω + i�

∑
m �=n

2εmnGγ β
nm

�2 + ε2
nm

∂ fn

∂kα

+
(

α ↔ β

ω ↔ −ω

)
,

(7)

σ
γ ;βα

in,QM (ω, k) =
∑
n �=m

−Gβα
nm( fn − fm)

(h̄ω − εmn)2 + �2

∂εnm

∂kγ

+
(

α ↔ β

ω ↔ −ω

)
, (8)

σ
γ ;βα

sh,QM (ω, k) =
∑
n �=m

−ε2
nmRγ ;βα

nm

2
(
�2 + ε2

nm

) (h̄ω − εnm − i�)( fn − fm)

(h̄ω − εnm)2 + �2

+
(

α ↔ β

ω ↔ −ω

)
, (9)

where we denote an extended QM Rγ ;βα
nm = [Dγ Aβ]nmAα

mn +
[Dγ Aβ]mnAα

nm. We can recover those results in Ref. [56] by
taking the relaxation rate � → 0. These QM parts play an
important role for the TRS-broken system, especially for the
PT -symmetry where the BC parts vanish and only the QM
parts survive. One can find that, all QM-related conductivities
have both longitudinal and Hall conductivities, which is
different from BC-related conductivity. The longitudinal
conductivity was also reported by Ref. [13], and should stem
essentially from σ

γ ;βα

sh,QM (ω, k).
In the dc limit, each interband component in Eqs. (7)– (9)

has a scattering-independent term, whose summation reads

σ
γ ;βα
intr,QM (ω, k) = −

∑
m �=n

[
2Gγ β

nm

εmn

∂ fn

∂kα

+ 2Gβα
nm fn

ε2
mn

∂εnm

∂kγ

+Rγ ;βα
nm fn

εmn

]
+ (α ↔ β ), (10)

which originates from the intrinsic components of
σ

γ ;βα

an,QM (ω, k), σ
γ ;βα

in,QM (ω, k), and σ
γ ;βα

sh,QM (ω, k) in turn. This

intrinsic conductivity is intriguing, in sharp contrast to the
extrinsic BC conductivity. It is determined purely by interband
Berry connections, which provides a measurable quantum
to probe the topological and geometric property of band
structure. Recently, in addition to the intraband nonlinear
Drude conductivity being used to detect Néel order [57], the
nonlinear Hall effects from different sources were also used
experimentally to probe various physical quantities. Shao
et al. [58] used the nonlinear Hall effect caused by the BCD
to probe the antiferromagnet Néel vector. Wang et al. [27] and
the Yang group [28] used the intrinsic Hall effect arising from
the BCP to probe the antiferromagnet Néel vector and further
to generate the spin polarization [29]. Also, the intrinsic
nonlinear planar Hall effect has been proposed [30]. Here, the
obtained intrinsic nonlinear conductivity in Eq. (10) can be
rewritten as (see the Supplemental Material [52])

σ
γ ;βα

intr,QM (ω, k) = − 2 Re
∑
n �=m

(
v

γ
n Aβ

nmAα
mn

εn − εm

∂ fn

∂εn
−(β ↔ γ )

)

+
∑
n �=m

Rγ ;βα
nm

εmn
fn + (α ↔ β ). (11)

Compared with previous semiclassical theory with the BCP

[26–28], there appears a new term
∑

n �=m
Rγ ;βα

nm
εmn

fn, which could
contribute not only the intrinsic Hall conductivity but also the
intrinsic longitudinal one.

NPHE in TIs. In order to gain a deeper insight into the QM-
induced nonlinear Hall conductivity under broken TRS, we
apply the theory to calculate the NPHE on the surface of TIs,
which provides a powerful platform to observe the NPHE in
recent experiments [12]. Note that in our theory we ignore the
orbit effect and so the theory is suitable for anomalous PHE
from magnetization-broken TRS or for the two-dimension
case with applied in-plane magnetic field. Here, on the surface
of TIs, the orbital effect from the in-plane magnetic field
can be ignored safely since we can choose the gauge for the
vector potential A = (0, 0, Az ). When an in-plane magnetic
field B = (Bx, By) = B[cos(θB), sin(θB)] is applied to break
Kramers degeneracy, the surface state of a three-dimensional
TI is modeled with the effective Hamiltonian [59,60]

HTI = h̄vF (σxky − σykx ) + λ

2
(k3

+ + k3
−)σz + B · σ, (12)

where vF is the Fermi velocity, σ = (σx, σy, σz ) is the vector
of Pauli matrices acting on real spin, and k± = kx ± iky with
k being the wave vector. The first term is the Rashba-type
spin-orbit coupling and the cubic-in-k term represents the
hexagonal warping effect [61,62] of TIs with the warping
parameter λ. In Eq. (12), we have ignored the particle-hole
asymmetry term with ε0(k), which can lead to the tilt of the
energy band under an in-plane magnetic field [4,63], but its
contribution ∝ |μ| can be negligible in the vicinity of the
Dirac point as considered here. The energy dispersion of the
Hamiltonian in Eq. (12) reads

ε
χ

k = χ h̄vF

√
(kx − By/h̄vF )2 + (ky + Bx/h̄vF )2 + �2

k,

(13)
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FIG. 1. Interband NPHE at low photon frequency ω. (a) QM-
induced anomalous σ

yxx
an,QM (ω), injection σ

yxx
in,QM (ω), and shift

σ
yxx
sh,QM (ω), which have comparable magnitudes. (b) BC-induced

σ
yxx
an,BC (ω) dominates while σ

yxx
in,BC (ω) and σ

yxx
sh,BC (ω) are negligible

small. The conductivity is scaled with σ0 = e2/(2π )2 h̄ nm/V. We
choose μ = 1.6 meV, � = 1 meV, magnetic field strength B =
0.2h̄vF nm−1, and the angular θB = π/4. The other parameters of TI
material are set as h̄vF = 0.255 eV nm [59] and λ = 250 eV Å3 [60].

where �k = [λkx(k2
x − 3k2

y )]/(h̄vF ) and χ = ± denote the
upper and lower bands. In this model, the magnetic field
and warping effect break the TRS and mirror symmetry. By
coordinate transformation, one can find that the band gap is
Eg = 2|λ(B/h̄vF )3 sin 3θB| [64], which implies that the band
gap is closed at θB = nπ/3 and opened for the others. In
this system, both TRS and IS are broken and the NPHE
can originate from Drude, BC, and QM conductivities. It
is interesting to distinguish the QM mechanism from the
other ones.

We calculate the the nonlinear planar Hall conductiv-
ity (NPHC) σγβα (ω) = − e3

2h̄

∫
dk

(2π )d σγβα (ω, k) assuming an

electric field E = Ex(ω)e−iωt x̂ + c.c. (corresponding to a lin-
early polarized light or ac electric field) applied along the x
direction. In Fig. 1(a), we plot QM-induced conductivities by
three types of interband conductivities at low frequency ω.
Obviously, σ

yxx
an,QM (ω), σ

yxx
in,QM (ω), and σ

yxx
sh,QM (ω) have compa-

rable magnitudes. This is different from the BC conductivities
shown in Fig. 1(b), where only σ

yxx
an,BC (ω) dominates at low

frequency while σ
yxx
in,BC (ω) and σ

yxx
sh,BC (ω) become relatively

negligible, recalling the scenario of the TRS case. This implies
that under broken TRS, all the interband contributions need to
be considered at low frequency, in contrast to the TRS theory
[15] where only σ

yxx
an,BC (ω) or BCD needs to be considered.

In the dc case, we know that the BCD conductivity is
extrinsic and proportional to 1/�. In contrast, QM-induced
conductivities include both intrinsic and extrinsic parts. In
order to clarify this, we first calculate the intrinsic NPHC with
Eq. (10) and plot QM-induced conductivities as a function
of chemical potential μ in Fig. 2(a). The prominent intrinsic
NPHC is shown to originate from anomalous, injection, and
shift mechanisms, respectively corresponding to the first
three terms in Eq. (10). With the decrease of the chemical
potential |μ|, all the intrinsic NPHCs increase and exhibit
large magnitude as |μ| approaches the band gap edge, which
is caused by rapidly changing QM. From Eq. (10), one can
see that anomalous conductivity stems from the contribution
of the Fermi surface while injection and shift conductivities
are related to the Fermi sea. As a result, even within the band

total

in
an

sh

)b()a(

FIG. 2. (a) In the dc case, the dependence of QM-induced intrin-
sic NPHE on μ with � = 0, which stems from injection, anomalous,
and shift interband transitions. (b) The total QM-induced NPHE
within the band gap for μ = 0, including the intrinsic and extrinsic
components, as a function of the impurity scattering strength �. The
other parameters are the same as in Fig. 1

gap, σ
yxx
in,QM and σ

yxx
sh,QM are finite. Despite the opposite sign

between σ
yxx
in,QM and σ

yxx
sh,QM , there exists a net component in

total intrinsic conductivity σ
yxx
intr,QM , which is different from

previous works [27,28,30] where there is no net intrinsic
conductivity in the band gap. This difference is attributed to
the new term in Eq. (11). Except for the intrinsic components,
there is an extrinsic one which is entangled with the intrinsic
one arising from the interband coherence, as seen from
Eqs. (7)– (9) with ω = 0. In Fig. 2(b), we show that the total
QM-induced NPHC σ

yxx
QM is nonmonotonically enhanced by

the scattering strength �.
The in-gap current has received attention in earlier years

[65–68]. Some prominent studies [69,70] concluded that such
rectification within the optical gap is impossible in the clean
limit. On the other hand, some recent studies [46,47], starting
from the full quantum mechanical description, showed that
the in-gap rectification can actually be real and thermody-
namically allowed. Notice that these reports about the in-gap
current originate from mechanisms that are very different
from the ones here. It is interesting to make a comparison.
(1) The in-gap rectification in works [46,47] is defined in
the so-called optical gap, namely the frequency is located
in � < ω < � (where � stands for the band gap) and the
Fermi surface is in the conduction or valence band. This
is purely the Fermi-surface contribution, determined by the
Fermi-surface characteristics, such as the specific form of the
Fermi distribution function. It is just these rich Fermi-surface
behaviors that lead to the interesting in-gap rectification, be-
yond the simple relaxation approximation. (2) In contrast,
in our Letter, the in-gap current is defined in the case of
the Fermi energy being strictly within the band gap. Notice
that the QM terms include the contributions from both the
Fermi surface and the Fermi sea. Within the band gap, only
the Fermi-sea contribution survives, which is just the origin
of the in-gap current, insensitive to the Fermi-surface be-
haviors. This specular photocurrent is the consequence of a
parity-violating magnet [56,71]. It is noticed that the in-gap
current will vanish if one takes the adiabatic turning-on regu-
larization as in Ref. [72], where 1/(ω1 + ω2 − εnm + i2�) is
adopted. Compared with the relaxation time approximation,
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Dr

QM

BC

(a)

(d)

(b)

(c)

FIG. 3. The variation of the dc NPHC σ
yxx
QM , σ

yxx
BC , and σ

yxx
Dr vs

(a) chemical potential μ with θB = π/5, and vs (b)–(d) θB. In
(b) μ = 0.2 eV, (c) μ = 0.01 eV slightly out of the band gap, and
(d) μ = 0 eV within the band gap. The insets in (a) and (b) are the
corresponding enlarged views. We set � = 0.02 eV and the other
parameters are the same as in Fig. 1.

there is a discrepancy of a factor 2 in the relaxation rate,
which will lead to the compensated in-gap rectification by the
principal parts of the diagonal and off-diagonal density matrix
elements. Nevertheless, the authors in Refs. [71,73] pointed
out that the relaxation rate η of two photons is in general
not equal to the double � of one photon, namely η �= 2�,
and so the in-gap current emerges. Setting η = 2� is just a
particular case. Here, we cannot judge which result is correct.
Since we employ the simple relaxation time approximation,
the in-gap current might be an artifact, which deserves further
consideration.

In practice materials, the measured total NPHC can origi-
nate from σ

yxx
QM including intrinsic and extrinsic parts, σ yxx

BC , and
σ

yxx
Dr , and it is interesting to distinguish these different mecha-

nisms. In Fig. 3(a), we illustrate the dependence of the NPHCs
σ

yxx
QM , σ

yxx
BC , and σ

yxx
Dr on chemical potential μ. For μ far away

from the Dirac point, the NPHC σ
yxx
Dr dominates and exhibits

the lineshape of cosinelike function of θB with 2π period as
shown in Fig. 3(b). This recalls the results obtained in a recent
experiment [7], which is interpreted as the conversion of spin
current into a charge current. With μ reduced close to the
Dirac point, σ yxx

Dr decays as shown in Fig. 3(a), where σ
yxx
QM and

σ
yxx
BC play a dominant role. Differently, as shown in Fig. 3(c),

σ
yxx
BC exhibits a π period while σ

yxx
QM and σ

yxx
Dr have 2π period.

The reason is that the former scales with B2 while the latter
scale with the order of B. Obviously, their line shape departs
from a sinusoidal or cosine function. Near the Dirac point, the
interplay of the in-plane B and the hexagonal warping leads

to the π/3-period band gap, which modulates the period of
the planar Hall effect. The relative magnitude between QM
and BC contributions is determined mainly by the scattering
strength �. When μ is located within the band gap, only σ

yxx
QM

survives and its dependence on θB of the magnetic field is
depicted in Fig. 3(d). In this situation, σ

yxx
Dr and σ

yxx
BC vanish

due to Fermi surface property and only σ
yxx
QM survives.

Discussion and conclusions. There are many papers dis-
cussing the second-order nonlinear current with the BCP in
the framework of semiclassical theory, such as Refs. [26–30].
Notice that the BCP theory can only apply to the dc limit
ω = 0 with � = 0. In these works, the BCP is shown to origi-
nate from interband transitions but cannot be related to which
interband mechanisms it belongs to, such as well known in-
jection and shift. On the other hand, the photocurrent formulas
usually diverge [56] as J ∼ 1/ω, which cannot directly extend
to the dc limit. In this Letter, we present a general formula
ranging from zero to high frequency, which bridges between
dc current and photocurrent. We find that for ω 
 �, all
formulas can recover the results of the photoncurrent recti-
fication for shift and injection [31,56]. For the low-frequency
ω � � or dc limit, our theory under T -symmetry, where all
the BC parts vanish and only anomalous current survives,
reduces to the BCD theory [15], and under the PT -symmetry
situation both shift and injection currents still remain finite
even in � = ω = 0, which leads to the intrinsic dc component,
recovering the BCP results [26–30] except for the extra term
in Eq. (11).

In summary, we have investigated the NPHE on the surface
of a three-dimensional TI. As the chemical potential μ is far
away from the Dirac point, the observed NPHE is caused by
the intraband transitions and is interpreted as the conversion
of spin current into a charge current [7] . Nevertheless, in
the vicinity of the Dirac point, the complicated interband
transitions, which have topological geometric origin, make
it difficult to describe with the semiclassical theory. The ex-
tensively employed semiclassical BCD theory [15] is suitable
only for nonmagnetic materials with TRS. In order to study
NPHE where the in-plane magnetic field breaks the TRS, we
employ a more general nonlinear-response theory by consid-
ering all the intraband and interband transitions based on the
density matrix method. We find that besides the BCD contri-
bution which requires the band gap opening (here caused by
the interplay of in-plane magnetic field and warping effect),
we obtain the QM-induced NPHE including the intrinsic and
extrinsic components, regardless of the band gap and exist-
ing even within the band gap. This QM term extends the
BCP theory which captures only the intrinsic contribution
and cannot be applied to the case with finite scattering and
nonzero frequency. Furthermore, we reveal that the underlying
physics of BCP originates essentially from the combination
of three interband transitions (injection, shift, and anoma-
lous). We compare different mechanisms by calculating the
NPHE on the surface states of TIs and find that the NPHE
from different mechanisms exhibits different dependence on
the in-plane magnetic field and the chemical potential. All
of these provide significant signatures to identify QM from
other Drude or BC mechanisms in experiment, and their in-
terplay is helpful for understanding the NPHE near the Dirac
point.
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