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Non-Abelian phases are among the most highly sought states of matter, with those whose anyons permit
universal quantum gates constituting the ultimate prize. The most promising candidate of such a phase is the frac-
tional quantum Hall plateau at filling factors ν = 12

5 , which putatively facilitates Fibonacci anyons. Experimental
validation of this assertion poses a major challenge and remains elusive. We present a measurement protocol that
could achieve this goal with already-demonstrated experimental techniques. Interfacing the ν = 12

5 state with
any readily available Abelian state yields a binary outcome of upstream noise or no noise. Judicious choices of
the Abelian states can produce a sequence of yes–no outcomes that fingerprint the possible non-Abelian phase
by ruling out its competitors. Crucially, this identification is insensitive to the precise value of the measured noise
and can uniquely identify the anyon type at filling factors ν = 12

5 . In addition, it can distinguish any non-Abelian
candidates at half-filling in graphene and semiconductor heterostructures.

DOI: 10.1103/PhysRevB.108.L241102

Introduction. The fractional quantum Hall effect [1–5]
has heralded many essential concepts of modern quan-
tum many-body physics. Its legacy includes observations
of fractional charge [6,7] and the notion of topological or-
der [8,9]. Most tantalizing is the possibility of non-Abelian
excitations [10–15] [10–12,14,15]. Their presence implies a
topologically protected space of degenerate ground states on
which braiding acts as quantum gates [14–18]. Non-Abelian
quasiparticles have long been sought for their fundamental
importance and possible quantum information applications.

The most prominent candidates for non-Abelian states
arise when electrons at half-filling exhibit a quantized Hall
effect. Such plateaus are well known in the first excited
Landau orbital of GaAs quantum wells [19]. Additionally,
they were observed in the zeroth and third Landau orbitals
of monolayer graphene [20,21], the zeroth orbital of bi-
layer graphene [22–25], and the lowest two orbitals in ZnO
heterostructures [26,27]. Their presence is attributed to the
topological superconductivity of “composite fermions,” emer-
gent excitations that are charge neutral in a half-filled Landau
level. Different pairing channels of composite fermions cor-
respond to distinct non-Abelian phases with Ising anyons that
facilitate Majorana zero modes. The most prominent candi-
dates, p − ip (Pfaffian) and f + i f (anti-Pfaffian), are favored
by numerics to be realized in GaAs at ν = 5

2 [28–35].
An even richer form of non-Abelian topological order is

proposed to arise at ν = 12
5 and host Fibonacci anyons [36].

Unlike Ising anyons, they are capable of realizing a set of
universal quantum gates as branding operations [14–18]. Such
excitations cannot arise in any weakly coupled fermion sys-
tem, unlike Majorana zero modes that can also occur in
electronic superconductors [37]. Similarly to the half-filled
case, other topological orders could also occur at ν = 12

5 .
They support the simpler Ising anyons [38] or even Abelian
anyons [3].

Experimentally distinguishing between different candi-
dates remains a formidable challenge. The electric Hall

conductance of any plateau is universally determined by the
filling factor and cannot discriminate between competing
phases. The scaling of tunneling currents with tempera-
ture or voltage has been proposed to distinguish between
them [39–41]. However, there is no agreement between the-
oretically predicted and experimentally observed exponents,
even for Abelian states [42–46].

The thermal Hall conductance contains additional informa-
tion about the topological order. In particular, it is sensitive to
the anyon type. Its value κxy = c−κ0 is quantized in units of

κ0 = π2k2
B

3h T and can be attributed to chiral central charge c− of
all charged and neutral edge modes. The chiral central charge
c− is the difference between the central charge of downstream
and upstream moving modes [12]. Edges of Abelian quantum
Hall states host chiral boson modes each with central charge
cBoson = 1. Non-Abelian Ising topological order implies an
unpaired chiral Majorana fermion at the edge, whose central
charge is cMajorana = 1

2 . Finally, the non-Abelian phase permit-
ting Fibonacci excitations in the bulk hosts a Z3 parafermion
edge mode with cParafermion = 4

5 .
Directly measuring κxy could provide the clearest sig-

nature of a topological phase. Unfortunately, thermal Hall
experiments are notoriously difficult for practical and funda-
mental reasons. Thermal conductance in the quantum Hall
regime requires a sophisticated sample design and has only
been measured in a two-terminal geometry [47–51]. The
observed quantization is orders of magnitude poorer than
for charge transport. Still, recent thermal transport experi-
ments in GaAs devices find c− = 5

2 , indicating p + ip pairing
(PH-Pfaffian) [49]. Alternatively, the anti-Pfaffian phase could
account for the measurements if the edge is not in complete
thermal equilibrium [52–57].

Noise measurements can provide a versatile tool to resolve
such ambiguities about the observed thermal conductance.
Their implementation is often less demanding and can oper-
ate in different transport regimes. For ν = 5

2 , Refs. [58–62]

2469-9950/2023/108(24)/L241102(7) L241102-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1944-9858
https://orcid.org/0000-0002-6585-1469
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L241102&domain=pdf&date_stamp=2023-12-04
https://doi.org/10.1103/PhysRevB.108.L241102


MISHA YUTUSHUI AND DAVID F. MROSS PHYSICAL REVIEW B 108, L241102 (2023)

FIG. 1. In a typical upstream noise measurement, a current is in-
jected via the source (S) and flows toward the drain (D) for νA > νB.
The corresponding voltage profile around the source generates a hot
spot on its upstream side, which excites neutral modes there. If one
of these neutral modes propagates upstream and reaches the amplifier
(A), it induces particle-hole excitations. Charge noise at the amplifier
arises from a stochastic process, where either a particle or a hole
flows downstream while its counterpart is absorbed. To establish
well-defined upstream and downstream directions, the distance L
between source and drain or amplifier must be significantly larger
than the scale �c over which charge equilibrates. The thermal equili-
bration length �th relative to the device dimension defines two distinct
transport regimes. Our work primarily focuses on L � �th.

proposed possible routes to distinguish between the three most
prominent candidate phases. The experiment carried out in
Ref. [63] followed a somewhat different approach that directly
focused on an emergent particle-hole symmetry of the edges
to eliminate two out of three candidates. It measured upstream
thermal noise at the interfaces between ν = 5

2 and ν = 2, 3.
This finding indicates particle-hole symmetry, uniquely sin-
gling out PH-Pfaffian among the candidate phases. For further
theoretical analyses of the setup, see Ref. [64].

The typical setup of a thermal noise experiment is depicted
in Fig. 1. When the distance L between the source and am-
plifier is above the charge equilibration length, �c � L, any
injected charge flows downstream into the grounded drain.
Due to voltage drop, hot spots form on the upstream sides of
the source and the drain. The hot spot near the source heats
any upstream neutral modes, which then propagate toward the
amplifier. We further assume that the shortest thermal equili-
bration length between topologically protected modes is �th �
L. In this case, upstream neutral modes will reach the amplifier
and generate noise there, even when the thermal conductance
of the edge is positive (downstream). Possible mechanisms of
noise generation are discussed in Refs. [59,60,64,65].

The quantitative dependence of such noise on the ex-
perimental parameters is nonuniversal. Still, the presence or
absence of noise provides direct qualitative information: If no
upstream noise is observed, the interface is chiral. Any excess
noise implies the presence of upstream neutral modes.

Results. To determine if the interface between two quan-
tum Hall states, A and B, will be noisy; we first determine
the total chiral central charge c− = cA − cB at the interface.
Charge conservation implies at least one boson mode at the
interface flowing in the downstream direction. This mode also
carries energy; if no additional modes exist, then c− = 1.
Conservation of charge and energy thus dictate that interfaces
with c− < 1 must carry upstream modes [14]. The converse
does not hold; interfaces with c− � 1 may contain upstream
modes and still be topologically stable (T stable) [66–68]. Any
interface with upstream modes exhibits noise for �c � L �
�th, which is the regime we focus on. In the fully thermally

equilibrated case �c � �th � L (at higher temperatures),
noise only arises for negative c− [59,60,64,65].

A general criterion for T-stability of the interface between
any two Abelian phases was derived and utilized in Refs.
[66,69]. No generalization to non-Abelian phases is known;
specific cases were analyzed in Refs. [70–73]. To investigate
whether the edge is chiral or features noise, we first compute
the chiral central charge. If c− < 1, there is noise. Otherwise,
we reduce the edge to a T-stable configuration and determine
if it exhibits upstream modes.

We find that any non-Abelian state at half-filling can be
distinguished via interfaces with the principle Haldane hier-
archy states at ν = p

2p+1 and their particle-hole conjugates at

ν = p+1
2p+1 . Furthermore, the anyon type of the ν = 12

5 state can

be inferred from its interfaces with ν = 2, 8
3 and 3.

Half-filled Landau level. The candidate states for plateaus
at half-integer filling factors can be considered as BCS super-
conductors of composite fermion. The Hall response implies
that flux � is associated with a charge Q� = σxy�, and the
composite of one electron and two flux quanta is chargeless
at half-filling. The pairing of these emergent neutral fermions
leads to a bulk gap and topologically protected edge states.
Specifically, superconductors without symmetry (Class D) are
classified by an integer invariant N ∈ Z. It encodes the num-
ber of chiral Majorana-fermion edge modes, i.e., the boundary
of such a superconductor is described by

Lγ = i
|N |∑

l=1

γl (∂t − sgn(N )vl∂x )γl , (1)

where γl = γ
†
l are Majorana fermions moving downstream

(upstream) at velocity vl for N > 0(N < 0). The physical
boundary of quantum Hall states at half-filling is described
by Eq. (1) in addition to a charge mode. The latter fixes
a convention for the sign of N , which we take to be posi-
tive for Majoranas moving in the downstream direction. As
such, N = −3 corresponds to anti-Pfaffian [70,71], N = −1
to PH-Pfaffian [74], N = 1 to Moore-Read [11], and N = 3 to
f -wave pairing [75,76].

The principle Haldane hierarchy states ν = p
2p+1 can be

viewed as integer quantum Hall states of the same composite
fermions with νCF = p. At interfaces between integer quan-
tum Hall states and superconductors of microscopic fermions,
all counterpropagating modes localize. The resulting inter-
faces are fully chiral. For fractional quantum Hall states
described by the analogous phases of composite fermions,
the same mechanism implies a fully chiral neutral sector.
Consequently, the condition c− = 1 + N

2 − p � 1 is a suffi-
cient criterion for the absence of upstream noise at interfaces
between any hierarchy state and any candidate at half-filling.
In particular, interfacing the half-filled Landau level with
ν = 1

3 (p = 1) permits a sharp distinction between N = 1 and
N = 3.

An explicit calculation bears out the same conclusion. The
interface is described by Ledge = Lγ + LK with [77]

LK = − 1

4π

p∑

a,b=0

[Kab∂xϕa∂tϕb + Vab∂xϕa∂xϕb]. (2)
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Here, K = diag(2,−KHH) is a block diagonal matrix with
KHH

ab = 2 + δab [78]. (For a discussion of edge reconstruc-
tion, see the SM [79]). Edge velocities and density-density
interactions are described by the nonuniversal matrix V .
The coupling to electromagnetic fields is encoded in the
charge vector t = (1, . . . , 1), i.e., eim·ϕ carries electric charge
Qm = tK−1m. Electrons on either side of the interface
are described by ψl ∼ γl ei2ϕ0 and ψa ∼ eima·ϕ , with ma =
(0, KHH

a1 , . . . , KHH
ap ) and ϕ = (ϕ0, ϕ1, . . . , ϕp).

Electron tunneling across the interface is governed by

Ltun ∝
∑

l,a

ξl,a(x)ψ†
l ψa + H.c., (3)

with random tunneling amplitudes ξl,a(x) [67,80]. To ana-
lyze this interface, we introduce the total charge mode ϕch =∑

a ϕa and p neutral modes ϕ′
a = 2ϕ1 − ma · ϕ. These modes

decouple, i.e., commute in an operator framework. In particu-
lar, ψ ′

a ∼ eiϕ′
a are neutral fermions, and the electron tunneling

[Eq. (3)] is of the form γlψ
′
a. When tunneling is relevant, pairs

of counterpropagating fermion modes localize each other, and
N − 2p downstream Majorana fermions remain. Hence, the
edge is fully chiral if N � 2p, and we predict no upstream
noise.

No additional calculation is needed to understand in-
terfaces between states at half-filling and hole-conjugate
hierarchy states at ν = p+1

2p+1 . Instead, we use that this interface
is identical to the one between ν = p

2p+1 and the particle-hole
conjugate of the paired state in question. The latter is again a
paired state with N → −(N + 2) [81], and we predict noise-
less interfaces for N � −2(p + 1). Consequently, any odd-N
paired states are distinguishable by measuring upstream noise
at the interfaces with the principal Haldane hierarchy states
and their hole conjugates. [Paired states with even N , which
describe Abelian quantum Hall states, cannot be distin-
guished from non-Abelian states with N + sgn(N ) with this
procedure].

The ν = 12
5 plateau. This filling factor can be viewed as

two filled Landau levels and a partially filled one with ν = 2
5 .

The latter could support three types of candidate states with
qualitatively different anyon types: Abelian, Fibonacci, and
Ising. The candidate phases are:

(1) An Abelian hierarchy state whose edge hosts two co-
propagating boson modes, i.e., cHH = 1 + 1 = 2.

(2) The anti-Read-Rezayi state, which supports Fibonacci
anyons in the bulk. Its interface hosts two counterpropagating
boson modes and an upstream Z3 parafermion mode with a
central charge cRR = 1 − 1 − 4

5 = − 4
5 .

(3) The Bonderson-Slingerland state exhibits Ising topo-
logical order similar to the candidates at half-filling. It hosts
two counterpropagating boson modes and N downstream
Majorana modes [82]. The central charge is cBS = 1 − 1 + N

2 .
We show that the three cases are distinguishable via noise

measurements at the interface between ν = 12
5 and three other

states, ν = 2, 3, and 8
3 (see Table I for a summary). Since

all candidate states include two fully filled Landau levels, the
chiral central charges at the ν = 2 interface are c− = cα with
α = HH, RR, BS. The interfaces with ν = 3 each contain an
additional electron mode, which reverses the flow of charge,
i.e., the downstream direction. Consequently, their chiral

TABLE I. Noise measurements on interfaces between ν = 12
5

and ν = 2, 8
3 , 3 can distinguish between the Haldane-hierarchy

(HH), anti-Read-Rezayi (RR), and Bonderson-Slingerland with N =
1 (BS-MR) and N = −3 (BS-aPf). For each interface, we list our
prediction for upstream noise and the chiral central charge.

HH (c−) RR (c−) BS-MR (c−) BS-aPf (c−)

ν = 2 Chiral (2) Noisy (− 4
5 ) Noisy ( 1

2 ) Noisy (− 3
2 )

ν = 8
3 Noisy (−2) Noisy ( 4

5 ) Noisy (− 1
2 ) Chiral ( 3

2 )

ν = 3 Noisy (−1) Chiral ( 9
5 ) Noisy ( 1

2 ) Chiral ( 5
2 )

central charges are c− = 1 − cα . The interface with ν = 8
3 is

that of ν = 2 supplemented by a ν = 2
3 edge [80,83,84]. The

latter has a chiral central charge zero. However, the direction
of charge flow is reversed, and we obtain c− = −cα .

We begin with the Abelian hierarchy state. Its interface
with ν = 2 is chiral and thus noiseless (cf. Fig. 2). The inter-
face with ν = 3 and ν = 8

3 are characterized by c− = −1 and
c− = −2, respectively. We thus predict noise in both cases
(Table I).

Interfaces of the anti-Read-Rezayi state with ν = 2, 8
3 have

c− = − 4
5 , 4

5 . Both are below unity, and we expect upstream
noise. The interface with ν = 3 has c− = 9

5 , compatible with a
chiral edge. Indeed, the anti-Read-Rezayi state is particle-hole
conjugate to the ν = 3

5 Read-Rezayi state, whose boundary
to vacuum is chiral [72]. The latter interface is equivalent to
that between anti-Read-Rezayi and ν = 3; thus, we expect no
noise there.

Next, we study the Bonderson-Slingerland states with ar-
bitrary N . For N < 2, the chiral central charge c− < 1 implies
upstream noise at the ν = 2 interfaces. However, the converse
does not hold, and there are cases with c− � 1 and protected
upstream modes (see the SM [79]). Specifically, we find that
four is the smallest value of N for which the interface is chiral.

The quantum numbers for N = 4 match those of the
Haldane hierarchy state, suggesting they represent the
same phase. We analyze the interface between the N = 4
Bonderson-Slingerland state and ν = 2 to test this possibility.
It is described by Ledge = Lγ + LK [cf. Eqs. (1) and (2)]

FIG. 2. Three classes of candidate states for the ν = 12
5 plateau

are discussed in the literature. We show their edge states here, omit-
ting the integer modes corresponding to two filled Landau levels.
(a) The edge of the Haldane hierarchy state hosts two copropagating
boson modes. (b) The edge of the anti-Read-Rezayi state features
a pair of counterpropagating boson modes and a Z3 parafermion
mode. [36,72]. (c) The edge of the Bonderson-Slingerland state
carries N downstream Majoranas and a pair of counterpropagating
bosons. (For N < 0, the |N | Majorana modes move upstream).
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with KBS = (2 3
3 2) and t = (1

1). We combine two downstream

Majorana modes according to γ1 + iγ2 ∼ eiϕ3 . Next, we in-
troduce two upstream Majoranas η1 + iη2 ∼ ei(ϕ1−ϕ2+ϕ3 ). The
latter can localize the remaining downstream Majoranas
γ3,4 through the tunneling of electrons ψe1 ∼ γl ei(2ϕ1+3ϕ2 ) or
ψe2 ∼ γl ei(3ϕ1+2ϕ2 ), i.e.,

Ltun ∝ ξ (x)ψ†
e1ψe2 + H.c. ∼ iξ (x)γlηl ′ + H.c.. (4)

The modes ϕ′
1,2 = ϕ1,2 ± ϕ3 decouple from the tunneling

term, i.e., commute with its phase in an operator framework.
They consequently persist and are described by t′ = t and
K ′ = KHH. It follows that Bonderson-Slingerland with N = 4
is indeed equivalent to the ν = 2

5 hierarchy state and thus,
fully chiral.

More generally, the Bonderson-Slingerland state with N
downstream Majoranas corresponds to hierarchy states with
N − 4 downstream Majoranas. As such, we predict upstream
noise at the ν = 2 interface for N � 3. For a detailed calcula-
tion, see the SM [79].

For ν = 3, we similarly find that central charge consider-
ations alone are insufficient, and N � −2 is required for a
chiral edge. This interface differs from the previous one by
a chiral electron mode ψe0 ∼ eiϕ0 moving oppositely to the 2

5
fractional charge modes. Electron tunneling between integer
and fractional edges is given by

Ltun ∝ ξ (x)ψ†
e0ψe1 + H.c. = ξ (x)γl η̃l ′ + H.c., (5)

where η̃1 + iη̃2 ∼ ei(ϕ0+2ϕ1+3ϕ2 ) defines two upstream
Majorana fermions. As in the case of half-filling, we thus
have a total of −(N + 2) downstream Majorana modes at
the hole-conjugate edge. The modes ϕ′′

1 = ϕ0 + ϕ1 + ϕ2 and
ϕ′′

2 = −ϕ0 − ϕ1 − 2ϕ2 decouple as above. They are described
by K ′′ = KHH and charge vector t′′ = (1, 0). Consequently,
we predict upstream noise for N � −1.

Finally, for interfaces with ν = 8
3 , we add an upstream ν =

1
3 mode ϕ′′

0 to the hole-conjugate edge that we obtained in the
previous paragraph [85]. Following the analysis of Ref. [66],
the composite edge is T unstable; electron tunneling between
these edges Ltun ∼ cos(3ϕ′′

0 + 3ϕ′′
1 + 2ϕ′′

2 ) localizes a pair of
counterpropagating modes. The reduced edge hosts a single
ν = 4

15 charge mode and −(N + 2) Majoranas. The resulting
condition of N � −2 for a chiral edge saturates the c− � 1
requirement.

Discussion. We have demonstrated that upstream noise is a
powerful and versatile tool for identifying non-Abelian quan-
tum Hall states. Interfacing the plateau under investigation

with a carefully selected Abelian phase yields a qualitative
outcome of noise or no noise that differentiates between two
candidate states. By process of elimination, the topological
order can thus be identified. Crucially, such an experiment
does not rely on the precise value of the noise and can be
interpreted without having to assume any particular noise-
generating mechanism.

For the half-filled Landau level, we found that any odd pair-
ing channel can be distinguished by interfacing with Haldane
hierarchy states at ν = p

2p+1 and their particle-hole conjugates

at ν = p+1
2p+1 (on top of the same number of filled Landau

levels). The interfaces are chiral if the number of Majoranas
N � 2p; for hole-conjugate hierarchy states, the condition is
N � −(2p + 2). For example, an interface with ν = 1

3 dif-
ferentiated between Moore-Read Pfaffian and f -wave pairing
proposed in Ref. [21].

For the case of ν = 12
5 , interfaces with the nearby in-

tegers ν = 2, 3 suffice to differentiate between the three
proposed candidate phases: A Haldane hierarchy state, the
anti-Read-Rezayi state, and the Bonderson-Slingerland state
with N = 1 (Moore-Read pairing). Measuring the interface
with ν = 8

3 as well can further distinguish these phases from
the N = −3 generalization of the Bonderson-Slingerland state
(anti-Pfaffian pairing).

In any quantum Hall system, edge reconstruction may
occur and mask the bulk phase. In particular, topologically un-
protected modes may be present near the edge and hybridize
with those dictated by the topological state of the bulk. Such
spurious modes can strongly modify short-distance proper-
ties, i.e., near a quantum point contact, but not long-distance
physics. Our analysis assumes that �c sets the scale where
unprotected modes drop out, and we require L � �c.

Finally, we want to contrast noise experiments with ther-
mal edge conductance measurements. The latter requires full
equilibration of charge and heat, L � �c, �th, to reveal the
bulk topological order. Experiments typically operate in the
regime where �th � �c, especially at the lowest tempera-
tures [48,49,63]. The experimental data of Ref. [63] is only
consistent with the regime where �th � L � �c. If instead
L � �th, �c either the interface with ν = 2 or with ν = 3
would be noiseless independent of the ν = 5/2 state.
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