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A simple impurity solver is shown to capture impurity-induced superconducting subgap states in quantitative
agreement with the numerical renormalization group and quantum Monte Carlo simulations. The solver is based
on the exact diagonalization of a single-impurity Anderson model with discretized superconducting reservoirs
including only a small number of effective levels. Their energies and couplings to the impurity d level are chosen
so as to best reproduce the Matsubara frequency dependence of the hybridization function. We provide a number
of critical benchmarks and demonstrate the solver’s efficiency in combination with the reduced basis method
[V. V. Baran and D. R. Nichita, Phys. Rev. B 107, 144503 (2023)] by calculating the phase diagram for an
interacting three-terminal junction.
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Introduction. Quantum dots (QD) tunnel-coupled to su-
perconducting (SC) leads act as atomic Anderson impurities
and induce Andreev bound states inside the superconduct-
ing gap. Depending on the parameters, these subgap states
range from Yu-Shiba-Rusinov (YSR) states [1–3], induced
by odd occupied Coulomb blockaded QDs with a local mag-
netic moment, to a localized quasiparticle excitation above
an induced gap on proximitized QDs with a smaller charg-
ing energy [4–7]. These states are observed routinely either
by scanning tunneling spectroscopy (STS) near adatomic
Anderson impurities on superconductor surfaces [8–12], or
in transport or microwave spectroscopy off semiconductor
QDs contacted by superconductors [13–21]. Understanding
their detailed behavior is therefore of great importance for
interpreting detailed STS subgap spectra to infer about the
host superconductor, as well as for the design of supercon-
ducting qubits and other complex gateable superconductor-
semiconductor hybrid devices relying on engineered subgap
states [21–24].

The bound subgap states induced by an Anderson impurity
in a superconductor can be calculated within a number of
different approximate methods, which correspond reasonably
well with the numerically exact results of numerical renor-
malization group (NRG) or quantum Monte Carlo (QMC) (cf.
Refs. [25–28] and references therein) calculations in different
regions of parameter space. These include the original YSR
approach neglecting spin flips [1–3,7,29], the infinite-gap
(atomic) limit [5,29,30] and its recent generalizations [28,31],
as well as the zero bandwidth (ZBW) approximation [32,33]
of including only a single quasiparticle in the superconductor.
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In contrast to the normal state, the finite BCS gap in the
superconducting quasiparticle excitation spectrum � cuts off
all logarithmic singularities and prevents an actual Kondo
problem [34]. Unless its ratio to the Kondo temperature �/TK

is very small, the superconducting gap therefore saves a
lot of calculational effort, leaving a simpler nonperturbative
problem of solving for bound states inside the gap. In more
technical terms, the finite gap ensures that the normal com-
ponent of the local BCS Nambu Green’s function, defining
the tunneling self-energy �T

d (ωn), vanishes linearly with the
Matsubara frequency below the gap. This has the convenient
consequence that the same Green’s function can be readily
obtained within a surrogate BCS model with a few discrete
levels coupled to the d level (cf. Fig. 1). Here, we utilize this
simplification to demonstrate that exact diagonalization (ED)
of a low-dimensional surrogate BCS model coupled to the d
level captures the numerically exact results obtained by NRG
and QMC.

In the context of dynamical mean-field theory [35], ED has
already been employed as an efficient impurity solver produc-
ing static thermodynamic quantities in very good agreement
with QMC [36–39]. Within any finite-size approximation,
however, one loses the ability to properly describe the spectral
function of the continuum, which is reduced to a collection
of δ peaks (cf., e.g., Fig. 18 of Ref. [35]). This limita-
tion may be overcome by using an ensemble of discrete
models within the so-called distributional exact diagonal-
ization approach [40–42]. Whereas this could be relevant
for a faithful description of the above-gap continuum, this
Letter will focus exclusively on the discrete subgap states
and corresponding equilibrium expectation values of various
observables.

Model. We consider the superconducting Anderson impu-
rity model Hamiltonian for a quantum dot (QD) coupled to a
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FIG. 1. Schematic of the surrogate model. SC lead (blue con-
tinuum) coupled to a QD (green) by a given hybridization strength
(orange), giving rise to the tunneling self-energy �T

d (ω) of Eqs. (2)
and (3) (blue spikes). This self-energy is approximated by the pre-
scription of Eq. (4), corresponding to a few-level effective BCS
model (blue S̃C), depicted here with L̃ = 4 particle-hole symmetric
levels coupled to the QD by different pairs of tunneling amplitudes
(dashed orange lines).

single superconducting lead (SC),

H = HQD + HSC + HT,

HQD = εd

∑
σ=↑↓

d†
σ dσ + Ud†

↑d↑d†
↓d↓,

HSC =
∑
kσ

ξkc†
kσ

ckσ −
∑

k

(�eiϕ c†
k↑c†

−k↓ + H.c.),

HT =
∑
kσ

(tc†
kσ dσ + H.c.). (1)

Here, d†
σ creates an electron with spin σ and energy εd on the

QD with a repulsive on-site Coulomb interaction U . Similarly,
c†

kσ creates an electron with spin σ , momentum k, and energy
ξk in the SC lead with order parameter �eiϕ , where � and ϕ

are real numbers. The SC-QD tunnel coupling is described
by HT, whose tunneling amplitudes t are taken to be mo-
mentum independent. We replace the momentum summation
by an energy integral, assuming a constant density of states,
νF = 1/(2D), in a band of half width D around the Fermi
surface. The discussion below may be trivially generalized
beyond these simplifying assumptions.

With the superconducting correlations being treated at the
BCS mean-field level, the lead degrees of freedom are readily
integrated out to give rise to the following Nambu tunneling
self-energy (hybridization function) [4,5],

�T
d (ωn) = −�

(
iωn �eiϕ

�e−iϕ iωn

)
g(ωn), (2)

with Matsubara frequencies ωn = (2n + 1)πkBT at tempera-
ture T , tunneling rate � = πνF |t |2, and the g function defined
as

g(ω) ≡ 1

π

∫ D

−D
dξ

1

ξ 2 + �2 + ω2
= 2

π

arctan
(

D√
�2+ω2

)
√

�2 + ω2
, (3)

which will be our main interest for the discretization proce-
dure outlined below.

Surrogate model. We are interested in constructing the sim-
plest discrete effective bath that best reproduces the subgap
states of the full model. For this purpose, we note that each SC
level with energy ξ contributes a factor of (ξ 2 + �2 + ω2)−1

FIG. 2. The exact g function (3) (dashed black curve) and its
best-fit approximations g̃(ω) (4) with L̃ � 6. Inset: Relative errors
for the same parameters.

to the g function (3). Therefore, we seek to approximate the
latter by combining only a small number of such factors,

g̃even(ω) ≡ 2
K∑

=1

γ

ξ̃ 2
 + �2 + ω2

, L̃ = 2K,

g̃odd(ω) ≡ γ0

�2 + ω2
+ g̃even(ω), L̃ = 2K + 1, (4)

where K denotes the number of pairs of effective levels. A
g̃ function of this form may be obtained by integrating out
an effective superconducting bath with the same gap � as
the original one and whose L̃ discrete levels with energies
±|ξ̃| are coupled to the dot via a tunneling matrix element
t̃ = √

γ�. Note that each odd-L̃ model involves one extra
level at zero energy, ξ̃0 = 0. The effective bath is thus defined
by parameters {γ, ξ̃}, which may be determined by one of
the methods below.

The bath discretization strategies developed so far in the
literature are classified [43] as direct discretization (standard
in the context of NRG), orthogonal polynomial representation
[44,45], and numerical optimization [36,46,47]. In the present
Letter we opt for the latter approach, in which the parame-
ters {γ, ξ̃} are determined by minimizing the cost function
χ2 = ∑

j |g(ω j ) − g̃(ω j )|2, which is evaluated on a nonuni-
formly spaced grid of frequencies ω j . To ensure a good fit of
g(ω) at the subgap frequencies, we use a grid of 1000 points
logarithmically spaced in the interval ω ∈ [10−3�,ωc], with
the cutoff frequency chosen to be of the order of the largest
energy scale of the problem at hand, ωc ∼ max(�,�,U ). We
found that a cutoff frequency ωc = 10� was appropriate in all
cases analyzed below (with D = 10�). Additional results for
D = 102–105� are discussed in the Supplemental Material
[48] (Refs. [49–56] are cited therein).

The exact g function (3) is shown in Fig. 2, together with
the best-fit approximations g̃(ω) for L̃ � 6, and their corre-
sponding relative errors. We notice that by increasing L̃ the
errors are rapidly and systematically reduced by several orders
of magnitude across (and beyond) the fitting range.

Once a good fit has been found, the parameters {γ, ξ̃} de-
fine the surrogate model Hamiltonian as a discretized version
of Eq. (1), obtained by replacing the continuous momentum k
by the discrete index , with ξk → ξ̃ and t → t̃. Extending
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FIG. 3. SMS vs NRG [63] evolution of the subgap spectrum for
an S-D-S junction with increasing coupling � (log scale). Continuous
lines indicate the lowest singlet state S, and dashed lines indicate the
gerade doublet Dg. Inset: Average spin Sz on the QD (in the Dg state)
vs increasing �.

the model to encompass multiterminal systems with N differ-
ent SC leads, this amounts to

H̃ = HQD +
N∑

α=1

(HS̃C,α + HT̃,α ),

HS̃C,α =
∑
ασ

ξ̃c†
ασ cασ −

L̃∑
=1

(�αeiϕα c†
α↑c†

α↓ + H.c.),

HT̃,α =
L̃∑

=1

∑
σ=↑↓

√
γ�α (c†

ασ dσ + H.c.), (5)

where c†
aασ creates an electron with spin σ and energy

ξ̃a in the SC lead α with superconducting order param-
eter �αeiϕα . For simplicity, we restrict our attention to
leads with identical gaps (�α = �), coupled with equal
strength to the QD (�α = �/N). We solve for the low-lying
eigenstates of the finite-sized effective models using exact
diagonalization (ED) for N = 1, 2, or the density matrix
renormalization group in the matrix-product-state formulation
[57,58] for N = 2, 3. The latter is still an efficient solver for
the (quasi-) one-dimensional (1D) systems considered here,
and is straightforward to implement with the ITENSOR library
[59,60]. The methodology described in this section constitutes
the proposed surrogate model solver (SMS) for superconduct-
ing impurity problems. Our numerical codes are available
online [61,62] and may be run on a standard laptop or desktop
computer.

Results. First, we consider a superconductor-quantum dot-
superconductor (S-D-S) junction, N = 2. At zero phase bias,
this constitutes a single-channel problem where only the even
(gerade) combination of quasiparticles from the two leads
couple to the QD. The � dependence of the excitation spec-
trum is shown in Fig. 3 for a moderately large value of
the Coulomb interaction, at the particle-hole (ph) symmet-
ric point. While the position of the singlet-doublet quantum
phase transition is rather accurately captured even by the crud-
est L̃ = 1 (ZBW) approximation, deviations from the NRG

data appear at higher energies in both the weak- and strong-
coupling regimes.

The odd-L̃ surrogates always capture the correct singlet
excitation energy, ES − ED = � at � = 0, as they contain the
ξ̃0 = 0 level which accommodates a screening quasiparticle
with energy Eqp = �. For even L̃, Eqp > � since all lev-
els have |ξ̃| > 0, which leads to an overestimation of the
singlet excitation energy. The situation at strong coupling
is reversed, with even-L̃ surrogates performing well against
the NRG data and the odd-L̃ ones overestimating the dou-
blet excitation energy. This correlates with the inability of
the odd-L̃ surrogates to properly screen the QD spin in the
excited doublet (Dg), as illustrated by the inset in Fig. 3.
Nevertheless, for large enough L̃, we obtain good conver-
gence towards an excited doublet with a largely screened QD
spin at strong coupling, in agreement with the findings of
Refs. [64,65].

To gain more insight into the surrogate-model eigenstates,
it is advantageous to employ the chain representation of our
discretized SC leads where the QD only couples to the first
site in each SC chain. This picture is unitarily equivalent
with the star configuration used so far, but it offers a more
geometrical perspective in the interpretation of the impurity
screening process. Unlike the DMRG calculations presented
in Ref. [64], however, the small surrogate model chain has no
precise sense of spatial distance in the real superconductors.
A detailed derivation of the star-chain mapping can be found
in Appendix A of Ref. [66].

Whereas the subgap singlet state is found to have 〈Sz,n〉 = 0
for all sites n on the chain, Fig. 4 reveals a rich spin structure
of the gerade doublet (Dg) state. The inset of Fig. 4(b) shows
pronounced antiferromagnetic correlations between nearest-
neighbor sites of the S-D-S chain, typical to both singlet and
doublet states. Qualitatively, the doublet spin structure may
therefore be pictured as a delocalized Sz = +1/2 quasiparticle
moving on top of a singlet background of antiferromagneti-
cally correlated spins. For the one-channel problem (ϕ = 0)
in Fig. 4(a), the extra Sz = +1/2 spin is preferentially dis-
tributed on the sites ferromagnetically correlated with the dot
(i.e., its even-order neighbors), with a remarkable tendency of
localization towards the chain boundaries (away from the dot).
In odd-L̃ chains, the boundary sites are antiferromagnetically
correlated with the dot and can only accommodate a minute
fraction of the total Sz = +1/2 spin. The latter must then be
redistributed across the entire chain (predominantly on the dot
and even SC sites), thus explaining the poorly screened QD
spin observed in the inset of Fig. 3. The S-D-S junction at
ϕ = π [Fig. 4(b)] features a qualitatively different spin struc-
ture, with minor differences between the spin distribution on
neighboring sites; here, even the L̃ = 1 (ZBW) approximation
is qualitatively correct. Instead, the two-channel nature of the
problem enables the formation of an extended spin-1/2 cloud
around the impurity with negligible spin localized at the chain
boundaries, visible in Fig. 4(b) for L̃ � 5.

Having benchmarked the SMS, we shall now illustrate its
capabilities towards solving a more complex topologically
nontrivial multiterminal problem. Such devices are predicted
to host Weyl points in a space of synthetic dimensions de-
fined by their superconducting phases ϕ j (cf. Ref. [70] and
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FIG. 4. Average spin 〈Sz〉 in the gerade doublet Dg state, across
the chains representing the S-D-S junction at ϕ = 0 (a) and ϕ = π

(b), for various numbers of effective levels L̃ � 8 per lead, obtained
for D = ωc = 10�. The other common parameters are � = 15�,
U = 15�, εd = −U/2. Inset in (b): Spin-spin correlation matrix
〈Sz,iSz, j〉, −L̃ � i, j � L̃, across the S-D-S chain at ϕ = π , where
(blue) red squares indicate (antialigned) aligned spins. The spin-spin
correlation matrix is qualitatively similar in both singlet and doublet
states.

references therein). Whereas earlier theoretical predictions
have been obtained exclusively in the limit of infinite super-
conducting gaps [70–72], the SMS allows us to explore the
experimentally relevant case of finite gap and charging energy.

Here, we consider the three-terminal setup of Ref. [71]
sketched in the inset of Fig. 5(a). For it to be topologi-
cally nontrivial, it is necessary to couple the SC terminals
directly (we denote the corresponding tunneling rate by
�S), and to enclose a magnetic flux � ≡ 3αh̄/2e. The
explicit Hamiltonian may be found in the Supplemental
Material [48]. A topological phase transition is signaled
by a change in the Chern number, defined as the flux
C(α) ≡ (2π )−1

∫ 2π

0

∫ 2π

0 dϕ1dϕ2(∂ϕ1 A2 − ∂ϕ2 A1) associated to
the Berry connection Aj = i〈ψ |∂ϕ j |ψ〉 for a given (subgap)
state ψ (with ϕ3 = 0).

The Chern number for the lowest singlet state CS (com-
puted numerically by the method of Ref. [73]) is displayed
in Fig. 5(a). Excellent convergence for this robust topological
quantity was achieved already for L̃ = 2. The results indi-
cate that the first significant change in the system’s topology

FIG. 5. Chern number and subgap spectrum in a three-terminal
junction. (a) Singlet Chern number CS as a function of the en-
closed magnetic flux α, for various QD-SC coupling strengths �.
(b), (c) Subgap energy spectrum near two singlet Weyl nodes, at
(b) α ≈ 0.21π and (c) α ≈ 0.37π , obtained for � = 7� with the
L̃ = 2 surrogate. Orange indicates the lowest (reference) singlet, blue
the first excited singlet, and green the lowest doublet. For the efficient
scan of the ϕ1 − ϕ2 first Brillouin zone we employed the reduced-
basis method (see Supplemental Material [48] and Refs. [67–69]).

appears around � = 5�, when also tuning �S = 0.1�/�.
Here, new pairs of singlet Weyl nodes are found to emerge
at ϕ1,2 = 0, around α = (2k + 1)π/2, k ∈ Z. They gradually
and asymptotically migrate in α, with increasing coupling,
towards the previously known Weyl nodes (present also in the
large-gap limit), shrinking the topologically nontrivial regions
in the process. The presence of local Coulomb interactions
causes only small quantitative changes in the above topologi-
cal phase diagram [48].

Conclusions. This Letter shows that it is possible to capture
efficiently the physical properties of the impurity-induced su-
perconducting subgap states with a model involving a very
small number of effective levels, chosen to reproduce the
Matsubara frequency dependence of the superconducting hy-
bridization function. The subgap spectrum and all related
observables converge rapidly and systematically to NRG and
QMC results with an increasing number of levels [48].

The SMS provides easy access to the hybridization struc-
ture of the subgap states, offering insights into the doublet
spin distribution and the related impurity screening process,
by going beyond the limitations of the crudest ZBW and
(generalized) atomic limit approaches without sacrificing the
computational efficiency. Furthermore, the fast convergence
of the SMS [48] enabled the solution of a fully interacting
multiterminal problem, difficult to approach by means of ei-
ther NRG and QMC. By its simplicity and flexibility, the
SMS may prove instrumental in exploring the fully interacting
many-body physics of new complex hybrid devices, which are
actively being pursued for quantum information processing.
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