
PHYSICAL REVIEW B 108, L220505 (2023)
Letter

Bardasis-Schrieffer-like phase mode in a superconducting bilayer
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We theoretically study the low-lying collective modes of an even-parity spin-singlet superconducting bilayer,
where strong spin-orbit coupling leads to a closely competing odd-parity pairing state. We develop a gauge-
invariant theory for the coupling of phase fluctuations to an external electromagnetic field and show that the
competing odd-parity pairing instability gives rise to a Bardasis-Schrieffer-like phase mode within the excitation
gap. Accounting for the long-range Coulomb interaction, however, we find that this mode is converted into an
antisymmetric plasmon and is likely pushed into the quasiparticle continuum.
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Introduction. The first-order field-induced transition within
the superconducting state of CeRh2As2 [1,2] has been inter-
preted as a transition between even- and odd-parity pairing
[3–6]. This requires a near degeneracy of these different
pairing channels, which naturally arises from the sublattice
structure of the unit cell [7–9]. Specifically, for on-site singlet
pairing, even- and odd-parity states can be constructed by
setting the pair potential to have the same (“uniform”) or op-
posite (“staggered”) sign on the two sublattices, respectively.
The staggered state is suppressed by intersublattice hopping,
but its critical temperature may nevertheless be comparable
to that of the uniform state for sufficiently strong spin-orbit
coupling (SOC).

The key evidence for the uniform-staggered transition
in CeRh2As2 is its quantitative agreement with the depen-
dence of the phase diagram on the magnitude and orientation
of the magnetic field [1,2]. However, more direct evidence
of the staggered state is lacking, and alternative scenarios
have been proposed [3,10,11]. Indeed, although sublattice
degrees of freedom are considered important for the electronic
structure in many superconductors, e.g., CuxBi2Se3 [12],
SrPtAs [13], UPt3 [14], bilayer transition metal dichalco-
genides (TMDs) [15,16], and UTe2 [17], only CeRh2As2

displays the uniform-staggered transition. Attempts at engi-
neering the uniform-staggered transition in artificial superlat-
tices have also been unsuccessful [18]. It is therefore unclear if
the staggered state is relevant to the physics of such materials,
while the extreme magnetic fields at which it is expected to ap-
pear makes studying it a formidable challenge. This motivates
us to search for evidence of the staggered state at vanishing
magnetic field strength, where the uniform phase is realized.

It has recently been pointed out in Ref. [19] that the pres-
ence of a subdominant pairing state in CeRh2As2 should give
rise to a low-lying Bardasis-Schrieffer (BS) collective mode
[20], corresponding to fluctuations from the uniform to the
staggered state. Moreover, the strong SOC in this material
could allow for the optical excitation of this mode, despite
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the opposite parity of the two pairing states. The first obser-
vation of BS modes, which has only recently been claimed
[21], has stimulated much attention [22–27]. The prospect that
superconductors with sublattice degrees of freedom gener-
ically host BS modes, potentially accessible by terahertz
spectroscopy [28], is not only a novel way to evidence the
uniform-staggered transition but also of fundamental interest
for the study of collective modes in superconductors [29].
However, the theory presented in Ref. [19] does not explicitly
account for gauge invariance or the Coulomb interaction, and
not all the signatures of the BS mode in the electromagnetic
(EM) response were evaluated.

In this Letter, we theoretically examine the EM response
of a minimal model of a superconductor with a sublattice
degree of freedom and a subdominant instability toward the
staggered state, namely a bilayer with SOC. The EM response
of bilayer superconductors has been extensively studied in
the context of bilayer cuprates [30–34], where the pairing
potential is comparable to the band splitting and SOC is
negligible. Here we are more interested in the limit where
the pairing potentials are small compared to the band splitting
and SOC is strong, which is relevant to CeRh2As2 and TMDs.
To achieve a manifestly gauge-invariant theory, we treat the
fluctuations into the staggered channel as short-wavelength
phase fluctuations which can be naturally incorporated with
external EM fields into a gauge-invariant action. We derive the
EM response tensor in the long-wavelength limit and hence
demonstrate the existence of an antisymmetric BS-like phase
mode within the superconducting excitation gap. However,
this phase mode couples directly to the Coulomb interaction,
which likely pushes the mode energy into the quasiparticle
continuum and thus impedes experimental observation.

Theoretical model. We consider a two-dimensional square
bilayer model with in-plane lattice constant a and layer sepa-
ration δ. This is described by the Lagrangian

L =
∑
r,r′

{c†
r (δr,r′ h̄∂τ + H0(p + eA) − eδr,r′φ)cr′ }

− 4
∑

r

∑
η=A,B

gc†
η,r,↑c†

η,r,↓cη,r,↓cη,r,↑, (1)
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where cr = (cA,r,↑, cA,r,↓, cB,r,↑, cB,r,↓)T is a spinor of
fermion annihilation operators accounting for spin and layer
(A, B) degrees of freedom, p is the momentum operator,
Aμ = (φ, A) is the EM four-potential of an external field, and
e is the fundamental charge. The normal state Hamiltonian
matrix H0(k) is constrained by the tetragonal symmetry of
the bilayer and has the general form [8,9]

H0(k) = ε00,kη0σ0 + εx0,kηxσ0 + εzx,kηzσx + εzy,kηzσy, (2)

where the ηi and σi Pauli matrices encode the layer and spin
degrees of freedom. Here we take ε00,k = −2t[cos(kxa) +
cos(kya)] − μ where μ is the chemical potential and t is the
hopping between nearest-neighbor sites in the same layer.
εzx,k = α sin(kya) and εzy,k = −α sin(kxa) describe Rashba
SOC of strength α which originates from the locally bro-
ken inversion symmetry on each layer and reverses sign
between the two layers to preserve the global inversion sym-
metry. Finally, εx0,k = t⊥ is the interlayer hopping between
the A and B sites in each unit cell. The Hamiltonian de-
scribes a two-band system with energies ξ j=1,2,k = ε00,k −
(−1) j

√
ε2

zx,k + ε2
zy,k + ε2

x0,k.

The second term in Eq. (1) is an attractive interaction which
mediates on-site s-wave spin-singlet pairing. This generates a
pairing instability in two channels: the even-parity uniform
state �̂u = �uη0iσy, where the pair potentials are the same on
both layers, and the odd-parity staggered state �̂s = �sηziσy,
where the sign of the potential reverses between the two
layers. The uniform state pairs electrons in the same band
and opens a gap |�u| at the Fermi energy. In contrast, the
staggered state also involves interband pairing, which reduces
the gap at the Fermi energy below |�s|. SOC must be present
for the staggered state to pair electrons in the same band;
in the limit where the band splitting is much larger than the
pairing potential, the gap at the Fermi surface is given by
|�s|

√
Fk where Fk = 4(ε2

zx,k + ε2
zy,k )/(ξ1,k − ξ2,k )2 � 1 is the

superconducting fitness [35]. Despite having the same pairing
interaction, the generically smaller gap opened by the stag-
gered state compared to the uniform state implies that the
latter is the stable superconducting phase.

The EM field is included within the minimal coupling
scheme. Using the Peierls substitution, we expand the Hamil-
tonian up to second order,

∑
r,r′

c†
r [H0(p + eA) − eδr,r′φ]cr′

≈
∑
r,r′

c†
rH0(p)cr′ +

∑
r

Jμ(r)Aμ(r)

+ 1

2

∑
r

e2Di j (r)Ai(r)Aj (r), (3)

where Jμ is the paramagnetic current and Di j is the diamag-
netic Drude kernel. Although the EM field varies continuously
in space, in our tight-binding model it is sampled at the dis-
crete lattice points. We accordingly define Aμ

η,rj as the EM
four-potential at lattice site rj in layer η = A, B. We then
decompose the EM field in each layer in terms of symmetric
and antisymmetric components Aμ

+ and Aμ
− [16], respectively,

as

Aμ
± = 1

2
(Aμ

A ± Aμ
B ). (4)

The paramagnetic and diamagnetic terms in Eq. (3) are then
written in terms of the symmetric and antisymmetric EM field
components,

JμAμ =
∑
a=±

Ja,μAμ
a , (5)

Di jAiA j =
∑

a,b=±
[Dab]i jAa,iAb, j . (6)

The paramagnetic current operators are most conveniently
defined in momentum space J μ

± (q) = −e
∑

k c†
k+qJμ

± (k, q)ck
where the matrix elements are

Jμ
+ (k, q) = (

η0σ0,
1
2 [Vk + Vk+q] + vx0ηyσ0ẑ

)
, (7)

Jμ
− (k, q) = (

ηzσ0,
1
2ηz[Vk + Vk+q]

)
. (8)

Here Vk = 1
h̄∂kH0, where the derivative is with respect to the

in-plane momenta, i.e., ∂k ≡ ∂kx x̂ + ∂ky ŷ, and vx0 = t⊥δ/h̄ is
the contribution of the interlayer hopping to the paramagnetic
current. Treating the diamagnetic current similarly, the corre-
sponding momentum-space matrix elements at q = 0 are

[D++]i j = 1

h̄2

(
∂kik jH0 − δi jδ jzt⊥δ2ηxσ0

)
, (9)

[D−−]i j = 1

h̄2 ∂kik jH0, (10)

[D+−]i j = [D−+]i j = 1

h̄2 ∂kik j ηzH0. (11)

Effective action. We decouple the interaction term in the
pairing channels using the Hubbard-Stratanovich transforma-
tion and then integrate out the fermions to obtain an effective
action for the EM field and the pairing potentials alone,

S[A,�] = Tr ln GA� +
∫

dτ
∑

r

(�̄u�u + �̄s�s)

2g
, (12)

where GA� is the full fermion propagator which accounts for
the coupling to the pairing fields, �u and �s, and an external
EM field. The trace is over the frequency, momentum, spin,
and layer degrees of freedom of the fermions.

The aim of this work is to determine an action for the EM
field only, i.e.,

SEM[A] =
∑

q

∑
a,b=±

e2�
μλ

ab (q)Aa,μ(−q)Ab,λ(q), (13)

where �μλ is the gauge-invariant EM response tensor and
q = (iω, q) accounts for the frequency and momentum of
the fluctuating fields. Since gauge invariance is equivalent to
requiring charge conservation, it is enlightening to consider
charge conservation in a bilayer system. As pointed out in
Refs. [32,33], we must distinguish between processes which
change the total charge in a unit cell, and processes which
redistribute charge between the different layers in a unit cell
without changing the total charge. The former processes are
analogous to the usual currents in a monolayer system and
give rise to the conservation law for the symmetric currents
qμJ μ

+ (q) = 0. In contrast, the latter processes involve the
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antisymmetric currents J 0,x,y
− and the symmetric out-of-plane

current J z
+, with the conservation law qμJ μ

− (q) + 2i
δ
J z

+(q) =
0. From the definition of the EM response tensor we have
〈J μ

a (q)〉 = −e2�
μλ

ab Ab,λ(q); combining this with the charge
conservation laws, we have the conditions on the EM response
tensor

qμ�
μλ
+a = 0, qμ�

μλ
−a + 2i

δ
�zλ

+a = 0, (14)

where a = ±. Note that the second condition includes a con-
tribution from interlayer currents which does not vanish in the
long-wavelength (i.e., q → 0) limit.

As discussed above, the uniform state is realized at the
saddle point with pairing potential �u = �0 which we choose
to be real. The attractive interaction in the subdominant stag-
gered channel is then expected to generate a BS mode with
energy within the excitation gap 2�0. In going beyond the
mean-field solution, the literature on collective modes in su-
perconductors [24,25,36] leads us to adopt the Ansätze for the
pairing potentials in layers A and B in unit cell rj,

�A,rj = [
�0 + δ�r

u(rj) + δ�r
s (rj) + iδ�i

s(rj)
]
e2iθrj , (15)

�B,rj = [
�0 + δ�r

u(rj) − δ�r
s (rj) − iδ�i

s(rj)
]
e2iθrj , (16)

which includes fluctuations in the overall phase θ , the ampli-
tude in the uniform channel δ�r

u, and both real and imaginary
fluctuations in the staggered channel, δ�r

s and δ�i
s, respec-

tively. Indeed, this is the approach taken by Ref. [19] to study
a similar system. In the Supplemental Material, we follow the
method of Ref. [19] to construct the Gaussian action for the
imaginary fluctuations in the staggered channel and verify that
it gives rise to a subgap BS mode [37]. Integrating out these
fluctuations we obtain an EM-only action, which although not
obvious a priori, does satisfy the second gauge-invariance
condition. Surprisingly, the theory is only gauge invariant
upon the inclusion of the coupling to the BS mode, which
is not the case in other systems with subdominant pairing
channels [25,26].

To understand the critical role of fluctuations in the stag-
gered channel, we recall the standard approach to construct
the gauge-invariant form of the action by combining the EM
field with the superconducting phase [38,39]. The Ansätze
Eqs. (15) and (16) are therefore deficient, as the phase locking
between the layers prevents us from formulating a manifestly
gauge-invariant theory for all the components of the EM field.
This can be remedied by the modified Ansätze

�A,rj = [
�0 + δ�r

u(rj) + δ�r
s (rj)

]
e2iθA,rj , (17)

�B,rj = [
�0 + δ�r

u(rj) − δ�r
s (rj)

]
e2iθB,rj , (18)

where we now allow the phase of the order parameter to vary
between the two layers. Analogous to our decomposition of
the EM field, we express the phase in each layer in terms of
symmetric and antisymmetric components

θA = θu + θs, θB = θu − θs, (19)

where the subscripts on the right-hand side identify θu and
θs with the uniform and staggered pairing states, respectively.
The imaginary fluctuations in the staggered channel are now
accounted for by the antisymmetric phase fluctuations θs.

We remove phase fluctuations from the order parameter by
performing the local gauge transformation

cη,rj,σ → eiθη,rj cη,rj,σ . (20)

In the long-wavelength limit this modifies the symmetric and
antisymmetric EM field components as

(eφ+, eA+) → (
eφ+ − ih̄∂τ θu, eA+ + h̄

(∇θu + 2
δ
θsẑ

))
,

(21)

(eφ−, eA−) → (eφ− − ih̄∂τ θs, eA− + h̄∇θs), (22)

where ∇ ≡ ∂xx̂ + ∂yŷ. Focusing on antisymmetric phase fluc-
tuations, we see that these couple to the antisymmetric scalar
and in-plane vector potentials, as well as the z component of
the symmetric vector potential. We isolate these in the mixed
EM four-potential,

Ãμ ≡ (φ−, (A−)x, (A−)y, (A+)z ). (23)

Under the gauge transformation Eq. (20) this four-vector
transforms as eÃμ → eÃμ − h̄∂̃μθs, where we define ∂̃μ ≡
(i∂τ ,∇ + 2

δ
ẑ).

EM response tensor. We decompose the effective action
S[A,�] = Smf + Sfluc where Smf corresponds to evaluating the
trace with respect to the static mean-field solution for the order
parameters, and the fluctuation action Sfluc is the difference be-
tween the mean-field and full actions. Since we are primarily
interested in the signatures of the odd-parity pairing channel,
we only consider terms in the action which are coupled to
the fluctuating phase θs. In our bilayer model, fluctuations in
the uniform channel decouple from θs and can be neglected.
Consistent with previous work [24,25], real fluctuations in the
staggered channel δ�r

s only introduce a small correction to the
low-energy response through their coupling to the EM field
and are also neglected.

Expanding to second order in the EM field and phase
fluctuations we obtain the Gaussian action

S[θs, Ã] = 1

2

∑
q

Kμλ(q)(eÃμ − h̄∂̃μθs)−q(eÃλ − h̄∂̃λθs)q.

(24)

Explicit expressions for the components of the EM kernel Kμν

are given in the Supplemental Material [37]. To obtain the
EM-only action we integrate out the phase θs to obtain

SEM[Ã] = 1

2

∑
q

e2�μλ(q)Ãμ(−q)Ãλ(q), (25)

where the EM response tensor is given by

�μλ(q) = Kμλ(q) − q̃α q̃∗
βKαλ(q)Kμβ (q)

q̃aq̃∗
bKab(q)

. (26)

Here we define q̃∗
μ ≡ (iω,−iq + 2

δ
ẑ) and q̃μ ≡ (−iω, iq +

2
δ
ẑ). It is straightforward to verify that the EM tensor satisfies

the second gauge-invariance condition in Eq. (14). Upon an-
alytic continuation to real frequency, �μλ is directly related
to observable quantities of the system such as the optical
conductivity σzz = ie2

ω
�zz.
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(a) (b)

FIG. 1. (a) Energy of the antisymmetric phase mode as a function of the interlayer hopping t⊥ at varying relative permittivities. Dashed
lines are calculated in the limit of vanishing SOC α = 0, and solid lines correspond to nonzero SOC α = 0.3t . The εr = ∞ curve corresponds
to mode energy in the absence of the Coulomb interaction, i.e., the pole of Eq. (27). (b) Plot of �̄00 at varying permittivities for α = 0.3t and
t⊥ = 0.2t . For these plots we set a = 0.5 nm, δ = 2a, t = 0.1 eV, and �0 = 0.1t . Simulated on an N × N square lattice with N = 800.

We now focus on the antisymmetric density-density corre-
lator �00 at q = 0,

�00 =
4
δ2 (K00Kzz − K0zKz0)

ω2K00 + 2iω
δ

(Kz0 − K0z ) + 4
δ2 Kzz

. (27)

By the second gauge-invariance condition the other relevant
components of the EM response tensor are given by �0z =
δiω
2 �00 and �zz = δiω

2 �z0. We find a pole in the EM tensor
within the excitation gap, corresponding to an antisymmetric
phase mode. The mode energy as a function of interlayer hop-
ping t⊥ for fixed SOC α is given by the εr = ∞ curve shown in
Fig. 1. The energy of the mode is independent of the distance
δ between the layers. The mode energy vanishes in the limit
of decoupled layers (i.e., t⊥ → 0) where the system possesses
global U (1) gauge symmetry with respect to the phase in
each layer independently. At nonzero interlayer hopping the
mode energy depends crucially upon the SOC: in the absence
of SOC it only occurs at subgap energies for sufficiently
small interlayer hopping [30,31], but when SOC is present it
lies within the gap for all interlayer hopping strengths. The
dramatic effect of the SOC reflects its role in stabilizing a
weak-coupling instability in the staggered channel. As shown
in the Supplemental Material [37], this phase mode displays
the same dependence on model parameters as the BS mode
introduced through imaginary fluctuations in the staggered
channel δ�i

s found in Ref. [19] using the order parameter
Ansätze in Eqs. (15) and (16).

Coulomb interaction. Phase fluctuations in a superconduc-
tor couple directly to density fluctuations, which in a charged
system are subject to the Coulomb interaction. In the bilayer,
the long-range Coulomb interaction can be decomposed in
terms of symmetric and antisymmetric components

V±,q = 1

a2

πe2

εb

(1 ± e−|q|δ )

|q| , (28)

where V+ and V− couple to symmetric and antisymmet-
ric density fluctuations, respectively, and εb = 4πε0εr is the

dielectric constant of the ionic background which depends on
the relative permittivity εr . As shown in the Supplemental Ma-
terial [37], the antisymmetric Coulomb interaction modifies
the density-density response Eq. (27) as

�00 → �00

1 − V−�00
≡ �̄00. (29)

The energy of the antisymmetric phase mode is given by the
pole of �̄00 and now depends on the strength of the Coulomb
interaction; we plot the mode energy for differing relative
permittivities in Fig. 1(a). The Coulomb interaction increases
the mode energy so that we only find a subgap excitation for
sufficiently weak interlayer coupling; for realistic parameter
choices δ � 2a, α � t⊥ and εr � 10, the mode energy lies out-
side the superconducting gap. Accordingly, the EM response
functions become featureless at subgap energies as shown in
Fig. 1(b).

To understand this result, we consider the limit when
the two layers are decoupled, i.e., t⊥ = 0. The independent
variation of the phase in each layer gives rise to two degen-
erate Anderson-Bogoliubov-Goldstone (ABG) phase modes.
Introducing interlayer hopping hybridizes these modes into
symmetric and antisymmetric combinations, where the former
is the ABG mode of the bilayer and the latter is the mode
found above. The evolution of the antisymmetric phase mode
from an ABG mode makes it distinct from other BS modes
[20,22,25,26], and also explains its sensitivity to the Coulomb
interaction. Specifically, the symmetric and antisymmetric
phase modes are converted to symmetric and antisymmetric
plasmons [30,31,40], respectively. In the presence of inter-
layer tunneling the antisymmetric plasmon acquires a gap
[40], and with increasing t⊥ is pushed out of the supercon-
ducting excitation gap, taking the phase mode with it, as seen
in Fig. 1(a). Although the bare mode energy is predicted to
significantly soften as we approach the critical Zeeman split-
ting ∼�0 [19], this should not affect the energy ∼t⊥ � �0 of
the antisymmetric plasmon. We hence do not expect to see the
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mode appear at subgap energies close to the even-odd transi-
tion. In this regard, the fate of the antisymmetric phase mode
is similar to that of the ABG mode in a three-dimensional
superconductor.

Conclusions. We have constructed a gauge-invariant theory
of the electromagnetic response of a superconducting bilayer
with strong spin-orbit coupling. To fully account for charge
conservation in the bilayer [32,33], we treat fluctuations in
the staggered pairing channel as short-wavelength phase fluc-
tuations, which directly couple to the EM field in a way that
preserves gauge invariance. This gives rise to a low-lying pole
in the EM response tensor corresponding to an antisymmetric
phase mode, which can be considered as a BS mode aris-
ing from fluctuations into the staggered state. However, the
origin of this mode from phase fluctuations converts it into
a plasmon, preventing its experimental observation. In this

work, we have focused on a superconducting bilayer as a
minimal model of a superconductor with a sublattice degree of
freedom. Our conclusions likely also apply to systems with
more complicated geometries, e.g., the honeycomb lattice or
the nonsymmorphic structure of CeRh2As2. A more promis-
ing setting in which to search for this mode is neutral cold
atomic gases in an optical lattice mimicking a spin-orbit-
coupled bilayer [41].
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