
PHYSICAL REVIEW B 108, L220504 (2023)
Letter

Critical behavior and duality in dimensionally reduced planar Chern-Simons superconductors
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The quantum electrodynamics of particles constrained to move on a plane is not a fully dimensionally reduced
theory because the gauge fields through which they interact live in higher dimensions. By constraining the
gauge field to the surface of the bulk, we obtain a fully reduced planar Abelian Chern-Simons Higgs model
that can describe the vortex dynamics and second-order superconducting-normal phase transitions in planar
Chern-Simons superconductors. Dual analyses performed before and after dimensional reduction yield the
same Lagrangian for describing the vortex dynamics, indicating the self-consistency of our reduced theory.
Compared to ordinary (2+1)-dimensional electrodynamics, we obtain anomalous fermion statistical vortices,
consistent with results considering boundary effects. An additional electric charge constraint and different
Chern-Simons parameter constraints are also found, which may help define a self-dual conformal field theory.
Our renormalization group analysis shows that the quantized critical exponent depends on the Chern-Simons
parameter. Quench disorder can bring more stable fixed points with different dynamical critical exponents. If we
dimensionally reduce to a curved surface, our theory can also be extended to curved spacetimes, where geometric
flow will be introduced and compete with vortex flow.
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Introduction. The discoveries of the quantum Hall effect
[1–4] and topological planar materials [5–8] in the past 20
years have attracted attention to (2+1)-dimensional [(2+1)D]
materials. Electromagnetic fields play an important role in
these planar materials [9–16], prompting the investigation of
effective theories that incorporate gauge fields. The direct ap-
plication of quantum electrodynamics in (2+1)D (QED3) in
order to describe the electromagnetic interaction in such pla-
nar materials leads to incorrect results because despite the fact
that the quasiparticles are constrained to a plane, the gauge
field is not. For this reason, the gauge fields in QED3 cannot
be considered completely fully fledged dimensionally reduced
from (3+1)D quantum electrodynamics. Pseudoquantum
electrodynamics (PQED), which is also called reduced quan-
tum electrodynamics, is the correct way for introducing the
U (1) gauge fields in planar materials, that in spite of being a
fully (2+1)D theory, does describe a (3+1)D electromagnetic
field interacting with planar particles. PQED was first pro-
posed by Marino [17] and has attracted increasing attention
both in theoretical [18–22] and numerical [23] research during
these years.

PQED avoids the logarithmic divergent of a Coulomb po-
tential in the plane which is associated with QED3. In the
static limit, the Coulomb potential V (r) ∝ 1/r is obtained in
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PQED and it can correctly describe the electron-electron in-
teractions in two-dimensional materials. In PQED, the normal
Maxwell term F 2

μν , with gauge field strength Fμν , is changed

into a nonlocal term F 2
μν/

√
�. It has been proved that the

PQED is unitary [24] and the causality is preserved [25].
Planar systems contain many interesting phenomena, such

as superconductivity [26–28], anyon statistics [29–34], quan-
tum Hall effect [35,36], and quantum vortices [37,38]. They
can all result from the Chern-Simons (CS) term, which can
be obtained from the one-loop correction of the gauge field in
Fermi quantum electrodynamics. It has no further corrections
at higher loops [39], a result known as the Coleman-Hill
theorem. Gauge invariance is restored by using Pauli-Villars
regularization while leading to a parity anomaly [40,41]. Due
to the natural introduction of the CS term through the integra-
tion of the electronic field in superconducting systems, and
the intrinsic vortex excitations, we choose to study planar CS
superconductors.

In this Letter, we demonstrate that the planar Abelian CS
Higgs model, which describes planar CS superconductors,
exhibits a second-order superconducting-normal phase transi-
tion. This planar theory is significantly different from QED3,
as the CS term is no longer a topological mass term and
exhibits distinct critical behaviors. Considering the inevitable
existence of impurities in a real experimental system, we
conduct a renormalization group (RG) analysis in the presence
of weak quenched disorder, and identify that the fixed points
and critical exponents depend on the CS parameter, while
disorder can yield more diverse critical behaviors. Finally,
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FIG. 1. (a) Schematic illustration of a planar Chern-Simons su-
perconducting system in electromagnetic fields. Cooper pairs are
constrained to the plane and the electromagnetic gauge field also
lives in (2+1)D. (b) Linking of two vortex worldlines L1 and L2.
(c) RG flow of the dimensionless couplings Û and r̂ in the absence
of disorder, where n = N = 1. There is a Gaussian fixed point (G)
and a Wilson-Fisher fixed point (WF) stable along the Û direction.
(d) RG flow in the (gW /2π, gM/2π ) plane with weak quenched mass
disorder and current disorder, where c = 25/558 and all other cou-
plings are set to zero. Besides the Gaussian fixed point (G), the other
three fixed points (W, M, and WM) are stable along the directions of
gW , gM , and both, respectively.

based on the aforementioned phase transition behaviors and
statistical effects due to the CS term, it is feasible to dis-
cuss the properties of vortices. We obtain a unified effective
action, which describes vortex loops, based on two different
considerations from the surface and bulk, revealing that the
anomalous fermionic statistics of vortices are consistent with
the inclusion of boundary effects, and our results do not rely
on the limit e2 → ∞.

Dimensionally reduced planar Chern-Simons superconduc-
tors. The dimensionally reduced planar Abelian CS Higgs
model, which describes the superconducting-normal phase
transition in a planar system, reads as

L = 1

4e2
Fμν 2√

�
Fμν + |(∂μ − iAμ)φ|2 + r|φ|2

+ U

2
|φ|4 + ξAμ ∂μ∂ν√

�
Aν + i

θ

2
εμνρAμ∂νAρ, (1)

where Fμν = ∂μAν − ∂νAμ with Aμ being the U (1) gauge
field. Note that, since Aμ lives in (2+1)D and interacts
with the massive planar complex scalar field φ, as shown in
Fig. 1(a), but corresponding to a U (1) electromagnetic gauge
field living in (3+1)D, we use the nonlocal PQED theory to
describe it. e is the effective electric charge with zero scalar
dimension ([e] = 0), � is the d’Alembertian operator, and
ξ is a gauge fixing parameter, where θ = n/2π is the CS
parameter with zero scaling dimension ([θ ] = 0) and n must
be an integer if the U (1) gauge field is compact [42], and
the charged excitations all have integer charge and are fully

gapped. We note that the CS term is not gauge invariant except
for the topologically trivial gauge transformation, while e−SCS

is always gauge invariant with integer CS level n.
Our attention is drawn to the model above, which de-

scribes the planar superconducting system, motivated by
the following considerations: (i) The |φ|4 theory, Lφ =
|∂μφ|2 + r|φ|2 + U |φ|4/2, can capture the second-order
superconducting-normal phase transition [43] without an elec-
tromagnetic field. The complex scalar field φ represents
Cooper pairs. If we turn on the electromagnetic field and con-
sider it interacts with Cooper pairs which are constrained on
the plane, it can be described by the nonlocal planar Abelian
Higgs model. (ii) Considering the massive electrons near the
Dirac point on the plane interact with an electromagnetic field,
the Lagrangian is given by ψ̄ (γ μ∂μ − iγ μAμ − M )ψ , where
M is the mass of the electrons. Using Pauli-Villars regular-
ization and integrating out the Fermi field, we get the CS term
[40,44] LF = i sgn(M )εμνρAμ∂νAρ/8π . We only consider the
electrons near the Fermi surface and they always appear in
pairs to form Cooper pairs, so only even multiples of LF

appear in Lagrangian (1) [45]. In addition, the CS term may
also induce the fractional (anyon) statistics which attracts our
attention. (iii) The reason why we do not consider the interac-
tion λ|ψ |4 is that the scaling dimension of λ is smaller than 0
([λ] = 2 − D) and is irrelevant. The terms such as gφψ̄ψ̄ will
renormalize the mass term of φ after integrating out the Fermi
field in a large momentum cut.

The bare propagator in the momentum space of the gauge
field in Lagrangian (1) is

0
μν (p) = 2e2

4 + θ2e4

δμν√
p2

− θe4

4 + θ2e4

εμνα pα

p2

−
(

2e2

4 + θ2e4
− e2

ξ

)
pμ pν

p2
√

p2
. (2)

Without the CS term (θ = 0), the equation describes the
Coulomb interaction in plane [46] and it has the same form
as the leading-loop renormalization photon propagator at the
limit of large-N in Fermi massless QED3 theory [47,48].
The CS term no longer acts as the topological mass term of
the gauge field as in QED3 theory, instead playing a role in
regulating the intensity of the Coulomb interaction.

Renormalization group analysis without disorder. We will
use the Landau gauge (ξ = ∞) for convenience in this part.
The one-loop RG β equations (details are presented in the
Supplemental Material [45]),

βr̂ = μ
dr̂

dμ
= −

(
2 + 2.9ê2

4π2(4 + θ̂2ê4)

)
r̂ − 2(N + 1)Û ,

βÛ = μ
dÛ

dμ
= −

(
4 − D + 5.8ê2

4π2(4 + θ̂2ê4)

)
Û

+ 2(N + 4)Û 2,

βê2 = μ
dê2

dμ
= −(3 − D)ê2 + (3 − D)

N

32
ê4, (3)

are obtained by defining the dimensionless renormalized
couplings r/μ2 → r̂, SDU/μ4−D → Û , electronic charge
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e2
r /μ

3−D → ê2, and CS level θμ3−D → θ̂ , with SD = (4 −
D)�(2 − D/2)/(4π )D/2 and spacetime dimension D.

When D > 3, ê2
∗ = 0 is the IR stable fix point, and we get

the same RG theory as without the gauge field. When D < 3,
ê2
∗ = 32/N is the IR stable fix point as the bare coupling

e2 → ∞. Inserting the fixed point into the first two β func-
tions in Eqs. (3), we get the Gaussian fixed point, (r̂G, ÛG) =
(0, 0), and the O(2N ) symmetric Wilson-Fisher fixed

point, (r̂WF, ÛWF)=[−(N+1)(1+ε+ 5.8ê2
∗

4π2(4+θ̂2 ê4∗ )
)/(N+4)(2 +

2.9ê2
∗

4π2(4+θ̂2 ê4∗ )
), (1 + ε + 5.8ê2

∗
4π2(4+θ̂2 ê4∗ )

)/2(N + 4)], where ε = 3 −
D and N is the total categories of the complex scalar field
[49–52]. It can effectively describe superconductors when
N = 1. The RG flow for the β function of the dimensionless
coupling r̂ and Û is shown in Fig. 1(c). It has similar prop-
erties to the φ4 theory, but with a different critical value. The
nature of the critical behaviors [53,54] is described by the field
theory of the Wilson-Fisher fixed point with a controllable CS
level n. The critical temperature of the phase transition for
one-loop at finite temperature is Tc ∼ (rWF − r)/U [45].

For the level 1 CS term, we can get the critical exponent
η ≈ 0.08 and the IR fixed point is (−0.22.0.12) when we
consider the superconductor model (N = 1). At long dis-
tances, the critical pair correlation function has the form
〈φ(x)φ(0)〉 ∼ 1/|x|1.08. All calculations are performed in D =
3 − ε because the PQED and CS term restrict the dimen-
sion of spacetime to three, which is different from QED3,
where the RG analysis should be conducted in D = 4 − δ with
δ = 1.

Renormalization group analysis with weak quenched disor-
der. Due to the influence of impurities, experimental systems
inherently possess both disorders, so we need to take into
account the effects of weak quenched disorders. We only
consider disorders coupling to a gauge-invariant operator O,
Sdis[O] = ∫

dd xdτD(x)O(x, τ ), where we have denoted the
Euclidean spacetime coordinates as r = (x, τ ). The quenched
random coupling D(x) is time independent, and is a Gaussian
random variable, D(x)D(x′) = gD

2 δd (x − x′) with zero aver-
age. gD is the variance of D(x) and controls the strength of the
disorder. We use the replica trick to treat disorder questions.

Based on the RG analysis above, it has been determined
that the phase transition is primarily controlled by the mass
term. Therefore, we can first consider the mass disorder φ∗φ
while neglecting the mass term for convenience. The global
U (1) symmetry has a conserved current Jμ = i(φ

←→
∂μ φ∗) ≡

i(φ∂μφ∗ − φ∗∂μφ) and we can also have flux disorder. The
final disorder action takes the form

Sdis =
∫

dd xdτ [V (x)|φ(x, τ )|2 + iW (x)φ(x, τ )
←→
∂0 φ∗(x, τ )

+ iMi(x)φ(x, τ )
←→
∂i φ∗(x, τ )]. (4)

Since disorders break the Lorentz invariance, we need to sep-
arate space and time. We use the roman letters i, j, k, etc.,
indicating the sum is over the spatial coordinates, and the
greek letters μ, ν, δ, etc., including time as well, where V (x),
W (x), Mi(x) are Gaussian random variables with a vanishing
mean, and the variance is gV , gW , gM , respectively. The aver-
age of two of them is vanishing.

We obtained the RG flow equations in one-loop order with
dimensional regularization and a Feynman gauge (details are
presented in the Supplemental Material [45]),

z = 1 + 1

4π
(2gW − gM ),

βgV = −gV

(
2 + ε + 16e2

3π2(4 + θ2e4)
+ gM + gW

2π

)
,

βgW = −gW

(
ε + 54e2

15π2(4 + θ2e4)
+ gM + 2gW

2π

)
,

βgM = −gM

(
ε + 78e2

15π2(4 + θ2e4)
+ 7gM

2π

)
,

βU = −U

(
1 + ε − 8e2

3π2(4 + θ2e4)
− gM

π

)
,

βe2 = −e2

(
ε + Ne2gM

32π

)
, (5)

where gV , gW , gM , U , e2, θ are all the dimensionless renormal-
ized couplings and z is the dynamical critical exponent. The
quenched disorders bring richer critical behaviors [55,56].
The RG flow in the (gW , gM ) plane is shown in Fig. 1(d)
with c = e2/15π2(4 + θ2e4) = 25/558 and all other cou-
plings are set to zero. There are three IR stable fixed points.
One of them, (gM, gW , z) = (−156πc/7, 0, 1 + 39c/7), has
a dynamical critical exponent larger than 1 and the oth-
ers, (gM, gW , z) = (0,−54πc, 1 − 27c) and (gM, gW , z) =
(−156πc/7,−300πc/7, 1 − 111c/7), have a dynamical crit-
ical exponent smaller than 1. If we consider an effective theory
near the Dirac point and view the scalar field as an order
parameter [45], the damping of quasiparticles ∼ω1/z at the
critical point. Then the change in the dynamic critical expo-
nent will lead to the transition of the scaling from a Fermi
liquid to a non-Fermi liquid [57–60]. Although high-order
diagrams can be calculated to determine the fixed point of e2,
we can also adjust the CS level to modify the critical value.
βU indicates that the interaction U can be adjusted to make
it go from being relevant to being irrelevant, compared to
the scenario in the absence of disorder where U can only be
relevant, which means that the gauge invariant disorder can
suppress interactions. However, mass disorder gV can only be
relevant according to βV .

Vortices and duality. To discuss the properties of vortices,
we change the complex scalar field in Lagrangian (1) into
polar coordinates φ = ρeiθ with a superfluid density |ρ|2 and
phase θ . By a dual analysis in (2+1)D [surface of the (3+1)D
bulk] or electromagnetic duality in the bulk (pull back to the
surface) as shown in the Supplemental Material [45], we can
get the effective Lagrangian describing the insulator (vortices
condense to give an insulator [56]),

Leff = 1

16π2|ρ|2 (εμνλ∂μaλ)2 + e2

4π2(4 + θ2e4)

(εμνλ∂μaλ)2

√
�

− iaλJa
λ − i

θe4

8π2(4 + θ2e4)
εμνλaμ∂νaλ, (6)

where aμ is the dual U (1) gauge field and the Ja
μ is the vortex

current. The vortices are minimally coupled to aμ. The fact
that these two methods yield the same results demonstrates
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the validity of our reduced nonlocal theory. One notable dif-
ference from QED3 is that our effective vortex Lagrangian
contains both a normal Maxwell term and a nonlocal one [the
first and second terms in effective Lagrangian (6), respec-
tively].

In real space the vortex current can be written as [61–63]

Ja
μ(x) = εμνλ∂

νvλ(x) =
∑

c

nc

∮
Lc

dyc
μδ3(x − yc), (7)

with a vortex charge nc ∈ Z and the vortex loop Lc. Under
the limit of |ρ|2 � 1 or p2 → 0, we can ignore the normal
Maxwell term and integrate over the dynamical gauge fields
aμ. This yields the effective action for the vortex current Ja

μ,
i.e.,

Seff =
∫

d3xd3x′
[
−4π2

e2

Ja
μ(x)Jμa(x′)

2π2|x − x′|2

+ i2π2θ
εμανJa

μ(x)(x − x′)αJa
ν (x′)

4π |x − x′|3
]
. (8)

Substituting Eq. (7) into action (8), we find that the second
term on the right-hand side can characterize 2π2θ times the
linking number [61,63] of two different vortex loops as shown
in Fig. 1(b). Such an effective self-statistical angle of the unit
vortex is 2π2θ and equal to πn, satisfying the Fermi statistics
at level 1. It is just the statistical anomaly after considering the
bulk effect as analyzed in Refs. [64,65]. In QED3, this result
is obtained under the limit of e2 → ∞ [61,64], but ours does
not rely on this limit.

The conservation of current Ja
μ, ∂μJa

μ = 0, indicates we can
add the term i∂μJa

μξ as a constraint setting. At the same time,
introducing a convergence factor [66] tJ2

μ/2 can be viewed as
the chemical potential of the vortex loops [67]. We can get the
same formal structure as the original Lagrangian (1) at long
wavelengths after integrating over Jμ:

L̃dual = 1

4ẽ2
F̃μν 2√

�
F̃μν + |(∂μ − iÃμ)φ̃|2 + r̃|φ̃|2

+ Ũ

2
|φ̃|4 + i

θ̃

2
εμνρÃμ∂ν Ãρ. (9)

A significant difference from the QED3 is that the nonlocal
kinetic energy of the gauge field in the dual Lagrangian (9) is
independent of the kinetic energy of the bosonic field φ in the
original Lagrangian (1). In the long-wavelength limit, the re-
lated normal Maxwell term is much smaller than the nonlocal
one and is discarded. The duality transformations show it sat-
isfies θ̃ = −θe4/[4π2(4 + θ2e4)], which is different from the
QED3-Abelian Higgs model [68,69], θ̃ θ = −1/4π2. How-
ever, in the limit of e2 → ∞, the two results match. In
addition, we have another constraint, ẽ2e2 = π2(4 + θ2e4). It
is possible [70] to set both e2 = ∞ and ẽ2 = ∞ because the
kinetic terms of the dual gauge fields Ãμ are not dual to the
kinetic energy of the φ particle compared with QED3, reflect-
ing the self-duality of the planar Abelian CS Higgs model.
Then the remaining CS term can induce a 2π/n flux bound to
each φ bosonic particle worldline and −2πn for dual bosonic
field φ̃. It is worth noting that these dualities are only valid in
the infrared. As listed in Table I, the superconducting phase

TABLE I. Table showing the duality between Lagrangian (1) and
(9). The central row gives the constraints of the couplings e2 and θ .
The last row gives the phases of a Lagrangian dual to the other.

L[Aμ, φ] L̃[Ãμ, φ̃]

Couplings e2 ẽ2 = π 2(4 + θ2e4)/e2

θ θ̃ = −θe4/4π 2(4 + θ2e4)
Phases Superconductor Insulator

Normal Superfluid

of Lagrangian (1) is dual to the insulator phase (with vortex
condensation) of Lagrangian (9), while the normal phase is
dual to the superfluid phase (with vortex excitation) [45].

It is remarkable that we can also get O(2N ) and
O(2N − 2k) × O(2k), 0 < k < N , symmetric fixed points
[61,71,72] if we change the interaction from U

∑
i |φi|4 to

U1
∑

i<k+1 |φi|4 + 2U2
∑

i<k+1, j>k |φi|2|φ j |2 + U3
∑

i>k |φi|4,
where different values of N can correspond to different
theories. It can develop a lot of interesting phenomena, such
as the deconfined quantum critical point [73], and the duality
between the QED3–Gross-Neveu theory [74]. On the other
hand, different scalar fields can be seen as distinct order
parameter fields, and their competition can lead to diverse
vortex dynamics [75].

In (3+1)D, Fμν can be interpreted as the primary field
in free Maxwell theory and it is conformally invariant [76].
However, this is not the case in other dimensions and we can
replace it by a conformal gauge action F 2

μν/
√
� in dimension

three [77,78]. It is just the result after considering the one-
loop fermion vacuum polarization diagram in QED3 theory as
mentioned above. Marino [17] looked at it from another per-
spective, where particles conserved current jμ equal to zero
when μ = 3 and jμδ(x3) otherwise, and obtained the same
result. We can simply generalize this result to jμδ( f (xi )),
where particles constrain at any (2+1)-dimensional closed (or
one-point compactifiable) submanifold (t, xi ) with f (xi) = 0.
At this time, covariant derivatives with a geometric connection
will appear in the Lagrangian and can induce a geometric
current in the effective vortex action [79,80].

Conclusion. We have studied an Abelian Chern-Simons
Higgs model that undergoes a dimensional reduction to the
plane, and obtained its quantized critical behaviors. Disorder
can be introduced to adjust the critical behavior of the inter-
action from relevant to irrelevant. If dimensionally reduced
to a curved surface, we may obtain a curved PQED model
to investigate the critical behaviors of the theory as well as
the dynamic behaviors of vortices. Furthermore, self-duality
imposes constraints on the charge and CS parameter, which
also apply to the flow-flow correlation functions near the
critical points [45,68,69,81,82]. These constraints can even
be extended to nonzero temperature cases. In summary, our
reduced theory provides a good idea for the further study of
self-duality near the quantum critical point, and can even be
extended to nonzero temperature and nonflat spacetime.
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gauge field Ãμ is finite with finite ẽ2 [69].
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