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We present the dynamical spin structure factor of the antiferromagnetic spin- 1
2 J1-J2 Heisenberg model on

a triangular lattice obtained from large-scale matrix-product state simulations. The high frustration due to the
combination of antiferromagnetic nearest- and next-nearest-neighbor interactions yields a rich phase diagram.
We resolve the low-energy excitations both in the 120◦ ordered phase and in the putative spin-liquid phase at
J2/J1 = 0.125. In the ordered phase, we observe an avoided decay of the lowest magnon branch, demonstrating
the robustness of this phenomenon in the presence of gapless excitations. Our findings in the spin-liquid phase
chime with the field-theoretical predictions for a gapless Dirac spin liquid, in particular the picture of low-lying
monopole excitations at the corners of the Brillouin zone. We comment on possible practical difficulties of
distinguishing proximate liquid and solid phases based on the dynamical structure factor.
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Introduction.—Quantum spin liquids (QSLs) [1–4] are ex-
otic, entangled phases of matter characterized by a lack of
magnetic order at zero temperature and the emergence of
fractionalized quasiparticle excitations. They have received
substantial attention both in theory and experiment, giving
rise to various proposals regarding the nature of the candidate
QSL phases on frustrated spin systems [5–24]. Using state-of-
the-art numerics, we study the paradigmatic antiferromagnetic
J1-J2 Heisenberg Hamiltonian on a triangular lattice (TLHAF)

H = J1

∑
〈i, j〉

Ŝi · Ŝ j + J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j, (1)

where 〈i, j〉 and 〈〈i, j〉〉 denote pairs of nearest-neighbor and
next-nearest-neighbor sites, respectively, thereby aiming to
find dynamical fingerprints of the distinct phases that have
been proposed theoretically.

Following Anderson’s original proposal [25] that the
ground state of the nearest-neighbor TLHAF could stabilize
a resonating valence bond state, there have been intense in-
vestigations into the nature of quantum spin models on the
frustrated geometry of the triangular lattice [16,17,26,27].
Even though the ground state for the nearest-neighbor model
has been established to have a coplanar 120◦ Néel order
[28–32], the underlying geometry still provides one of the
simplest cases for the emergence of a QSL phase [33]. Adding
a next-nearest-neighbor coupling J2, there is classically a
phase transition at J2

J1
= 1

8 between the 120◦ Néel order and
a four-sublattice ordered phase with a residual degeneracy
[33–35]. For the quantum model, however, numerical simu-
lations indicate a QSL phase around the point of the classical
phase transition for 0.07 � J2

J1
� 0.15, the nature of which has

*markus.drescher@tum.de

been under debate [16–20,22,23,26,36,37]. It is followed by
a collinear stripe-ordered phase for larger J2 [16,26,33] (cf.
Fig. 1). Despite recent progress in the quest for candidate ma-
terials [18,45,46], most promisingly with respect to rare-earth
delafossites [21,47–49], the unambiguous detection of a QSL
remains an open issue, with only very recent encouraging
reports [24].

From a theoretical perspective, the computation of spectral
functions of two-dimensional quantum magnets has been a
challenge as well, triggering work in analytical techniques
[30–32,50–54], variational Monte Carlo simulations [20,55],
and tensor-network approaches [56–59]. Using large-scale
matrix-product state (MPS) methods [60–64], we compute
the dynamical correlations of the system both in the or-
dered 120◦ phase for J2 = 0 and the adjacent candidate QSL
phase at J2

J1
= 0.125, which allows us to compute the spectral

function of the model. We complement these time-evolution
calculations by applying the quasiparticle ansatz, a variational
approach for targeting excited states on top of a given MPS
ground state for the infinite cylinder directly [65,66].

Our central insights are the following. First, we find that
the magnon mode in the ordered phase of the isotropic model
is stable even when kinematically its decay is allowed. The
mechanism, termed avoided quasiparticle decay, had been
reported for a TLHAF with an easy-axis anisotropy [67] but its
stability in the presence of gapless excitations had remained
in question. Second, we investigate the dynamical features
of the spectral function in the candidate QSL, and compare
these to those of the ordered phase. The outstanding agree-
ment between the time evolution and the quasiparticle ansatz
suggests that both can be used as complementary methods.
In the candidate QSL phase, we find prominent low-energy
excitations at the corners of the Brillouin zone, in agreement
with the field-theoretical prediction of triplet monopole exci-
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(a) (b) (c)

FIG. 1. Phase diagram of the J1-J2 antiferromagnetic Heisenberg
model on a triangular lattice. At the Heisenberg point J2 = 0, the
ground state exhibits a 120◦ order (a). Around J2

J1
≈ 0.07, there is

a transition into a candidate quantum spin-liquid state (b). In the
illustration, we show the dispersion of the spinons at half-filling in
the mean-field solution of the Dirac spin liquid discussed in Sec. F
in the Supplemental Material [38]. For larger next-nearest-neighbor
couplings, a stripe-ordered phase emerges (c). The blue arrows at
J2 = 0 and J2

J1
= 0.125 denote the points in the different regimes

where we compute the spectral function.

tations in a U (1) Dirac spin liquid (DSL) [68–70], suggesting
important gauge fluctuations within the parton construction of
the DSL.

Numerical Methods.—We use large-scale MPS simulations
to find the ground state and the excitation spectrum of the
J1-J2 TLHAF in two different regimes indicated in Fig. 1.
The triangular lattice is wrapped onto a cylindrical geometry
with periodic boundary conditions along the circumference
Ly [56,71]. We consider a YC6-0 geometry [19,26], where
Ly = 6 specifies the circumference of the cylinder and n = 0
determines the boundary condition by identifying sites r and
r + Ly a2 − n a1 with a1/2 being the primitive vectors of the
Bravais lattice [Fig. 1(a)]. We find an MPS ground-state ap-
proximation using either the infinite DMRG [72–74] or the
VUMPS algorithm [64,75]. From this infinite ground-state
MPS, the static spin structure factor

χ (k) = 1

N

∑
i, j

e−ik·(ri−r j ) 〈Ŝi · Ŝ j〉 (2)

can be readily obtained as shown in Fig. 2.
We compute the dynamical spin structure factor—or

spectral function—from the time-resolved spatial spin-spin
correlations of the system

S+−(k, ω) =
∫

dt
∑

j

eiωt−ik·(r j−r jc ) 〈Ŝ+
j (t )Ŝ−

jc
(0)〉 , (3)

where jc denotes the center site of the lattice and Ŝ±
j = Ŝx

j ±
iŜy

j are the spin ladder operators. The simulations are per-
formed on long cylinders of dimension Ly × Lx. Depending
on the parameter regime, we have used Lx = 51 or Lx = 126.
The dynamical correlations are obtained by applying a local
operator Ŝ−

jc
at the center of the system and time-evolving

the perturbed ground state using the MPO WII time-evolution
algorithm for MPS with long-range interactions [62,63]. For
a time step size of δt = 0.04 J1, we measured the correlations
C+−

i, jc
(t ) ≡ 〈Ŝ+

i (t )Ŝ−
jc
〉 every Nsteps = 5 time steps. We obtain

the spectral function by taking the momentum superposi-
tion of C+−

i, jc
(t ), and transforming to frequency space by a

numerical integration with a Gaussian envelope and linear-

(a) (c)

(d)(b)

FIG. 2. Comparison of the static spin structure factor χ (k) on a
cylinder with Ly = 6 from numerical DMRG results (top row) and
analytical calculations (bottom row). (a) DMRG result for the 120◦

ordered phase at J2 = 0 and (b) the corresponding linear spin-wave
theory. A cubic interpolation scheme along the circumference has
been used for plotting. The right column shows the static structure
factor in the QSL phase at J2

J1
= 0.125 for (c) DMRG and (d) the

analytic result from the Dirac spin-liquid parton theory. The cylinder
geometry used is 6 × 51 for panels (a)–(c) and 6 × 50 for (d).

prediction techniques [76]. The Gaussian window function
thereby ensures that the actual simulation data has a large
weight whereas the predicted data lie in its tail with the main
purpose of suppressing Gibb’s oscillations in the Fourier sig-
nal (see Sec. A in the Supplemental Material [38] for further
details). The entanglement entropy in the state is expected to
grow under unitary time evolution, increasing the difficulty to
faithfully represent the quantum state. Hence, the total time
that we can access in our simulations is limited by the bond
dimension of the MPS. We have used bond dimensions up
to χ = 1500 in the ordered and χ = 2000 in the QSL phase
with a total simulation time up to 60 J1 and have made sure
that the system is large enough in order to avoid boundary
artifacts. Moreover, we have applied operators with defined ky

momentum instead of single-site operators to better resolve
the gapless K points (see also Sec. A in the Supplemental
Material [38]).

We next compare these results to those obtained by the
variational quasiparticle ansatz [65,66]. Compared to the time
evolution, this variational approach involves a numerically
cheaper calculation, and provides a good approximation to the
energy of the lowest-lying excited state at a certain momentum
k. As such, it provides the dispersion of isolated modes in the
spectrum or the lower edges of continua. In addition, using the
variational wavefunctions for the lowest-lying excitations, we
can compute the spectral weights and obtain their contribution
to the spectral function in the Lehmann representation [77].

120◦ Ordered Phase.—The static structure factor χ (k)
exhibits characteristics of the 120◦ coplanar Néel order of
the ground state at the Heisenberg point J2 = 0 via the
well-pronounced maxima at the corners of the Brillouin

L220401-2



DYNAMICAL SIGNATURES OF SYMMETRY-BROKEN AND … PHYSICAL REVIEW B 108, L220401 (2023)

(a) (c) (e)
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FIG. 3. Upper row: The spectral function in the ordered phase with only nearest-neighbor coupling (J2 = 0) along different paths in the
Brillouin zone as indicated in the inset in (d). The golden dot-dashed line shows the result for the lowest-excitation energy obtained from
the quasiparticle ansatz. Lower row: Results from linear spin-wave theory (LSWT) to be compared to the MPS data in the panels above.
The dashed bright line denotes the single-magnon branch. The red dotted line shows the minimum of the two-magnon continuum at q = K,
whereas the red dot-dashed line corresponds to the local minimum for q = K′. The resulting two-magnon continuum is given by the hatched
area. We indicate again the lowest-energy mode obtained from the quasiparticle ansatz and plot it additionally with a Gaussian broadening of
σ = 0.1 and weighted with the corresponding spectral weights (cf. Sec. B in the Supplemental Material [38]). Note that the finite-size gap
determined at K from the quasiparticle ansatz has been taken as an energy offset for the linear spin-wave results. We used system sizes 6 × 126
and bond dimensions up to χ = 1500.

zone K , K ′ and related points shown in Fig. 2. Compar-
ing with the results from linear spin-wave theory (LSWT),
where the classical three-sublattice 120◦ order is weakened
by quantum fluctuations (see Sec. E in the Supplemental Ma-
terial [38] for details of the calculation), we find conclusive
agreement.

Figure 3 shows the results for the spectral function from
the MPS simulations for J2 = 0. Previous investigations of the
low-energy excitations of the ordered phase beyond LSWT
using semiclassical approaches such as higher-order spin-
wave theory [29,31,32] or series expansions [51,52] already
obtained strong renormalizations of the magnon dispersion
mainly caused by interactions between the single quasipar-
ticle branches and the magnon continuum. One prominent
feature is a pronounced rotonlike minimum at the M point
and symmetry-related points (the centers of the edges of the
Brillouin zone). Our numerics confirms this characteristic as
shown in Fig. 3(e). The spectral weight is concentrated at
the M points in a smaller frequency window, leading to a
distinct maximum in the intensity although the integrated
spectral weight of the lowest branch exhibits a local minimum
(cf. Sec. C in the Supplemental Material [38]). Using the
quasiparticle ansatz, we find good agreement for the overall
spectral weight of the lowest renormalized magnon branch.
The energy dispersion from this ansatz with the associated
spectral weight displayed as a Gaussian broadening of σ =
0.1 is plotted in Fig. 3(f). The bright dashed line denotes
the magnon branch from LSWT. We observe a strong down-
ward renormalization that is consistent with previous findings
[32,50]. The lower bound of the two-magnon continuum is
given by the minimum of the decays εk = εk−q + εq with q =
K and q = K′ [32]. Both dispersions are schematically shown
in Fig. 3(f). In our simulations on an Ly = 6 cylinder, the
spectral weight distribution above the isolated lowest mode in

Fig. 3(e) exhibits features of both decay channels and the non-
interacting magnon line alongside some distortions around
the touching points. It remains an open question if this is a
finite-size effect or whether it survives in the thermodynamic
limit.

A rotonlike minimum, however, does not only occur at the
M points, but also at Y1, the midpoint between A and B [cf.
inset Fig. 3(d)]. This was first suggested by Verresen et al.
[67] in the case of an antiferromagnetic triangular Heisenberg
model with a small anisotropic term that makes it numerically
more tractable by slightly gapping out the Goldstone modes.
Moreover, also variational Monte Carlo simulations [20] have
found a similar feature that can be associated with avoided
quasiparticle decay due to strong interactions between the
lowest mode and the two-magnon continuum [67]. Fig. 3(a)
shows the spectral function of the pure Heisenberg model
on the triangular lattice along the cut A − B. Besides a pro-
nounced maximum at B and a diffuse continuum reaching up
to energies of roughly 3J1, we again observe remnants of the
single-magnon mode and the decay channels representing the
minima of the energy surface described by the lower bound-
ary of the two-magnon continuum. The lowest-energy mode,
however, stays beneath the onset of the continuum, supporting
the previous conjecture that avoided magnon-decay is a valid
feature of the theory [20,67]. The variation of the integrated
spectral weight of the repelled magnon mode is confirmed
within the quasiparticle ansatz (see Sec. C in the Supplemental
Material [38]).

The Goldstone modes at the corners of the Brillouin zone
K and K ′ exhibit a high concentration of spectral weight
[Fig. 3(c)]. This agrees with previous numerical and exper-
imental findings [20,21,78]. Due to finite-size effects, the
magnon modes develop a gap. The corresponding gap deter-
mined at K for the quasiparticle ansatz has been taken as a
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(a) (b) (c)

FIG. 4. Spectral function in the candidate QSL phase at J2
J1

= 0.125 along the same momentum cuts as in Fig. 3 obtained on a cylinder
geometry with Ly = 6 and Lx = 51. The dot-dashed line denotes the corresponding lowest-energy mode from the quasiparticle ansatz. We used
bond dimension χ = 2000 for these simulations.

reference offset when plotting the analytic linear spin-wave
results in Fig. 3.

Stripe-Ordered Phase.—For J2
J1
� 0.15, we obtain a stripe-

ordered phase. The DMRG algorithm applied here for the
ground-state optimization chooses a certain symmetry-broken
state as the ground state. As a result, the static structure
factor displays a peak at M ′, but not at M. In accordance
with analytical expectations, we observe a gapless Goldstone
mode at M ′. Plots of the spectral function for J2

J1
= 0.55 deep

in the symmetry-broken phase are provided in Sec. D in the
Supplemental Material [38]. We observe clear magnon modes
in good agreement with the predictions from linear spin-wave
theory.

From pure LSWT, however, we expect accidental zero
modes at the edge centers of the Brillouin zone where no
Goldstone mode resides. In contrast, our results suggest a
clear finite gap that exceeds the finite-size gap of the system
(cf. Sec. D in the Supplemental Material [38] for details). This
is in line with the established understanding that quantum
fluctuations in the Heisenberg model gap out the accidental
zero modes [34,35,79].

Candidate QSL Phase.—While the existence of a QSL
phase around the classical phase transition point J2

J1
= 0.125

is rather well-established, the precise nature of this phase is
highly debated so far, reaching from gapped Z2 spin liquids to
gapless U (1) Dirac spin liquids (DSL) or chiral spin liquids
[17,20,26]. Note that the J1-J2 triangular Heisenberg model on
an even cylinder comprises two different topological sectors in
the candidate QSL phase [16,26]. The sector of the isotropic
ground state can be reached by adiabatically inserting a flux
θ = 2π [19] (cf. Sec. A in the Supplemental Material [38] for
further details). We focus on this sector for our simulations
and all subsequent results.

Figure 4 shows the dynamical structure factor for J2
J1

=
0.125. We observe a softening of the minima at the M points
compared to the ordered phase, which can be attributed to the
existence of spinon bilinears at the centers of the edges [69] in
a U (1) DSL. Apart from this, the continuum is shifted down-
wards with varying strength between M ′ and M, diminishing
the distance in energy between the lowest-energy mode and
the onset of the continuum. This is in accordance with varia-
tional Monte Carlo data that suggests a vanishing separation
of the continuum from lowest-energy excitations in the QSL
phase [20]. Even though we expect the bilinear excitations to
become gapless in the two-dimensional limit (i.e., Ly → ∞),
we observe a clear gap in the spectral function. This can be

related to the geometry of the Ly = 6 cylinder: The accessible
momenta do not include the spinon Dirac cones at ±Q =
±( π

2 , π

2
√

3
) [80] (see Sec. G in the Supplemental Material

[38]), which gaps out the corresponding spectral function. The
spectral maximum at B survives across the transition from
the ordered phase to the QSL phase [Fig. 4(a)] as well as
the feature of the lowest mode with almost vanishing weight
being repelled from the continuum at intermediate energies
[Fig. 4(a)]—although the spectral function shows different
distinct modes below the more pronounced continuum.

Perhaps the most striking aspect, however, is the structure
of the excitations at the K points. As for the Goldstone mode
in the symmetry-broken phase, there is a minimum in the
candidate QSL phase, albeit with a flatter dispersion and a rich
structure of the distribution of the spectral weight above the
minimum in contrast to the 120◦ phase. The locations of the
minima at K and K ′ and related points are in accordance with
the field-theoretical predictions by Song et al. [69,70]: They
report the occurrence of triplet monopole excitations at the
corners of the Brillouin zone for a U (1) DSL on a triangular
lattice. The comparison of Fig. 4(b) with variational Monte
Carlo data for a DSL ansatz [20,81] supports this conjecture.
At the transition to the ordered phase for smaller J2 coupling,
the monopole operators whose quantum numbers correspond
to the K points condense [69,82], thus building up the familiar
three-sublattice order. The comparison of the static structure
factor sustains this theory: Although in the QSL phase at
J2
J1

= 0.125, χ (k) still exhibits maxima in the intensity around
the K points of the Brillouin zone (Fig. 2), the structure factor
obtained from DMRG simulations has a much broader and
more diffuse structure than in the ordered phase at J2 = 0,
which compares well with the analytic result for a U (1) DSL
[Fig. 2(d)], suggesting qualitative agreement notwithstanding
the finite-cylinder effects.

Conclusions.—We have studied the dynamical properties
of ordered and candidate spin-liquid phases in the triangular
lattice. We find excellent agreement between the time evo-
lution and the quasiparticle ansatz. In the ordered phase, we
observe the avoided decay of the lowest magnon branch previ-
ously shown to occur in an anisotropic Heisenberg model [67].
In the candidate QSL phase, our numerical MPS results for the
Heisenberg model on a cylinder show good agreement with
the results obtained from variational Monte Carlo simulations
[20], where the gapless U (1) Dirac spin-liquid nature of the
ground state is assumed. Given that the method we apply does
not depend on any previous knowledge or assumptions on the
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wave function of the ground state, this validates the variational
U (1) DSL approach.

In closing, we would like to make the following observa-
tion. While the responses of the two phases can be visually
quite distinct, see, e.g., the broad features in the QSL in Fig. 2,
the differences are perhaps overall less striking than one
might have hoped for. Indeed, inspecting Figs. 3 and 4 yields
copious similarities between the two dynamical structure
factors. This underlines the challenge inherent in discrimi-
nating proximate phases whose universal low-energy physics
may be fundamentally distinct, but which may nonetheless
harbor similar finite-time and short-distance correlations. Of
course, if a reliably determined microscopic Hamiltonian for
a material under consideration is available, our microscopic
approach can be used for a direct quantitative validation of the
correspondence between experimental results and theoretical
interpretation. Absent this, it may very well be possible to
account for salient finite-time and short-distance correlations
from different starting points. That this should be the case
of course is what makes the universal response so special by
contrast; but in practice, this can pose a formidable challenge
in the interpretation of experimental data.

Note added.—While finalizing the current draft, we be-
came aware of a similar work about the spectral function of
different phases on the TLHAF [83].
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