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Total angular momentum conservation in ab initio Born-Oppenheimer molecular dynamics
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We prove both analytically and numerically that the total angular momentum of a molecular system undergo-
ing adiabatic Born-Oppenheimer dynamics is conserved only when pseudomagnetic Berry forces are taken into
account. This finding sheds light on the nature of Berry forces for molecular systems with spin-orbit coupling
and highlights how ab initio Born-Oppenheimer molecular dynamics simulations can successfully capture the
entanglement of spin and nuclear degrees of freedom as modulated by electronic interactions in the adiabatic
limit.

DOI: 10.1103/PhysRevB.108.L220304

Introduction. Born-Oppenheimer (BO) theory [1,2] lies at
the heart of two of the central problems in chemical physics—
electronic structure theory and molecular dynamics. Under the
Born-Oppenheimer theory, the total molecular wave function
is separated into two components according to a mass dif-
ference: For the lighter electrons, one solves the electronic
structure problems at different fixed nuclear geometries; for
the slower nuclei, we simulate motion on a single (or some-
times on many coupled) electronic potential energy surface(s).
As is well known by now [3,4], such a separation can lead to
a nontrivial geometric phase and in general a gauge potential
in the BO Hamiltonian [5].

Many intriguing phenomena have emerged from such a
gauge structure. From the phase of an electronic eigenfunc-
tion transported around a conical intersection singularity, it is
known [6–9] that a nuclear wave function will experience a
sign change during cyclic motion. This molecular geometric
phase effect is a topological effect and has been observed in
various experiments [10,11].

Pseudoelectromagnetic fields also arise from the gauge
structure in Born-Oppenheimer theory, leading to nontriv-
ial interactions with the nuclear degrees of freedom (DOF)
[12–15]. For the most part, the pseudoelectric contribution
(i.e., the diagonal Born-Oppenheimer correction) is thought
to be of less importance than the pseudomagnetic (i.e., Berry
force) contribution [16]. Recently, experimental and theoreti-
cal developments in the solid state have suggested that such
pseudomagnetic fields may lead to the phonon Hall effect
[17–20] and the phonon contribution in the Einstein–de Haas
effect [21]. In particular, the suggestion has been made that,
in the presence of the pseudomagnetic gauge field, phonon
modes can carry a nonzero angular momentum [22,23].

Although the notion of a chiral phonon carrying angular
momentum induced by interactions with electronic and spin
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degrees of freedom is becoming an active area of research
nowadays [24,25], molecular analogs of such physics are not
as well known and the relationship between the pseudomag-
netic gauge field and nuclear angular momentum has not been
fully explored [26–28]. The most important contributions so
far have come from Li and co-workers, who used an exact fac-
torization approach [29] to study angular momentum transfer
between electrons and nuclei [30].

To understand the problem in detail, let us decompose the
total angular momentum into its nuclear, electronic orbital,
and electronic spin components (ignoring nuclear spin),

Jtot = Jnuc + Jorb + Jspin. (1)

Due to the isotropy of space, the total angular momentum Jtot

must be conserved. However, neither Jnuc nor Jele or Jspin is a
good quantum number; in principle, angular momentum can
transfer between spins, electrons, and nuclei in the presence
of spin-electronic-rovibrational couplings. The magnitudes of
the fluctuations of these observable quantities is of interest,
especially insofar as the possibility that spin polarization may
emerge from nuclear motion, which is one possible explanan-
tion for the chirality-induced spin selectivity (CISS) effect
[31–34].

With this background in mind, in what follows, we con-
sider a radical molecular system with spin-orbit coupling
(SOC). After reviewing the necessary equations of motion for
propagating classical Born-Oppenheimer molecular dynamics
(BOMD) with a pseudomagnetic gauge field, we analyti-
cally calculate the change in angular momentum. Note that,
for a system with an odd number of electrons, electronic
eigenstates arise in Kramers degenerate pairs according to
time-reversal symmetry if we solve for the exact electronic
eigenstates. We will assume that all dynamics follow one state
in the Kramers degenerate set (which is equivalent to ignor-
ing the off-diagonal component of the Berry curvature); this
assumption represents an uncontrolled approximation, and
yet running Hartree-Fock (HF) or density functional theory
(DFT) Born-Oppenheimer dynamics is fairly standard nowa-
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days, even in the case of a system with an odd number of
electrons, given the cost of electronic structure calculations
[35–46]. Within this Born-Oppenheimer assumption, we show
that (unlike the linear momentum) the total angular momen-
tum is conserved only if we include the pseudomagnetic gauge
field that allows for angular momentum exchange between
individual components. As a proof of concept, we perform
real-time ab initio simulations for methoxy radical isomer-
ization, an open-shell molecular system with SOC, and we
identify the magnitudes of the relevant fluctuations in each
individual component. We demonstrate that if we seek an ab
initio framework for modeling spin dynamics in disordered
environments, pseudomagnetic fields must be included within
molecular dynamics simulations.

Born-Oppenheimer molecular dynamics. For a general
molecular Hamiltonian Ĥ = T̂n + Ĥel with spin-orbit cou-
pling and electronic Hamiltonian

Ĥel = T̂e + V̂ee + V̂en + V̂nn + V̂SO, (2)

the total molecular wave function can be expressed as a sum of
nuclear wave packets multiplied by adiabatic electronic basis
functions

�(R, r, s) =
∑

j

χ j (R)� j (r, s; R), (3)

or for short

〈r, s|�(R)〉 =
∑

j

χ j (R)〈r, s|� j (R)〉. (4)

Here, the adiabatic electronic wave functions {� j (r, s; R)} are
functions of electronic position and spin; they are constructed
as solutions to the time-independent electronic Schrödinger
equation at fixed nuclear coordinate R:

Ĥel(R)|� j (R)〉 = Ej (R)|� j (R)〉. (5)

According to the Schrödinger equation, the nuclear wave
packets are propagated as

ih̄
∂

∂t
|χ j〉 =

∑
k

HBO
jk |χk〉 (6)

with the Born-Oppenheimer Hamiltonian,

ĤBO
jk =

∑
l

(P̂δ jl − A jl ) · (P̂δlk − Alk )

2M
+ Ejδ jk . (7)

Here, j, k label electronic eigenstates, P̂ = −ih̄∇ is the nu-
clear momentum operator, and A jk = ih̄〈� j |∇|�k〉 defines
the Mead-Berry gauge potential. We will ignore the Born-
Huang correction term here since these terms are usually small
∼h̄2 and do not contribute directly to the angular momentum.

Unfortunately, propagating coupled nuclear-electronic dy-
namics exactly is not possible for more than a few nuclear
DOF in practice because of the computational demands.
Approximations must be made [47–49]. One common approx-
imation is to treat the nuclear DOF classically and keep the
electronic DOF quantum mechanical which leads to a class of
so-called “mixed-quantum-classical” methods [50,51] (e.g.,
the mean-field Ehrenfest [52,53] and fewest switches surface
hopping algorithms [54–56]). An even simpler approach (that

we will take in this Letter) is to make the adiabatic approxi-
mation that the nuclei move slowly so that the system will stay
on a single electronic eigenstate. In such a case, the effective
Hamiltonian governing the system evolution simplifies to

ĤBO
j = (P̂ − A j j )2

2M
+ Ej . (8)

If we define the nuclear kinetic momentum operator by π̂ =
P̂ − A j j , note that one can derive the commutation relation,

[π̂ Iα, π̂ Jβ] = ih̄

IαJβ
j j , (9)

where the gauge-invariant Berry curvature tensor is defined as



IαJβ
j j = (∇IαAJβ

j j − ∇JβAIα
j j

)
. (10)

Here, the index Iα represents the Cartesian coordinate α =
x, y, z of the Ith atom. For adiabatic BO dynamics, a simple
application of the Heisenberg equations of motion yields the
following:

dR̂Iα

dt
= i

h̄

[
ĤBO

j , R̂Iα
] = π̂ Iα

MI
, (11)

dπ̂ Iα

dt
= i

h̄

[
ĤBO

j , π̂ Iα
]

= −∇IαEj + 1

2

∑
J,β

(



IαJβ
j j

π̂ Jβ

MJ
+ π̂ Jβ

MJ



IαJβ
j j

)
. (12)

According to Eq. (12), the force on a nuclear wave packet
undergoing adiabatic motion can be separated into two parts:
The first term is the usual BO force and the second term is the
pseudomagnetic Berry force. At this point, if we also make the
quantum-classical approximation, i.e., we replace all nuclear
operators by their classical variables, it is straightforward to
propagate molecular dynamics on a single BO energy surface
provided we can compute the pseudomagnetic Berry force,

F Iα
Berry =

∑
J,β



IαJβ
j j

π Jβ

MJ
. (13)

Before focusing on the question of angular momentum
conservation within this BO framework, however, several
computational and theoretical details must be addressed.

First, Eqs. (11) and (12) are valid only in the adiabatic
limit—which usually requires that BO energy surface Ej

be well separated from all other surfaces (according to the
Hellman-Feynman theorem). For the dynamics below, how-
ever, we will work in a regime where the nonadiabaticity is
not overwhelming so that the adiabatic approximation is not
terrible (see below).

Second, we have not yet discussed the key issues of
electronic degeneracy or electronic structure, which are
paramount when discussing Berry curvature for molecules.
For a molecule with an odd number of electrons, Kramers’
theorem ensures the double degeneracy of all the electronic
eigenstates over the entire nuclear configuration space. Even
for a single eigenenergy, Eqs. (8)–(12) are not enough, and
instead a non-Abelian SU(2) gauge theory must be considered
[57,58],

HBO
j,μν =

∑
η

(Pδμη − A jμ jη ) · (Pδην − A jη jν )

2M
+ Ej . (14)
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Here, the twofold degenerate eigenstates corresponding to the
jth eigenenergy are indexed by μ and ν. The Hamiltonian
described in Eq. (14) is gauge covariant, i.e., the nuclear
dynamics are independent of the choice of gauge of electronic
eigenstates. Now, generating electronic states in the case of
degeneracy is difficult. For almost all ab initio dynamics
calculations, one approximates the electronic eigenstate by a
single Slater determinant (e.g., HF or DFT) as a compromise
between accuracy and computation time. Below, we too model
dynamics with a generalized Hartree-Fock (GHF) [59] (effec-
tively a noncollinear DFT [60,61]) ansatz, where we include
SOC. Of course, once the electronic structure packages gener-
ate one solution |μ〉, we can also construct the corresponding
time-reversed state |ν〉 = T̂ |μ〉 (for time-reversible operator
T̂ ). In principle, one might imagine that these two states them-
selves are not unique, as one can always rotate together any
two degenerate solutions and find another solution. That being
said, the linear combination of any two such states will no
longer be a single Slater determinant; thus if one propagates
along a GHF+SOC solution, the electronic structure method
effectively chooses a gauge frame for the user. Moreover, in
the Supplemental Material (SM) [62], we show that, if we
propagate the electronic wave function in the basis {|μ〉, |ν〉},
more than 98% of the resulting population still resides on state
|μ〉 after 120 fs and the fluctuations are weak. This empirical
fact lends additional credence to our choice of running dynam-
ics on one GHF state of a Kramer’s pair (as mentioned above).
We will show below (both analytically and computationally)
that when we run dynamics along state |μ〉, the total angular
momentum is conserved if we include the pseudomagnetic
Berry force.

Analytical treatment of angular momentum conservation.
Within a BO representation for classical nuclei, the total linear
momentum and angular momentum of a molecular system
(moving along a single BO surface Ej with electronic eigen-
basis |� j〉) are given by the sum of the classical and quantum
expectation values:

Ptot = πn + 〈� j (R(t ))|P̂e|� j (R(t ))〉, (15)

Jtot = Rn × πn + 〈� j (R(t ))|Ĵe|� j (R(t ))〉. (16)

In Eq. (15), we have written πn = MṘn to represent the ki-
netic (as opposed to canonical) momentum of the nuclear
DOF.

Now, BO theory requires wave-function gauge conventions
[63], and for any electronic wave function, the most mean-
ingful choice of gauge consistent with semiclassical theory
satisfy translational and rotational invariance:

(P̂e + P̂n)|� j (R(t ))〉 = 0, (17)

(Ĵn + Ĵe )|� j (R(t ))〉 = 0, (18)

where Ĵe = Ĵorb + Ĵspin. Below, we will use Eqs. (17) and (18)
to analyze momentum conservation, but in Sec. II of the SM
[62], we will show that the same result can be obtained for any
choice of smooth gauge.

From Eqs. (15) and (17), we can express the total linear
momentum as

∑
I

dPIα
tot

dt
=

∑
I

(
dπ Iα

n

dt
− d〈� j |P̂Iα

n |� j〉
dt

)
(19)

=
∑

I

dπ Iα
n

dt
+ dAIα

j j

dt
(20)

=
∑

I

dπ Iα
n

dt
+ 2

h̄

∑
I,J,k,β

ṘJβ
n Im

(
AIα

jk AJβ

k j

)
. (21)

A similar expression can be derived for the total angular
momentum using Eqs. (18) and (16):

∑
I

dJIα
tot

dt
=

∑
I

(
dJIα

n

dt
− d〈� j |Ĵ Iα

n |� j〉
dt

)

=
∑

I

dJIα
n

dt
−

∑
I,β,γ �=α

εαβγ RIβ
n

d〈� j |P̂Iγ
n |� j〉

dt

=
∑

I

dJIα
n

dt
+ 2

h̄

∑
I,J,k,δ,
β,γ �=α

εαβγ RIβ
n ṘJδ

n Im
(
AIγ

jk AJδ
k j

)
.

(22)

We can now easily demonstrate that the total linear and
angular momentum will be conserved for BO trajectories if
and only if we use classical equations of motion that include
the Berry force [and are consistent with Eqs. (11) and (12)]:

dRn

dt
= πn

M
, (23)

dπn

dt
= −∇E + FBerry. (24)

Consider first the case of linear momentum: The right-hand
side of Eq. (21) obviously vanishes if we plug in Eq. (24).
At the same time, note that, in practice, we usually in-
clude electronic translation factors (ETFs) within electronic
structure calculations [64–67] so that

∑
I AIα

k j = 0. Moreover,∑
I ṖIα

n = 0 whenever the BO forces in Eq. (24) arise from
a Hamiltonian with translational invariance (as follows from
Noether’s theorem). Thus, there are effectively two ways to
conserve linear momentum within a BO calculation: Either
(i) one can properly calculate the Berry curvature dressed
with ETFs, or (ii) one can work in a quick and dirty fashion,
ignoring Berry curvature and equating canonical and kinetic
momentum. In both cases, one will conclude that linear mo-
mentum is conserved.

Second, consider the case of angular momentum. Using
Eqs. (23), (24), and the definition of Jn in Eq. (16), it follows
that J̇n = Rn × FBerry and therefore the right-hand side of
Eq. (22) also clearly vanishes. Note that, unlike the case of
linear momentum, angular momentum conservation can be
achieved if and only if we include the Berry force in Eq. (24):
The nuclear, electronic orbital, and electronic spin exchange
angular momenta back and forth in a very complicated fashion
that cannot be decomposed trivially as in the case of linear
momentum.
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FIG. 1. A schematic figure of the methoxy radical isomerization
reaction. The methoxy radical is initialized at TS1 with velocity V 0

along the GHF-SOC solution with the majority spin down in the x
direction (as illustrated by the blue box above TS1). The direction of
V 0 corresponds to the eigenvector with an imaginary eigenvalue of
Hessian at TS1 and the initial kinetic energy is 0.006 kcal/mol. This
system is known to have a bifurcation (VRI point) in the reaction
pathway and two reaction channels P1 and P2 are possible.

Computational treatment of angular momentum conserva-
tion: Methoxy radical isomerization. As an example of the
theory above, we have propagated BOMD on one of the
ground doublet states of a methoxy radical. The potential
energy surface is computed by GHF+SOC method with the
6-31G(d,p) basis set and we have included the one-electron
Breit-Pauli form of the spin-orbit interaction. Details of the
nuclear Berry force computation are given in SM [62]. The
electronic structure was implemented in a local branch of
Q-CHEM 6.0 [68]. The methoxy radical isomerization is in-
teresting because of the presence of a valley-ridge inflection
(VRI) point: The isomerization goes through one transition
state (so-called TS1) and thereupon the reaction path bifur-
cates and allows for two different product wells (P1 and
P2) [69]. For the post-transition state bifurcation simula-
tions below, all methoxy radical dynamics were initiated at
the transition state 1 (TS1) as computed via an unrestricted
Hartree-Fock (UHF) calculation [70]. The trajectory was
propagated with a step size of 2.5 a.u. (0.06 fs). The initial
geometry and velocity are shown in Fig. 1. All dynamics are
run along a single, smoothly varying GHF+SOC state (and
there are, of course, two such states).

In Fig. 2, we plot the total angular momentum change as
a function of time relative to time zero, 〈�Jα〉 = 〈Jα (t )〉 −
〈Jα (0)〉. We plot the individual nuclear, electronic, and spin
components as calculated with (left-hand side) and with-
out Berry force (right-hand side) as a function of time. As
illustrated by Figs. 2(a), 2(c), and 2(e), the total angular mo-
mentum is conserved when including the Berry force. The
change in nuclear angular momentum is nearly equal and
opposite to the change in the spin angular momentum, while
the electron orbital contribution is negligible. (For another tra-
jectory, with non-negligible electronic orbital contributions,
see Sec. VI of the SM [62].) In Figs. 2(b), 2(d), and 2(f),
the results without Berry force show that the spin angular
momentum changes are the same order of magnitude as in the
case with Berry force, but the nuclear component is close to 0,
so that there clearly is a violation of total angular momentum
conservation.

FIG. 2. The change in the real-time angular momentum
〈�Jα (t )〉 = 〈Jα (t )〉 − 〈Jα (0)〉 (relative to time zero) according to a
BOMD trajectory of methoxy radical isomerization reaction with
Berry force and without Berry force. For values at time zero, Jx

spin =
−0.49h̄, Jy

spin = 0.00, Jz
spin = 0.10h̄, and Jnuc = Jorb = 0. (a), (c), and

(e) correspond to the Cartesian coordinates x, y, and z shown in
Fig. 1 [and the same for (b), (d), and (f)]. In (a), (c), and (e), with
Berry force, the nuclei and spin transfer angular momentum among
themselves, resulting in a conservation of total angular momentum.
By contrast, without Berry force [as shown in (b), (d), and (f)], the
total angular momentum is not conserved.

According to Figs. 2(a), 2(c), and 2(e), and Figs. 2(b),
2(d), and 2(f), when we include a Berry force, there is a clear
transfer of angular momentum between electrons and spin and
nuclei within the BO representation, while the total angular
momentum is conserved. That being said, by comparing dy-
namics with and without Berry force, one does notice that the
changes in spin angular momentum are small between the two
calculations. In other words, there does not seem to be a large
feedback mechanism; changing the nuclear dynamics by in-
troducing a Berry force does not seem to induce large changes
in spin for this particular set of dynamics. Whether these
conclusions will hold more generally, however, is a very open
question. For the present simulations, the spin-orbit coupling
is small (<10−4 a.u.), we do not allow for nonadiabatic transi-
tions, and there are few nuclear degrees of freedom. Previous
work suggests that with more reaction channels available, the
presence of many electronic states with the possibilities of
conical intersections [71], and larger spin-orbit coupling, the
feedback between nuclear and spin dynamics may well be
larger. For this reason, the Berry force has recently attracted
attention as a possible factor in CISS experiments.

In conclusion, we have used ab initio BOMD to illustrate
that conserving total angular momentum requires including
the pseudomagnetic Berry force. For a trajectory simulating
methoxy radical isomerization, under the assumption that we
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move along a single state of a Kramers doublet pair, includ-
ing Berry force maintains angular momentum conservation,
whereas without Berry force, the total angular momentum
fluctuates.

The present results (for a system with an odd number
of electrons) are relevant for systems with an even number
of electrons as well. In such a case, indeed the true elec-
tronic ground state wave function must be real valued due
to time-reversal symmetry [72], and hence the on-diagonal
Berry curvature must be zero. However, approximate elec-
tronic structure methods such as GHF or noncollinear DFT
with spin-orbit coupling often break time-reversal symme-
try and yield complex-valued electronic states with nonzero
Berry curvatures [73,74]; and recent work has demonstrated
that, for such cases, the nonzero Berry curvature (as calculated
by an approximate mean-field Schrödinger equation) can be
meaningful [75]. In particular, in Ref. [75], we showed scat-
tering results for which semiclassical calculations using an
inexact mean-field electronic structure treatment plus a Berry
force yielded better results than a calculation using an exact
electronic structure treatment without a Berry force. Thus, in

general, simulations of coupled spin-nuclear dynamics (with
even or odd numbers of electrons) must include angular mo-
mentum correctly if one seeks either to model spin-lattice
relaxation [76,77] or to design and control spin-dependent
chemical reactions with spin DOF [78].

Looking forward, new, rigorous quantum and semiclassi-
cal nonadiabatic frameworks will be crucial as far as going
beyond the single-state approximation presented here and al-
lowing us to disentangle how angular momentum is spread
across multiple nuclear degrees of freedom and multiple elec-
tronic states (rather than just requiring that all motion occur
along a single electronic state as we enforced here) [79,80].
Moreover, the effect of a Berry force may extend far beyond
angular momentum conservation and have an impact on mod-
eling chirality-induced spin separation [81] and avian bird
magnetic field reception [82]. This field of entangled dynam-
ics remains an exciting area of research at the intersection
of spintronics, magnetochemistry, molecular dynamics, and
light-matter physics for future development.
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