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Robust topological edge states induced by latent mirror symmetry
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In recent years, topology has offered an elegant degree of freedom (DOF) for light and sound manipulation.
There exists persistent effort to explore the origin of topological phases based on symmetry, while it becomes
rather challenging in complex networks or multiple DOF systems where geometric symmetries are not apparent.
Here, we demonstrate a linear degeneracy induced by latent mirror symmetry in a zigzag granular chain whose
DOF is three times larger than its bead number. An isospectral reduction approach and graphical representation
are developed to track the topological origin of the degeneracy. We show how the latent mirror symmetry leads
to the degeneracy and how it is manifested in a properly chosen eigenmode space. Moreover, we reveal the
existence of topological edge states and their robustness against different disorders when the degeneracy is
gapped. Our study takes a pivotal step toward exploiting topological waves in complex networks or disordered
systems, opening up the perspective of offering new flexibilities for classical wave tailoring.
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Topology characterized by an integer called topological
invariant is a global feature of an object that cannot be
changed continuously. This property, offering the intrinsic ro-
bustness of the object against deformations [1,2], soon attracts
tremendous attention in modern physics [3–6]. It is found
that the band structure of materials/metamaterials can exhibit
nontrivial topological phases, allowing for various intriguing
transports of topological insulators (TIs) in different wave
systems [7–14]. Ruled by the symmetry-related topological
invariant, the hallmark of TIs is topological wave propagation
on the boundaries that is robust against disorders and defects
[15,16]. Examples include time-reversal broken structures ex-
hibiting the quantum Hall effect [17], Z2 topological structures
with spin/pseudospin displaying the quantum spin Hall effect
[18], and Hexagonal lattices supporting quantum valley-Hall
effect [19]. Moreover, higher-order TIs also have been suc-
cessfully demonstrated in 2D and 3D topological systems
that support 0D corner states [20–24]. In addition, numerous
studies have been carried out to investigate the topological
characteristics in non-Hermitian [25], nonlinear [26], and
non-Abelian systems [27]. These recent developments of TIs
lead to potential applications in quantum electronics, photon-
ics, acoustics, mechanics, quantum computing, and sensing
[28–31].

Since the robustness features arising from the band topol-
ogy usually are linked to symmetry, it is at the heart of
TIs to seek the topological origin through symmetry analysis
[32,33]. It has been shown that topological phases of matter
can be classified into different categories using time-reversal,
particle-hole, and chiral symmetry [34,35]. In addition, ge-
ometrical symmetries such as the molecular point group in
chemistry [36] or the space group in crystallography [37]
have also been shown to exhibit intriguing topological con-
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sequences. For instance, the topological crystalline insulators
are the counterpart of TIs that have metallic surface states
with band degeneracy on high symmetry crystal surfaces [38].
However, in aperiodic/noncrystalline systems or structures
with many DOFs, to identify the topological origin be-
comes challenging. Such systems usually have no physically
meaningful symmetry group, but accidental degeneracies of
eigenenergies somehow happen to coincide at some locations
in the parameter space [39], allowing for nontrivial topolog-
ical phases. Examples can be found in complex networks
[40] and amorphous systems [41,42], in both of which cases
topological waves are observed even though the protection
mechanism is unclear.

Recently, latent symmetry has been revealed to be an in-
teresting local property in graph theory [43]. The so-called
latent symmetry is a generalization of network (graph) sym-
metry that is defined in a reduced version of the network.
Interestingly, latent symmetry has been shown to have the
abilities to induce band degeneracy in complex physical sys-
tems [44,45]. In this Letter, we report the topology outcome
of a linear degeneracy induced by a latent mirror symmetry
in a zigzag granular chain (ZGC). We introduce an isospec-
tral reduction approach to unearth the hidden symmetry after
a suitable dimensional reduction of the system Hamiltonian
while preserving the eigenspectra. This approach allows us to
characterize the hidden topological invariant in the reduced
subspace. Finally, we show the existence of novel topologi-
cal edge states induced by the latent mirror symmetry when
the degeneracy is gapped. The robustness of said edge states
against different disorders is demonstrated.

The ZGC is shown in Fig. 1(a) where elastic beads in
contact are placed in a zigzag arrangement (the relative angle
between the direction passing through the centers of two ad-
jacent beads to the x axis is π/6). We consider out-of-plane
motion, that is, each bead in the ZGC has three DOFs in-
cluding one displacement u along the z-axis and two rotations
�,� along x and y axes [orange dashed box in Fig. 1(a)],
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FIG. 1. Schematic presentation of the zigzag granular chain and its band structures. (a) A unit cell marked by a green dashed box contains
two sublattice beads A and B. Each bead has two rotational DOFs along the x and y axes, respectively, and one translational DOF along the
z axis. The interactions between beads are characterized by effective springs with shear Ks, bending Kb, and torsional Kt rigidities. (b) and
(c) show the bulk band structures with dashed lines representing He modes and solid lines corresponding to Ho modes. (b) ξb = Kb/Ks = 0.1
and ξt = Kt/Ks = 0.328. The latent symmetry induced linear degeneracies appear at ±qD. (c) For ξb = 0.1 and ξt = 0.2, the degeneracy is
gapped.

and there are shear, bending, and torsional interactions be-
tween neighboring beads. A unit cell with two sublattices A, B
and six DOFs in total is shown in Fig. 1(a) (green dashed
box). The wave dynamics in the ZGC can be theoretically an-
alyzed [18,46], and be further decoupled into two subsystems
due to sublattice symmetry [see the Supplemental Material
(SM)[47]],

�2

(
U e

Uo

)
=

(He 0
0 Ho

)(
U e

Uo

)
, (1)

where U j = [u j ; � j ; � j] = (UA − s jUB)/
√

2 with the sub-
script j = {e, o}, the sign factor se/o = ∓. UA/B is the vector
containing the three DOFs of bead A/B. � is a normalized
frequency. The Hamiltonian of each subsystem reads

H j (q, ξb, ξt ) =

⎛
⎜⎝

f j a j ib j

a j g j ic j

−ib j −ic j h j

⎞
⎟⎠. (2)

Above, ξb,t = Kb,t

Ks
is the normalized bending/torsional rigidity,

and q ∈ [−π, π ] is the normalized wave vector. The expres-
sion of matrix elements can be found in the SM. The band
structures for ξb = 0.1, ξt = 0.328, and ξb = 0.1, ξt = 0.2 are
shown in Figs. 1(b) and 1(c), respectively. One can see that in
both (b) and (c), three linear degeneracies of the same origin
(overlapping of the He modes with the Ho ones) appear at
q = ±π . However in Fig. 1(b), there exists a different type of
linear degeneracy only for the Ho modes at ±qD. As discussed
in the following, this degeneracy is protected by a latent mirror
symmetry that can give rise to novel topological states with
robustness against disorders.

The latent symmetry in the ZGC, reflecting the local prop-
erties of its eigenmodes around ±qD, is usually hidden in the
Hamiltonian H j . We begin with the graphical representation
of H j depicted in Fig. 2(a). Three pure modes u j,� j, � j

in the subspace U j are highlighted by circles with different
colors, and their interactions are marked by lines with arrows
denoting the coupling directions. The graph symmetry (if any)
corresponds to the Hamiltonian’s symmetry that can be ana-
lyzed in its graphical representation. Though it is difficult to

identify symmetry in Fig. 2(a), this becomes possible by im-
porting an isospectral reduction (IR) approach which reduces
the dimension of H j but preserves the eigenvalue spectrum
[44,45],

RS j = HS j S j − HS j S̄ j

(
HS̄ j S̄ j

− �2I
)−1HS̄ j S j

. (3)

S j is a set of modes in U j , and S̄ j its complementary set.
HS j S j and HS̄ j S̄ j

denote the respective Hamiltonians of the
subsystems consisting modes only in S j or S̄ j . HS j S̄ j

and HS̄ j S j

represent the couplings between the two subsystems. Thus,
RS j can be regarded as an effective Hamiltonian gained from
a subsystem partitioning of H j . If there exists a symmetry �

over S j satisfying [RS j , �] = 0 for all �, then the original
Hamiltonian H j has latent symmetry on S j . For instance, by
choosing S j = {� j, � j} and S̄ j = {u j}, we have

RS j = mjσ0 + mj

(
ρ j

m j
σy + δ j

m j
σz

)
, (4)

whereby mj = g j+h j

2 − a2
j +b2

j

2( f j−�2 ) , ρ j = a j b j

f j−�2 − c j , and δ j =
g j−h j

2 − a2
j −b2

j

2( f j−�2 ) . σ0 is a 2×2 identity matrix, and σx,y,z are
Pauli matrices. The first term in Eq. (4) is trivial and can be
ignored. The second and third terms anticommute with the
chiral symmetry σx. In other words, since RS j − mjσ0 is σx

chiral for all �, its eigenmodes (same as RS j ) must be chiral
as well, then the original eigenmodes in U j must be locally
σx chiral on S j . To have a degeneracy of the chiral mode pair,
additional mirror symmetry is required. According to Eq. (4)
and its graph in Fig. 2(b), a mirror line vertically placed in the
middle of � j and � j appears when ρ j = δ j = 0. By setting
ξb = 0.1, ξt = 0.328, we show the changes of � as functions
of q for ρo = 0 (cyan line), and δo = 0 (magenta line) in
Fig. 2(c), respectively. The curves for ρe = 0 and δe = 0 do
not intersect, see the SM. Unsurprisingly, the intersection of
the two lines overlaps perfectly with the degenerate points
(gray lines) at �D as expected, conforming our prediction.

It should point out that the local properties of the eigen-
modes in the ZGC might be manifested directly in the
isomorphic matrix graph of H j , but this requires the trans-
formation of mode basis that is usually hard to achieve. In our
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FIG. 2. Graphical representations for H j , RS j , and H′
j . The colored circles represent different pure modes in the corresponding eigenmode

space. Arrowed lines stand for the couplings between modes, and loops starting and ending at the same circles mark the on-site potentials.
(a) Graph of H j . (b) σx chiral is visualized and a mirror placed vertically in between the two circles is possible when δ j = ρ j = 0. (c) The lines
of δo = 0 and ρo = 0 cross each other at ±qD where the degeneracies appear (gray lines). (d) A mirror passing vertically through the green
circle exists when Im(Lj ) = 0. This requires ϕ j − ϕ = 0. (e) The curves of ϕo and ϕ for q ∈ [−π, π ] intersect at ±qD.

case, under the basis U ′
j = Y jU j (see the form of Y j in the

SM), the new Hamiltonian reads

H′
j =

⎛
⎜⎜⎝

f j+g j

2 Lj L

L∗
j

f j+g j

2 L
L L hj

⎞
⎟⎟⎠, (5)

where Lj =
√

4a2
j +( f j−g j )2

2 e−i(ϕ j−ϕ), L =
√

b2
j+c2

j

2 with ϕ j =
arctan f j−g j

2a j
and ϕ = 2 arctan b j−c j

b j+c j
(the values of L and ϕ do

not change for j = e or j = o). The corresponding dynamical
graph is shown in Fig. 2(d), where a mirror line passing
vertically through the center of the green circle (pure s j i� j

mode) exhibits as long as Im(Lj ) = 0, that is, the condition
ϕ j − ϕ = 0 is satisfied. Similarly, this condition can be ful-

filled only in the Uo subspace, while it cannot in U e, see the
SM. The changes of ϕo (blue line) and ϕ (red line) as functions
of q are shown in Fig. 2(e), respectively. A good agreement
with the IR analysis is witnessed as the two lines cross each
other when q = ±qD. Thus, we conclude that the mirror line
reflecting the local properties of the Uo modes around ±qD

is the hidden symmetry that becomes evident in the subspace
U ′

o.
The latent-mirror-induced degeneracy can lead to novel

topological edge states on the boundaries of the ZGC when
gapped. By fixing ξb = 0.1, we found that the change of ξt

from larger to smaller values than 0.328 results in the closing
(trivial) and reopening (nontrivial) of a band gap compan-
ioning with the topological phase transition at ξt = 0.328.
Figures 3(a) and 3(b) show the dispersion curves (red dots)

FIG. 3. Eigenfrequency calculations of a ZGC consisting of 200 beads with free boundaries. (a) The setting ξb = 0.1, ξt = 0.2 corresponds
to the topological phase. Red/blue dots label the bulk/edge modes. Cyan area is the band gap. Bulk band structure is also presented by gray
dashed lines. (b) The setting ξb = 0.1, ξt = 0.5 belongs to the trivial phase. No edge states are observed inside the band gap. (c) The winding of
RS j . Red/blue lines correspond to the occupied Se/So bands. The color level from light to dark indicates the value of q varying from [−π, π ].
(d) and (e) show the profiles of the eigenmodes of the edge states in (a).
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of a ZGC consisting of 200 beads with free boundaries for
ξt = 0.2 and ξt = 0.5, respectively. The corresponding band
structures from H j (gray dashed curves) are also displayed in
the background. Though both cases exhibit a bang gap (cyan),
the one in (a) is topologically nontrivial with two topological
edge states (blue dots in the zoomed view) appearing in the
band gap. Regarding RS j as an effective Hamiltonian, it is
possible to characterize the band topology around its “zero
energy” (i.e., �D for H j) since RS j has the symmetry σx

although H j does not. We define the winding of RS j through
the skew polarization [48],

P = 1

2π

∮
dqA(q), A(q) = i

∑
l∈occ

〈σxψl |∂q|ψl〉. (6)

Above, occ denotes the two occupied bands (one from RSe , the
other from RSo). P is quantized in units of 1/2 and it connects
to the winding number by 2P = ν mod 2. Therefore, ν(ξt <

0.328) = 1 and ν(ξt > 0.328) = −1 with a phase transition at
ξt = 0.328 when P switches its sign, see the SM. In fact, the
winding also can be seen from the σy-σz plane in Fig. 3(c)
where the trajectories of ( ρ j

m j
,

δ j

m j
) winding around the ori-

gin counterclockwise (ξt = 0.2) or clockwise (ξt = 0.5) are
displayed. The net winding number, which accounts for the
difference in winding from ξt < 0.328 to ξt > 0.328, can
be defined as �ν = ν(ξt < 0.328) − ν(ξt > 0.328) = 2. The
band topology enforces the bulk-edge correspondence: |�ν|,
which denotes the number of edge states at the end of the
ZGC. The eigenprofiles of the two edge states are presented
in Figs. 3(d) and 3(e). Two important features are observed.
First, the displacements (red markers) and rotations (green
and blue markers) of both sublattices A, B contribute to the
eigenprofiles. Second, the edge states appear on both ends of
the chain, indicating their existence does not depend on the
termination configuration of sublattice type. These features
make the topological edge states very different from those re-
ported in the SSH model, in which only one type of sublattice
contributes to the edge states, and the existence of edge states
relies on a specific sublattice configuration in the end of the
chain [49].

Another intriguing property about the aforementioned
topological edge states is the robustness against different dis-
orders. In Fig. 4(a), we consider the same ZGC configuration
as Fig. 3(a), but now with the beads of random masses that
are uniformly distributed in [(1 − γM )M, (1 + γM )M] where
M is the unperturbed mass in Fig. 3(a). For each γM ∈ [0, 0.2],
we calculate the eigenfrequency spectra over 200 ZGC con-
figurations with disorders, and mark the eigenfrequencies by
dots. Finally, the distribution of eigenmodes in the (�, γM )
space is obtained in Fig. 4(a), where the red/gray areas mark
the regions of the edge/bulk modes. It can be seen that with
up to a 20% variation on the bead mass, we still can obtain
the topological edge states in the ZGC. In Fig. 4(b), we keep

FIG. 4. Robustness verifications of topological edge states under
different disorder settings. (a) Distribution of eigenfrequency for
random mass in [(1 − γM )M, (1 + γM )M] over 200 ZGC configu-
rations for each γM . Gray/red dots mark the positions of bulk/edge
states. (b) Same as (a) but with identical mass in the chain while the
angles of every two beads are randomly distributed in [(1 − γθ )π/6,

(1 + γθ )π/6].

the mass of beads unchanged, now the angle between two
adjacent beads is no longer π/6 but uniformly distributed in
[(1 − γθ )π/6, (1 + γθ )π/6]. Similarly, for each γθ ∈ [0, 0.5],
we calculate the eigenfrequency spectra over 200 ZGC con-
figurations, and the distribution of eigenfrequencies in the
(�, γθ ) space is shown in Fig. 4(b). As expected, the topo-
logical edge states are very robust and persist to appear in the
band gap, even though up to a 50% variation on the angle
between beads is imposed.

In conclusion, we have demonstrated a latent-mirror-
induced degeneracy in a granular chain that can lead to
novel topological edge states when appropriately gapped. An
isospectral reduction approach and graphical representation
have been developed to unveil the existence of the latent
symmetry in the eigenstate subspace. We have exposed the
topological edge states, demonstrating their robustness against
various disorders. We foresee that our study can trigger the
exploration of topological waves in different multiple DOF
systems and disordered settings.

This work is supported by the National Natural Science
Foundation of China (Grant No.12204553).
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