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The topological Kondo effect is a genuine manifestation of the nonlocality of Majorana modes. We investigate
its out-of-equilibrium signatures in a model with a Cooper-pair box hosting four of these topological modes, each
connected to a metallic lead. Through an advanced matrix-product-state approach tailored to study the dynamics
of superconductors, we simulate the relaxation of the Majorana magnetization, which allows us to determine
the related Kondo temperature, and we analyze the onset of electric transport after a quantum quench of a lead
voltage. Our results apply to Majorana Cooper-pair boxes fabricated in double nanowire devices and provide
nonperturbative evidence of the crossover from weak-coupling states to the strongly correlated topological
Kondo regime. The latter dominates at the superconductor charge degeneracy points and displays the expected
universal fractional zero-bias conductance.
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The engineering of Majorana zero-energy modes (MZMs)
in hybrid superconducting-semiconducting devices has been
the core of strenuous theoretical and experimental activities
for the last two decades [1–3]. The detection of these subgap
modes relies primarily on tunneling spectroscopy applied to
a rich variety of platforms, which, however, cannot provide
direct evidence of the most intriguing properties of MZMs,
namely their nonlocal and anyonic features. Hence, it is desir-
able to devise a new generation of experiments that balances
the constraints imposed by the current technological limita-
tions and the pursuit of MZM evidence beyond spectroscopy.

In this respect, the topological Kondo effect (TKE) [4–6]
plays a crucial role: on one side, it is a transport signature
of MZMs well-suited for experimental observations; on the
other, it results from their nonlocality and can hardly be con-
fused with phenomena originating by nontopological subgap
states [7]. The TKE is predicted to emerge in multiterminal
devices where M external leads are coupled to a Majorana
Cooper-pair box hosting four MZMs and characterized by a
charging energy Ec (Fig. 1). The TKE manifests itself as a
universal nonlocal zero-bias conductance dIα/dVβ �=α quan-
tized at values 2e2/Mh. Such conductance is approached at
low temperatures in correspondence of both the Coulomb
valleys and peaks of the related devices [8], as derived from
renormalization group (RG) analyses of effective low-energy
models describing the Majorana Cooper-pair box coupled to
M leads [4–6,8–12].

In this Letter, we address the experimental observability of
the TKE from a more elementary and microscopic perspective
and we examine its onset out of equilibrium. We character-
ize the quantum-quench dynamics of a minimal interacting
fermionic model that includes both MZMs and quasiparticle
excitations above the superconducting gap. The time evolution

is determined by electrons tunneling from the leads to the
superconducting (SC) island, and, differently from previous
TKE studies [4,6,10,13–16], we apply matrix-product-state
(MPS) simulations [17] which do not rely on any perturbative
approximation of this coupling or on a clear energy scale
separation. This technique allows us to examine the crossover
between the predicted weak-coupling and topological Kondo
strong-coupling regimes and estimate the related topological
Kondo temperature TK .

The model we propose provides a minimal description
of Majorana Cooper-pair boxes engineered from nanowires.
Recent developments in the fabrication of parallel InAs
nanowires hybridized with Al [18,19] make these platforms
suitable to combine all the necessary elements to implement
the topological Kondo model. It is therefore important to
investigate its transport signatures as a function of the most
relevant experimental parameters: lead voltages, charge in-
duced on the SC island, and lead-island couplings.

Model and methods. We consider a TKE model composed
by two parallel 1D topological superconductors coupled by
a common floating SC island with charging energy Ec and
charge ng induced by the potential Vg (Fig. 1). It describes
two nanowires with strong spin-orbit coupling subject to a
proximity-induced SC pairing and a suitable Zeeman inter-
action, which provide a common route to engineer MZMs
[20,21]. Their low-energy physics is captured by spinless
fermions subject to an emergent p-wave SC pairing �P. As
a result, four MZMs {γα}α=1,...,4 form at the nanowire edges,
each coupled to a spinless normal lead. The tunneling rates �α

between leads and MZMs can be switched off to change the
number of terminals M � 4 coupled to the system.

The simplest description for each SC nanowire is a zero-
bandwidth model [22–24], where the lowest energy level is
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FIG. 1. Schematics of the system: Two p-wave superconducting
nanowires with MZMs at the edges are coupled by a SC island
(blue) with charging energy Ec. Voltage gates (yellow) tune the
island-induced charge, ng ∝ Vg, and the coupling rates �α with the
leads (orange). Each MZM is coupled with a single normal lead at
chemical potential μα .

the subgap state defined by two Majorana operators, while
the higher energy state represents Bogoliubov quasiparticles
above the SC gap. This corresponds to a 2-site Kitaev chain
for each nanowire, with each of the four constituting fermionic
sites tunnel-coupled to one of the leads. This system de-
fines the SC box sketched in Fig. 1, with Hamiltonian Ĥ =
Ĥsys + ĤL + Ĥt . Ĥsys describes the Majorana Cooper-pair box
[25,26]:

Ĥsys =
∑
σ,n

εn,σ f̂ †
n,σ f̂n,σ + Ec(N̂ − ng)2, (1)

where σ = ↑,↓ labels the upper and lower nanowires and n =
0, 1 the two quasiparticle states in each of them [27]. N̂ is the
total box charge with respect to an arbitrary offset. It includes
both its Cooper pairs and the electrons in the nanowires.

The two zero-energy quasiparticles are generated by
the combinations of MZMs f̂0,↑ = (γ̂1 − iγ̂2 )/2 and f̂0,↓ =
(γ̂3 − iγ̂4 )/2. We label the four corresponding low-energy
states by |n↑n↓〉, with n̂σ = f̂ †

0,σ f̂0,σ . The charging energy
splits them into two degenerate pairs with different fermionic
parity (−1)N̂ . Hereafter, we set equal SC pairing and nanowire
hopping, �P = tsys = 0.5t0, and introduce a small potential
μsys = 0.01t0 [27].

The leads are modeled by Wilson chains [17,28,29]

ĤL =
4∑

α=1

L∑
l=1

[−t0e−(l−1)/ξ ĉ†
α,l+1ĉ

α,l + H.c.] − μα ĉ†
α,l ĉα,l ,

(2)

with t0 being the bare hopping amplitude which sets their
bandwidth and constitutes the largest energy scale. The hop-
ping decay length ξ is an auxiliary variable allowing us to
tune the resolution at small energies by modifying the lead
level spacing [17,29,30]. The chemical potentials μα are used
to bring the system out of equilibrium and study transport
properties.

The tunneling Hamiltonian between the leads and the
system is

Ĥt = −
4∑

α=1

∑
σ,n

Jα[(uα,σ,n f̂ †
σ,n + vα,σ,n f̂σ.n)ĉα,1 + H.c.],

(3)

where uα,σ,n (vα,σ,n) is the particle (hole) projection of f̂σ,n
on the real-space site coupled to lead α. The amplitudes Jα

determine the effective tunneling rates �α = J2
α

2t0
.

In our simulations, we map the system into an MPS
by following Refs. [17,30]. Each MPS site represents a
single-particle eigenstate of either the leads or the nanowires
(Bogoliubov quasiparticles for nanowires) and we order them
based on their energy. The charge N̂ is encoded in an auxiliary
site [27,31]. The real-time dynamics is simulated using the
time-dependent variational principle algorithm [32–34] from
the ITensor library [35,36]. We set the MPS truncation error
∼5 × 10−8, corresponding to a maximum bond dimension
χ � 2000.

Relaxation toward equilibrium. In the Kondo problem dy-
namics, the formation of strong correlations and the Kondo
screening cloud occur over a timescale given by T −1

K [30,37–
39]. Therefore, the relaxation after a quantum quench offers
a useful probe to estimate the Kondo temperature and detect
strongly correlated states.

In the following, we consider the dynamics of the system
in a postquench nonequilibrium quasisteady state (NEQSS).
In this regime, the time evolution fulfills a Lieb-Robinson
bound [40,41] such that the dynamics is not affected by finite-
size limitations until the signal propagates to the edge of
the simulated system. Due to this, the information acquired
from the analysis of the NEQSS well represents the out-of-
equilibrium physics in the thermodynamic system (see, for
instance, Refs. [42–45]), as verified also by applying our
protocol to superconducting interacting scatterers [17] and the
Anderson impurity model [30].

The first quench protocol we consider aims at observing the
relaxation of the Majorana Cooper-pair box caused by Ĥt . The
box is initialized in the ground state |00〉 (N = 0 for ng < 0.5)
or |10〉 (N = 1 for ng > 0.5) and is decoupled from the leads,
which are set at half filling. At time t = 0, the couplings �

are suddenly turned on and the device begins relaxing toward
equilibrium. To characterize this relaxation, we analyze the
average island charge 〈N̂ (t )〉 and the effective Majorana mag-
netization [4,13] 〈Ẑeff (t )〉 ≡ 〈iγ̂3 γ̂4 (t )〉 = 1 − 2〈n̂↓(t )〉.

The observed dependence of 〈N̂〉 on ng after equilibration
(Fig. 2) shows the crossover between the weak-coupling and
the strong-coupling regime. Following Ref. [46], we char-
acterize the weak-coupling regime at ng ∼ 0 by the slope
of 〈N̂〉 = M�P�

Ect0
ng: For weak �, the charge data sets corre-

sponding to different choices of Ec and M [47] exhibit a
good agreement with the expected linear dependence [inset of
Fig. 2(a)]. On the other hand, the sinusoidal correction derived
for the strong-coupling regime [46],

〈N̂〉 = ng −
(

Ec

�P

√
1 − �/t0

)M

sin(2πng), (4)

closely matches the numerical data for the highest value of
the tunneling rate � = 0.08t0 [gray dot-dashed line and red
squares in Fig. 2(a)], thus suggesting the emergence of Kondo
correlations.

Importantly, the relaxation timescale of 〈N̂〉 depends on
the ratio �/Ec but not on the induced charge ng, as shown in
Fig. 2(b) which displays the time dependence of the relative
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FIG. 2. (a) Equilibrium charge versus ng, for M = 3, Ec = 0.2t0.
The gray dot-dashed line corresponds to Eq. (4) for � = 0.08t0. Inset:
Data for different values of Ec (0.2t0 and 0.4t0) and M = 3, 4 in the
weak-coupling regime, rescaled by M�P�

Ect0
. The dashed black line cor-

responds to 〈N̂〉 = M�P�

Ect0
ng. (b) Charge relaxation for different values

of ng ∈ [0, 1], Ec = 0.2t0, and � = 0.04t0. All data are obtained with
L = 64 and ξ = 16.

charge variation,

〈δN̂ (t )〉 = |〈N̂ (t )〉 − 〈N̂ (0)〉|
|〈N̂ (t → ∞)〉 − 〈N̂ (0)〉| . (5)

The vertical line marks the equilibration time, and different
curves, corresponding to different values of ng ∈ [0, 1], con-
verge to 〈δN̂ (t )〉 = 1 on similar timescales.

The magnetization, instead, displays a remarkably different
behavior [Fig. 3(a)]. At short times, t < h̄/�, the relaxation is
dominated by the fast rate � (dot-dashed line) independently
of both Ec and ng. Then, a second timescale emerges, which
depends on both � and the energy difference δE (ng) = Ec|1 −
2ng| between the charge sectors N = 0 and N = 1. The black
dashed lines in Fig. 3(a) are exponential fits of these slower
decays. This behavior is analogous to the magnetization relax-
ation in the Anderson impurity model [30,38,48], suggesting
that this longer timescale is associated with the energy scale
TK of the emerging TKE.

The comparison of Figs. 3(a) and 2(b) underlines that this
Kondo timescale characterizes only the Majorana magneti-
zation but not the charge; 〈Ẑeff〉 constitutes indeed one of
the effective Pauli operators at the heart of the definition of
the TKE, whereas 〈N̂〉 depends only on the fermionic parity
of the SC island. Therefore, we interpret this charge-“spin”
separation as evidence of the TKE emergence.

Next, we analyze the dependence of the so-derived TK on
ng, �, and Ec. Figure 3(b) depicts the fitted TK as a function
of ng for different values of � and Ec = 0.2t0. As expected
from RG analyses, TK is larger at the charge degeneracy point
where it is proportional to M�, consistently with Ref. [46]. In
the Coulomb valleys, instead, TK is qualitatively compatible

(a) (b)

(c)

t

FIG. 3. (a) Dynamics of the Majorana magnetization for differ-
ent values of ng ∈ [0, 1]; Ec = 0.2t0 and � = 0.08t0. The dot-dashed
line marks the decay rate �. (b) TK extracted as the relaxation rate
of 〈Ẑeff〉—dashed lines in panel (a)—as a function of ng. (c) TK

as a function of t0/� at ng = 0.5 and in the even-parity Coulomb
valley (ng = 0.25). Dot-dashed lines correspond to Eq. (6), whereas
the dashed line marks the degeneracy point scaling TK ∼ M�. A
prefactor C ∼ 0.2 has been manually set to approximately match the
data. All data are obtained with L = 64, ξ = 16.

with standard RG predictions [46]:

TK ∼ Ece− δE (ng)t0
2(M−2)��P . (6)

The different behaviors at the charge degeneracy point
(ng = 0.5) and in the even Coulomb valley (ng = 0.25) are
exemplified in Fig. 3(c), which displays TK versus t0/� for
two values of Ec and M (see legend). TK extracted at ng = 0.5
is independent of both Ec and M and it decreases with a
power law compatible with TK ∼ � (dashed line). For large
values of �, the magnetization can change sign, preventing
us from extracting TK with high precision [see the large error
bar at ng = 0.5 in Fig. 3(b)]. In the Coulomb valleys, instead,
TK shows a substantial drop when increasing Ec: not only is
it smaller for Ec = 0.4t0, but it decreases faster with 1/�,
in accordance with Eq. (6) (dot-dashed lines). The data for
M = 4, Ec = 0.4t0 and M = 3, Ec = 0.2t0 almost coincide as
Eq. (6) predicts the same behavior but for a factor 2 in front.
Our data display a concavity that is absent in Eq. (6) and sug-
gests a competing power-law dependence on � in agreement
with NRG results of the low-energy effective model [10]. The
presence of a power-law correction can also be understood
as the interpolation between the scaling of TK deep in the
Coulomb valleys, where it is dominated by the exponential
decay, and that at ng = 0.5, where it is proportional to �.
At intermediate values of the induced charge, 0 < ng < 0.5,
we expect a gradual crossover between the two regimes when
the coupling strength � becomes comparable with the charge
excitations, as either � increases or the charge degeneracy
point is approached.
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FIG. 4. Average nonlocal current versus Vb at ng = 0.5, for M =
3, 4. The dashed line highlights the TKE prediction G = 2

M G0. The
data are obtained with L = 100 and ξ = 32.

Nonlocal transport. To investigate multiterminal trans-
port properties, we adopt a different quench protocol, using
DMRG to prepare the ground state of the device coupled with
M leads at equilibrium (μα = 0). In general, such a state is
a superposition of different charge and magnetization states.
At t = 0 we quench the chemical potential in the first lead
to a finite value μ1 = eVb and compute the average current
flowing through the remaining connected terminals. We refer
to the latter as average nonlocal current.

RG predicts a fractional zero-bias nonlocal conductance,
GTKE = 2

M
e2

h , independent from all other physical parame-
ters for T  TK , both in the Coulomb valleys [4–6] and
at the charge-degeneracy points [8,11,16,46]. Our simula-
tions capture this fractional conductance for M = 3, 4 for
sufficiently strong coupling in proximity of ng = 0.5, where
TK is maximum and GTKE can be observed for an ex-
tended voltage bias window (Fig. 4). For ng ∼ 0.5, we also
observe non-Fermi-liquid power-law corrections with non-
integer exponents which, however, do not seem compatible
with the first-order scaling predicted by bosonization and RG
[8,11,15,16,27,46,49].

Our simulations are performed at zero temperature, but,
away from ng = 0.5, TK becomes comparable with the energy
we introduce with the finite bias eVb, competing with the uni-
versal strong-coupling features of the model. In Fig. 5 we plot
the average nonlocal current (M = 3 and Ec = 0.4t0) divided
by the voltage bias as a function of ng. We set μ1 = eVb =
0.02t0, which is small enough to probe the response close to
the linear regime, yet the data display a good signal-to-noise
ratio. The TKE prediction is met at the charge degeneracy
point and strong coupling, consistently with Fig. 4, while the
strong ng dependence confirms that we are not deep in the
TKE regime; however, several hints of a strongly correlated
Kondo state emerge also in the Coulomb valleys.

In Fig. 5, we compare our data with the conductance GRL

of a single fermionic resonant level (RL), which exhibits a
peak scaling as 4G0/M2 with width ∼M�/Ec (dashed lines)
[27]. The data with the weakest coupling (� = 0.02t0) match
well the RL approximation, as expected in a weak-coupling
regime. By increasing �, we observe large deviations from
the single RL and the conductance rapidly approaches the
TKE value of 2

3 G0 (horizontal dot-dashed line) for ng ∼ 0.5.

FIG. 5. Nonlocal current versus ng, for Ec = 0.4t0. The dashed
lines are the corresponding RL approximation [27]. The horizontal
dot-dashed line is 2e2

hM with M = 3.

Indeed, in this regime, the applied voltage μ1 = 0.02t0 is one
order of magnitude smaller than the estimate of the Kondo
temperature, TK ∼ 0.1t0, in Fig. 3(c). Moreover, there is a
substantial current flowing deep in the Coulomb valleys (� =
0.08t0, 0.04t0) with apparent plateaus that suggest a crossover
to the TKE regime. This is further confirmed by the analysis
of the data averaged over the decay length ξ [27].

The main difficulty for our approach in investigating a
deeper Kondo regime in the Coulomb valleys stems from the
very low voltage bias needed to probe energy scales that are
exponentially suppressed in δE (ng) as TK . Indeed, finite-size
effects limit the resolution in eVb that we can achieve and
hinder the observation of Kondo physics at small coupling or
deep in the Coulomb valleys. Hence, our method is comple-
mentary to NRG: while the latter is more suited for studying
the universal features of relevant low-energy approximations,
our approach allows for a more direct comparison with ex-
periments that have to cope with the interplay and possible
competition between different energy scales.

In the Supplemental Material [27], we show the robust-
ness of the TKE features against coupling anisotropies and
the TKE disappearance when the MZMs acquire an energy
splitting.

Conclusions. We analyzed the out-of-equilibrium proper-
ties of a minimal model for the topological Kondo effect,
aiming at a microscopic description alternative to RG
approaches and a qualitative understanding of transport sig-
natures that may arise in double nanowire experiments. Our
results present evidence of the onset of strongly correlated
states compatible with a crossover between a weak-coupling
and a topological Kondo regime.

First, the charge and the effective magnetization of the
Majorana Cooper-pair box are characterized by different
relaxation behaviors: the former only depends on the system-
leads hybridization �, whereas the latter presents two separate
timescales. In analogy with the dynamical features of the
Anderson impurity model, we used the longer timescale to
estimate the Kondo temperature associated with the TKE,
with results compatible with the RG predictions [4,6].

Second, the nonlocal conductance in the intermediate-
to strong-coupling regimes matches the predicted value
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GTKE = 2G0/M at the charge degeneracy point, where TK is
the largest. In the Coulomb valleys, it presents large deviations
from the noninteracting resonant level approximation that
well describes the weak-coupling regime and two-terminal
devices [17]. When the resonant level approximation fails,
the conductance displays a plateau in the Coulomb valleys,
hinting at a crossover to the topological Kondo regime.

Our results are obtained through an MPS approach that
allows for the study of topological Kondo models without
recurring to perturbation theory in the Majorana-lead coupling
or requiring any particular hierarchy of the involved energy
scales as expected in realistic devices [19]. It is therefore
well suited to understand the crossover between strong- and
weak-coupling regimes as well as the corrections to the RG
predictions on the TKE when we probe the system at energy
scales comparable with TK .

Our method can be extended to more complex topological
Kondo models, including the coupling of Majorana modes
[9] caused by crossed-Andreev and cotunneling processes,
the generalization to multichannel topological systems, and
the presence of spurious quantum dots in the devices, which
may cause additional Kondo effects [50–54]. This approach
can be applied to the transport features of many strongly
interacting nanodevices based on quantum dots coupled to su-
perconducting islands [55–58]. Our method can be extended
to more complex topological Kondo models, including the
coupling of Majorana modes [9] caused by crossed-Andreev
and cotunneling processes, the generalization to multichannel

topological systems, and the presence of spurious quantum
dots in the devices, which may cause additional Kondo ef-
fects [50–54]. This approach can be applied to the transport
features of many strongly interacting nanodevices based on
quantum dots coupled to superconducting islands [55–58].
Our method can be extended to more complex topological
Kondo models, including the coupling of Majorana modes
[9] caused by crossed-Andreev and cotunneling processes,
the generalization to multichannel systems [59,60], and the
presence of spurious quantum dots in the devices, which
may cause additional Kondo effects [50–54]. This approach
can be applied to the transport features of many strongly
interacting nanodevices based on quantum dots coupled to
superconducting islands [55–58].
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