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Non-Hermitian topological systems have attracted much interest due to their unique topological properties
when the non-Hermitian skin effect (NHSE) appears. However, the experimental realization of NHSE con-

ventionally requires nonreciprocal couplings, which are compatible with limited systems. Here, we propose
a mechanism of loss-induced Floquet NHSE, where the loss provides the basic source of non-Hermicity and
the Floquet engineering brings about Floquet-induced complex next-nearest-neighbor couplings. We also extend
the generalized Brillouin zone theory to nonequilibrium systems to describe the Floquet NHSE. Furthermore,

we show that this mechanism can realize the second-order NHSE when generalized to two-dimensional systems.
Our proposal can be realized in photonic lattices with helical waveguides and other related systems, which opens
the door for the study of topological phases in Floquet non-Hermitian systems.

DOI: 10.1103/PhysRevB.108.L.220301

Introduction. Non-Hermitian systems exhibit rich topolog-
ical phases that are characterized by non-Hermitian topo-
logical invariants [1-6]. One of their unique features is the
appearance of the non-Hermitian skin effect (NHSE) [7-17],
which leads to the breakdown of conventional bulk-boundary
correspondence and the introduction of a generalized Bril-
louin zone (GBZ) [18-23], and shows wide applications
such as chiral damping or amplification [24] and anomalous
lasing [25]. The NHSE has also been extended to higher-
dimensional topological systems with the emergence of the
hybrid skin-topological effect, where the topological edge
states are further localized into the corners [26,27], and it is
a kind of higher-order NHSE [28] originating from the non-
trivial interplay between the NHSE and the topological effect.

Recently, the NHSE has been observed in photonic sys-
tems [29], acoustic systems [30,31], electrical circuits [32,33],
and through quantum dynamics [34]. However, all these
realizations require nonreciprocal couplings, which are not
applicable in a large variety of systems without nonre-
ciprocity. At the same time, another mechanism through the
gain/loss is proposed, where the amplifying and dissipative
behaviors of the chiral current along different edges lead to the
NHSE [8,14,27], but the generation of the chiral edge current
requires complex next-nearest-neighbor couplings, which is
difficult to implement in experiments.

On the other hand, topological phases have also been ex-
tended into periodically driven systems, known as Floquet
topological insulators [35-42]. The Hamiltonians of those
systems are periodic in time, offering the opportunity to en-
gineer the band structure in the quasienergy spectrum. The
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Floquet topological phases have shown great success in ex-
periments [43—-48], including the realization of a photonic
topological phase [49] and the Haldane model [50]. Recently,
there are growing efforts in studying the non-Hermitian topo-
logical phase transitions in nonequilibrium systems [51-57].
It is proposed that Floquet engineering can be used to gener-
ate nonreciprocal couplings and then induce the NHSE [58].
An anomalous Floquet NHSE is found in the ring resonator
lattice which supports two circulation sectors that are each
effectively nonreciprocal [59]. However, the relation between
the Floquet driving and the loss-induced NHSE remains un-
known.

In this Letter, we uncover the mechanism of loss-induced
Floquet NHSE, where gain/loss combined with Floquet
engineering leads to the NHSE. Here, gain/loss provides
the origin of non-Hermicity, while Floquet engineering
plays a crucial role in generating the chiral current through
Floquet-induced next-nearest-neighbor couplings. To describe
the Floquet NHSE, we also extend the generalized Brillouin
zone theory to nonequilibrium systems. Our proposal reveals
a general mechanism to realize the NHSE, and we show it
can be extended to two dimensions to generate both first- and
second-order non-Hermitian skin effects. Importantly, our
mechanism does not rely on the Floquet topology. Except for
the second-order skin-topological effect, the first-order NHSE
can be directly generated by Floquet-induced next-nearest-
neighbor couplings even when the Floquet system remains
trivial.

Floquet non-Hermitian skin effect. We first consider a
Floquet non-Hermitian photonic lattice, as illustrated in
Fig. 1(a). It is a one-dimensional zigzag array of helical
waveguides. The helical radius is R, and the pitch is Z.
There are two waveguides in each unit cell, where one of
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FIG. 1. (a) Sketch of the non-Hermitian helical waveguides. The
waveguides point to the z direction and are arranged in a zigzag
structure along the y direction. There are two kinds of waveguides:
the normal waveguides in red and the lossy waveguides in blue.
The helical radius is R, and the pitch is Z. (b), (c) The profile of
all the eigenstates of the effective coupling matrix when (b) R =
0 and (c) R =10 um. There is no non-Hermitian skin effect for
R = 0 and there is the non-Hermitian skin effect towards the right
for R # 0. The distance between two nearest-neighbor waveguides
is @ = 15 um. Other parameters are Z = 1 cm, ko/27 = 2.4 um~!,

c=1lcm™,y =08cm™.

them is lossy and the other is normal, which is also similar
to the case of two waveguides with different losses. The
loss in the waveguide can be achieved, for example, by re-
placing the continuous waveguide with periodic waveguide
sections that have the same helical pattern. This photonic
lattice can be well described by a tight-binding model with
nearest-neighbor couplings, and the coupled equations can be
written as [49]

i0.9(2) = =iy @)+ Y @y, (1)

m=n=1

where ¥,,(2) (y,) is the amplitude (loss) of the nth waveguide,
c is the coupling strength, and r,,,, is the displacement between
waveguides m and n. Here, we assume y, = 2y for all the
lossy waveguides, while the normal waveguides have zero
loss. After neglecting a global loss term —iy v, Eq. (1) be-
comes the coupling equations of a non-Hermitian system with
balanced gain and loss. A(z) = kgR2(— cos 2z, sin 2z, 0) is
a z-dependent vector potential induced by the helical shape of
the waveguides, where k is the wave number, and Q2 = 27 /Z
is the frequency of the rotation.

We can rewrite the coupled equations as id,¥(z) =
H(2)V(2), where ¥(2) = (Y1, ¥, ...)T is the amplitude vec-
tor, and H(z) is the non-Hermitian coupling matrix. The
propagation of light along the waveguides can simulate the
evolution of the single-particle Schrodinger equations, where
the spatial dimension z plays the role of the time dimension
and the coupling matrix is an analog of the quantum Hamil-
tonian. The coupling matrix is z dependent and has a period
Z: H(z) = H(z+ Z). So there are no static solutions for the
coupling equations. Instead, the solutions can be expressed
in terms of the Floquet states, |¥(z)) = e *?|®(z)), with
|®(z)) = |®(z + Z)), and ¢ is the quasienergy. The Floquet
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FIG. 2. (a) Effective coupling structure of the helical waveguides
considering the nearest-neighbor (solid lines) and next-nearest-
neighbor (dotted lines) couplings. The red (blue) circles denote the
normal and lossy waveguides, while the arrows indicate the phases
of the next-nearest-neighbor couplings. (b) The amplitude of the
effective nearest-neighbor coupling. The inset is the amplitudes of
the long-range couplings as a function of the distance n. (c) The
amplitudes (red lines) and phases (blue lines) of the effective next-
nearest-neighbor couplings. The coupling phases between normal
(blue solid line) and loss (blue dotted line) waveguides have opposite
signs, corresponding to the opposite arrow directions in (a). These
results are obtained in the Hermitian case without loss. Other param-
eters are the same as in Fig. 1.

states are the eigenstates of the Floquet operator, i.e., the evo-
lution operator of a full period, U (Z) = F exp[—i fOZ H(z)dz]
(F denotes the spatial order along the z axis). From the Flo-
quet operator, we can define the effective coupling matrix Heg
that satisfied U (Z) = exp(—iH.Z) [60].

Figures 1(b) and 1(c) are the profiles of all the eigenstates
of the effective coupling matrix when R = 0 and R # 0. In the
former case with straight waveguides (R = 0), the system re-
duces to a trivial chain with static nearest-neighbor couplings.
The coupling matrix satisfies (P7)™'HPT after neglecting
the global loss, where P is the mapping from the left side
to the right side, and 7 is the complex conjugation. In this
case, the NHSE is forbidden by the P77 symmetry [Fig. 1(b)],
because any eigenstate that is localized at one side will be
mapped into the other side after the P77 operation. On the
contrary, the helical waveguides introduce a chiral potential
encoded in the coupling phases and break the P77 symmetry.
As shown in Fig. 1(c), the system with helical waveg-
uides (R # 0) exhibits the NHSE with all the eigenstates
located at the right boundary. The NHSE is obtained through
Floquet-engineered couplings accompanied by non-Hermicity
from gain/loss, which does not require nonreciprocal
couplings.

Effective coupling structure. To reveal the physics of the
Floquet NHSE, we calculate the average strengths and phases
of the couplings in the effective coupling matrix Heg. Fig-
ure 2(a) is the sketch of the effective coupling structure, where
t, denotes the nth-nearest-neighbor couplings. As shown in
the inset of Fig. 2(b), the coupling strength is exponentially
related to the distance n. Consequently, we can neglect other
long-range couplings except for the leading two orders,
i.e., the nearest-neighbor couplings #; [Fig. 2(b)] and the
next-nearest-neighbor couplings 7, [Fig. 2(c)]. In this case, the
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FIG. 3. (a) The spectra of the photonic lattice with helical waveg-
uides in the periodic boundary condition (gray dots) and the open
boundary condition (black dots). (b) The generalized Brillouin zone
of the system for y = 0.8 cm™! (blue dots) and y = —0.8 cm™! (red
dots). The gray line is a unit circle at the origin. The helical radius is
R = 10 um. Other parameters are the same as in Fig. 1.

effective coupling equations can be approximately written as
iaz’I//n(Z,) N o= iV,:Wn(Z,) + tll//n—l(zl) +1 er—l(Z/)
+ 0P Y 0() + e P Y2, ()

where y, is the effective loss, and 7’ = z/Z is the dimension-
less coordinate. Here, we have absorbed the coupling phases
of the nearest-neighbor couplings #; into the mode amplitudes
Y,(Z). Tt is a coupling equation describing a static system
with the same coupling structure in the effective coupling
matrix (neglecting the long-range couplings for n > 2). When
R — 0, the effective nearest-neighbor coupling strength
is t; = cZ, corresponding to the static photon tunneling
strength between nearby waveguides. As shown in Fig. 2(b),
the effective nearest-neighbor coupling strength decreases
when increasing the helical radius, due to the emergence
of long-range photon tunnelings. Among these long-range
couplings, the next-nearest-neighbor couplings play the most
important role in the Floquet non-Hermitian skin effect. Due
to the chiral potential in the original periodic coupling, the
effective next-nearest-neighbor couplings between normal
and lossy waveguides, i.e., the upper and lower dotted lines in
Fig. 2(a), possess coupling phases with opposite signs. Letting
the average values of two coupling phases be ¢, = duw)
for n € odd(even), we can obtain the two coupling phases as
shown in Fig. 2(c). The blue solid (dotted) line denotes the
coupling phase between the normal (loss) waveguides. This
asymmetry only exists in the zigzag chain and will disappear
when the waveguides are arranged along a straight line.
The asymmetric coupling phases can induce the chiral edge
current, which is the key requirement of the gain-loss-induced
NHSE [8,14,27]. Since the chiral edge current is independent
on the loss, in the calculation of effective coupling coefficients
(Fig. 2) we consider the Hermitian case without loss. In an
intuitive picture, the combination of loss and multichannel
interference with a controllable phase from the Floquet
coupling effectively generates nonreciprocal couplings [61],
which result in the NHSE.

Floquet generalized Brillouin zone. In the periodic bound-
ary condition along both x and y directions, the k-space
coupling matrix is given by Hi(z) = hi(2)ox + ha(z)oy +

iy (o, — I), where o, , . are the Pauli matrices, I is the identity
matrix, and the global loss term —iy I can be neglected as it
does not affect the detailed band structure. The coefficients
hy, are

hy = ccos[A -a;] + ccos[A -a); — \/gka], 3)

hy = —csin[A - a;] — csin[A - a, — v/3kal, 4)

where k is the wave vector, a; = a(—sinm /6, cosm/6),
a; = a(—sinm /6, —cos/6), and a is the distance between
the nearest-neighbor waveguides. In Fig. 3(a), we plot the
quasienergy spectrum in the periodic boundary condition
(gray dots), which forms a loop in the complex plane. The
spectrum of a finite lattice (black dots) lies in the interior of
the loop. It indicates the existence of the NHSE and the failure
of the conventional band theory with the Bloch Hamiltonian
[13]. To recover the real-space spectrum, we extend the GBZ
theory developed in static systems to nonequilibrium systems.
The basic idea of GBZ is the replacement e* — B in the
Bloch Hamiltonian to include the exponential distribution of
eigenstates due to the NHSE. For example, here the k-space
coupling matrix can be rewritten as (with the replacement
e\/gika N ‘3)

Hg(z) = (

0 ce—iA-al + ce—iA-azﬂ—l
ceA A 4 celA g —2iy ) )

In the presence of the NHSE, the eigenstates have exponential
profiles instead of being equally distributed. Consequently,
the bulk states cannot be transformed into a series of plane
waves. The above replacement can solve the problem by
adding a decay or growing factor. The absolute value of 8,
i.e., the GBZ, can be unequal to unity, and it corresponds to
the exponential behavior of the eigenstates’ distributions. The
eigenstates will be localized rightwards (positive direction)
for |B| > 1 and leftwards (negative direction) for || < 1. In
static two-band systems, the GBZ can be obtained by solv-
ing the characteristic equation (8, E) = det[E — H(B)] =0
under the condition that the two specific solutions B, sat-
isfy |B1| = |B2|. To obtain the GBZ in the nonequilibrium
system, we need to solve the characteristic equation of the
effective coupling matrix, f.(8, E) = det[E — He(B8)] = 0,
which, however, is inaccessible as the effective coupling ma-
trix can only be numerically obtained. Instead, we calculate
the GBZ by changing the absolute value of B for a fixed
argument and searching the eigenvalues with pure real or
imaginary values. In this case, we can obtain the GBZ that
recovers the real-space spectrum. Moreover, we check that all
the GBZ obtained by this method satisfies f(By, Ey) =0 =
f(By, Eo). As shown in Fig. 3(b), when y > 0 (blue lines),
the GBZ lies on the outside of the unit circle, corresponding
to the NHSE with rightwards localization [see Fig. 1(c)].
On the contrary, when y < 0 (red lines), the GBZ lies on
the inside of the unit circle, corresponding to the leftwards
localization.

Two-dimensional generalizations. Here, we show that the
mechanism of loss-induced Floquet NHSE can be generalized
to two-dimensional systems. Remarkably, rich phenomena
including the first-order NHSE and the second-order skin-
topological effect can be realized. As shown in Fig. 4(a), we
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FIG. 4. Two-dimensional non-Hermitian skin effects in [(a)—(d)] the two-dimensional zigzag array and [(e)—(i)] the honeycomb array. (a),
(e) Sketches of the two structures. (b), (f) Effective coupling structures. (c), (g) Quasienergy spectra in the periodic (gray areas) and open
(black dots) boundary conditions. (d), (i) Profiles of the bulk states (upper figures) and the edge states (lower figures) normalized by the

maximal value. The blue crosses indicate the centers of the rectangles. The loss in the blue waveguides is y = 0.3 cm

is R = 10 um. Other parameters are the same as in Fig. 1.

first consider a two-dimensional array of helical waveguides,
which is a mesh of two zigzag models in both horizontal
and vertical directions. In order to take into account of the
interplay between the topology and the non-Hermicity, we
consider that there are several plates which prevent the cou-
plings between special waveguides as plotted in Fig. 4(a). The
effective coupling structure considering the first two orders
of coupling is shown in Fig. 4(b), where the arrows denote
the coupling phases. Without the losses, the effective static
model in Fig. 4(b) has a similar phase diagram of the Hal-
dane model, with topological phase transitions driven by the
next-nearest-neighbor coupling phases and on-site energies
(see the Supplemental Material [60] for more details). The
Floquet-induced next-nearest-neighbor couplings can open a
topological band gap with the emergence of robust chiral edge
states. In the presence of losses, the spectra in the periodic
boundary conditions (gray area) and open boundary condi-
tions (black dots) are very different, as plotted in Fig. 4(c),
which reveals the existence of NHSE. As shown in Fig. 4(d),
both the bulk states and the edge states exhibit localization
towards the corner, which represents the first-order NHSE
in two dimensions. A larger loss y leads to a clearer lo-
calization behavior (see the Supplemental Material [60] for
more details). We note that the additional plates that block
the couplings between specific waveguides are essential for
the introduction of the topology, but the first-order NHSE
is independent on the topology and still exists without the
additional plates.

—1_and the helical radius

In Fig. 4(e), we further consider a honeycomb array of he-
lical waveguides. As shown in Fig. 4(f), the Floquet-induced
next-nearest-neighbor couplings have coupling phases that
exactly match those in the Haldane model. Consequently,
the honeycomb array can realize an effective non-Hermitian
Haldane model, and thus we can obtain the second-order skin-
topological effect [27]. In this case, only the topological edge
states exhibit the NHSE, while the bulk states remain extended
with the same distribution as the Hermitian case [Fig. 4(i)].
In the presence of the second-order skin-topological effect,
the conventional bulk-boundary correspondence is still valid,
which can be characterized by the non-Hermitian Chern num-
ber. We obtain the phase diagram of the model and show
that the skin-topological phase exists approximately when the
loss parameter y is smaller than the effective nearest-neighbor
coupling coefficient #; (see the Supplemental Material [60] for
more details).

Conclusion. In summary, we have proposed the mecha-
nism of loss-induced Floquet NHSE. The NHSE originates
from a combination of gain/loss and the Floquet-induced
next-nearest-neighbor couplings. We extend the generalized
Brillouin zone theory from static systems to nonequilibrium
systems and show it can solve the failure of conventional
band theory with Bloch Hamiltonians. Moreover, we show
that such a mechanism can also be used to generate both
the first-order and second-order NHSE in two dimensions
based on different lattice structures. The first-order NHSE is
similar to that in one dimension, which is independent from
the system topology. As for the second-order skin-topological
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effect, we show the Floquet driving can perfectly reveal the
phase diagram characterized by the non-Hermitian Chern
numbers. Our proposal paves the way for the investigation
of non-Hermitian physics in Floquet systems and gain/loss
systems.

Note added. Recently, we became aware of a related
work [62].
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