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Internal and crystalline symmetries play critical roles in the classification of topological materials. Recently,
the crystalline symmetries are found to allow projective representations by gauge fields and bring about new
topological phases, such as Möbius insulators in spinless systems. Here, we report an observation of a Klein
bottle insulator (KBI) phase in phononic crystals under Z2 gauge fields. This intriguing insulator phase possesses,
in momentum space rather than real space, a nonsymmorphic glide symmetry, under which the fundamental
domain of the Brillouin zone is topologically equivalent to a Klein bottle. We exploit a bilayer structure that can
be decomposed into a time-reversal-broken KBI and its time-reversal counterpart. In the acoustic KBI, a pair
of edge states with a nonlocal twist are observed in experiment. All the theoretical and experimental results are
in agreement and consistently validate the existence of the KBI for acoustic waves. Our work will promote the
discovery of unexplored phases induced by gauge fields and offer possible applications in topological materials.
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In the past decades, symmetries have resided in the
core of topological material classification, which include
the crystalline symmetries and the internal symmetries such
as time-reversal (TR), chiral, and particle-hole symmetries
[1–13]. Recently, gauge fields are attracting much atten-
tion for their promising potential in enriching symmetry
algebras and generating new physics [14–22]. In systems with
only positive and negative real hoppings, a specific Z2 gauge
field has been successfully adopted to build novel topological
phases in spinless systems with TR symmetry, including the
Möbius insulator [23,24], mirror Chern insulator [25,26], and
Kramers doublet [27]. More recently, a new Klein bottle in-
sulator (KBI) phase is predicted in a TR-broken lattice [28].
In this KBI, the fundamental domain in momentum space
is topologically equivalent to a Klein bottle, which means
one pair of the domain boundaries is connected continuously
while the other pair is connected antiperiodically. The Klein
bottle feature stems from the underlying glide symmetry in
momentum space, and more importantly, implies a pair of
nonlocally related edge states in this TR-broken KBI beyond
the conventional bulk-edge correspondence.

However, realizing such a TR-broken KBI is not easily
accessible in real systems, considering the challenge in break-
ing the TR symmetry, especially for scalar acoustic waves
[29–38]. Fortunately, the high tunability of phononic crystals
(PCs) makes it feasible to introduce additional degrees of
freedom. A natural question arises: is it possible to achieve
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TR-broken KBIs in PCs by introducing additional degrees of
freedom yet retain the TR symmetry of the whole system?
The spinless mirror Chern insulator may spark inspiration,
where a bilayer structure is divided into two Chern insulators
with opposite Chern numbers [19,25,26]. With the additional
layer of degrees of freedom, the dispersions with glide and
fractional translation symmetries in KBIs can be visualized in
experiments. Note that the glide symmetry, as a nonsymmor-
phic symmetry that originally exists only in real space, is now
extended to momentum space in KBIs, giving rise to the Klein
bottle topology.

In this Letter, we report an observation of acoustic KBI,
which comes from a bilayer structure connected with positive
and negative hoppings. The construction of the acoustic KBI
is based on a well-established lattice model with specific Z2

gauge fields, i.e., hoppings are real with amplitudes taking a ±
sign. The imposed gauge fields decompose the bilayer lattice
into a KBI and its TR counterpart. Note that the TR symmetry
in each KBI is broken but is retained when the other KBI is
involved. With the model implemented in PCs, the acoustic
KBI is verified by the glide symmetry in momentum space and
the fractional translations for the in-gap edge state dispersions.
Our findings evidence the Klein bottle feature embedding in
the Brillouin zone (BZ) and broaden perspectives to topologi-
cal phases in terms of gauge fields.

To construct the KBI, we start with a lattice model with
periodicity along the x and y directions and unity lattice
constants, as shown in Fig. 1(a). It is a bilayer lattice

whose Hamiltonian has the form HB = [H0 C0

C†
0 H0

], where H0

describes one of the two identical layers, and C0 and its
Hermitian conjugate C†

0 represent the couplings between them
[39]. The orbitals denoted by cyan and yellow spheres have
opposite on-site energies, while the positive and negative
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FIG. 1. Construction of KBIs in a bilayer lattice. (a) The unit cell of the bilayer lattice, which contains eight sites connected by positive
and negative hoppings (denoted by green and orange tubes). (b) Two monolayer lattices arising from the decomposition of the bilayer one.
The negative and positive hoppings enclose plaquettes with π flux. The imaginary hoppings originating from the interlayer ones are denoted
by arrows. (c) Illustration of the gauge-modified mirror symmetry of the monolayer lattice, which is a combination of the mirror symmetry
mx and the gauge transformation G. G imposes an additional “–” sign to hoppings in the shaded region in the third panel. (d) Left panel: 3D
view of the bulk band structure. Middle and right panels: the bulk bands at ky = −0.75π and 0.25π , respectively. (e) Schematics of the Klein
bottle structure embedding in the BZ. The magenta and green bands or curves in (d) and (e) are calculated for H± with all the parameters
provided in [39].

hoppings are distinguished by green and orange tubes,
respectively. Due to the presence of negative hoppings (orange
tubes), the mirror symmetries along the x and z directions are
broken simultaneously. And to expose the specific band struc-
tures in KBI, the hopping parameters are chosen to further
reduce the symmetries of the lattice [39].

Under the gauge fields, the above bilayer lattice can
decompose into a pair of TR-related KBIs, as illustrated
in Fig. 1(b). The decomposition can be performed by a
unitary transformation U = 1√

2
[1 i
1 −i] ⊗ I4 with I4 being

an identity matrix of dimension four and ⊗ denoting the
Kronecker product [40]. Through the unitary transformation,
the basis states in the upper and lower layers are mixed as
ψ± = (ψlow ± iψup)/

√
2. One thus obtains a block-diagonal

Hamiltonian UHBU −1 = H+ ⊕ H−, where H± = H0 ∓ iC0

correspond to the Hamiltonians living in monolayer subspaces
spanned by the new basis [denoted by the magenta and green
circles in Fig. 1(b)]. The H± exactly represent two KBIs,
whose on-site energies (denoted by cyan and yellow dots)
and the monolayer hoppings (denoted by green and orange
rods) remain unchanged with respect to those in Fig. 1(a).
And in addition, for the existence of the Z2 gauge fields, the
original real interlayer hopping terms represented by C0 in
Fig. 1(a) have been switched to the imaginary monolayer ones
∓iC0 denoted by gray arrows in Fig. 1(b) [19,25,26]. Thus,
for either one monolayer Hamiltonian, H+ or H−, the TR
symmetry is broken, while it restores when both are involved.
This leads to the asymmetric but TR-related band structures
for the monolayer Hamiltonians.

Now we unveil the gauge-field-induced glide symmetry in
momentum space, a unique feature of KBI [28]. Taking the

monolayer Hamiltonian H+ as an example, its TR counterpart
can be analyzed similarly. As illustrated in Fig. 1(c), through a
mirror symmetry normal to the x direction, i.e., mx : x → −x,
the π flux in each plaquette (enclosed by one negative and
three positive hoppings) remains while the gauge connection
changes. To restore the change in configuration, an addi-
tional gauge transformation G = (+I2) ⊗ (−I2) is required,
and the composited symmetry is the gauge-modified mirror
Mx = Gmx = σz ⊗ σx with σ denoting the Pauli matrix. In
such enriched symmetry algebra, the conventional commuta-
tion between the mirror and the lattice translation along the
y direction (denoted as Ly) is modified to an anticommutation
relation {Mx, Ly} = 0 [28]. Represented in momentum space
and recalling that Ly = eiky , the anticommutation relation re-
quires Mxeiky M−1

x = −eiky = ei(ky+π ), that is, a 1/2 fractional
translation is associated to Mx. As such, a glide symmetry is
generated in momentum space, which acts on the monolayer
Hamiltonians as MxH±(kx, ky)M−1

x = H±(−kx, ky + π ). Note
that it is possible to design the physical mirror involving the
layer degree of freedom as Mx ⊕ Mx, which commutes with
the aforementioned unitary transformation U .

The glide symmetry in momentum space can be visu-
ally reflected by the bulk band structures in Fig. 1(d), i.e.,
ε±(kx, ky) = ε±(−kx, ky + π ) with ε± being the eigenvalues
of H±. In the left panel, the blue dashed rectangles out-
line two slices of the bulk bands with a distance of π

in ky [ε±(kx,−0.75π ) and ε±(kx, 0.25π )], which are re-
spectively plotted in the middle and right panels. One can
see that the band structure at ky = 0.25π is identical to
that at ky = −0.75π via inversing one of the kx directions.
In other words, these two band structures are oppositely
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oriented in the presence of the glide symmetry in momentum
space.

This feature exactly gives the Klein bottle structure em-
bedding in the BZ. More intuitively, we focus on isoenergy
contours in the left panel of Fig. 1(e), where the magenta and
green curves respectively correspond to ε± = 1.5 and they are
TR-related as expected, i.e., ε+(kx, ky ) = ε−(−kx,−ky). Re-
markably, each of them respects the glide symmetry along the
ky direction. Because of the glide symmetry, the fundamental
domain in momentum space, denoted as the shaded region
in Fig. 1(e), is reduced to half of the BZ, that is, the other
half can be generated under the action of the glide symmetry.
Although only half of the BZ is involved, the fundamental
domain is competent to capture the topological information
of the system [28]. As illustrated in the middle and right
panels of Fig. 1(e), the fundamental domain is equivalent to
a cylinder after rolling and gluing the oriented boundaries,
and can further be deformed to a Klein bottle by gluing the
oppositely oriented boundaries (denoted by blue curves with
arrows). Note that the choice of the fundamental domain is
not unique because the glide symmetry, different to the con-
ventional space group symmetries, is a free operator without
invariant symmetry elements in momentum space.

The topology of the KBIs can be determined by the topo-
logical invariant ν, denoting the odd or even times for the
Berry phase γ crossing π as ky runs from −π to 0. Specif-
ically, even times crossing corresponds to a trivial phase
ν = 0, while odd times corresponds to a nontrivial ν = 1
that protects the emergence of in-gap edge states [28]. In the
nontrivial phase, in-gap states are ensured by a Berry phase
of π for a specific ky-fixed one-dimensional subsystem, and
then the edge bands can be formed due to the continuity of
the energy bands. When inducing boundary potentials, the
edge states can be moved in spectra. In our case, both H±
of KBIs are nontrivial and possess ν = 0, 1, 0, and 1 for the
four isolated bands, implying the existence of in-gap edge
states. In contrast to the conventional crystalline insulators
with symmetry-protected edge states hosted on symmetry-
preserving edges, the edge states in KBI can exist on the
symmetry-breaking edges. Furthermore, with the Mx-related
edges along the y direction, the Klein bottle nature can result
in a pair of edge states with a nonlocal twist, whose band
structures are related by a 1/2 fractional translation of π in
ky [39].

To implement the acoustic KBI, we construct a bilayer PC
sample with a set of cavities connected by elaborate tubes,
as shown in Fig. 2(a). The sample is fabricated by three-
dimensional (3D) printing and contains 26 × 32 unit cells
(along the x and y directions) with the sample thickness of
50.8 mm in the z direction. Figure 2(b) depicts the schematics
of the unit cell with the lattice constants a0 = 48.0 mm and
b0 = 21.0 mm. The colored cavities, ±45◦ tilted in the XZ
plane, are separated by the distances of a0/2 and b0/2 in the x
and y directions. The cavities are also related by a fourfold
rotational axis along the y direction locating at the center
of the unit cell. The shapes of the cyan and yellow cavities
are different in height, and their dipolar modes are chosen to
map orbitals with different on-site energies. When connecting
the cavities according to the acoustic field distribution of the
dipolar mode, positive and negative hoppings are achieved
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FIG. 2. Observation of the acoustic KBI. (a) A photo of the real
PC. The inset shows the side view and the unit cell is boxed in green.
(b) Schematics of the unit cell. All the colored regions are filled with
air and bounded with hard boundaries. (c) The isofrequency contours
of ψ+ at the frequency of 9.12 kHz. (d) Left and right panels: the bulk
dispersions of ψ+ at ky = −0.75π/b0 and 0.25π/b0, respectively,
with the route denoted by the white dashed lines in (c). The white
dashed lines in (d) label the frequency of 9.12 kHz. (e) and (f) The
same as (c) and (d) but for ψ−. In (c)–(f), the colormaps and the solid
lines correspond to the measured and simulated results, respectively.

[41–44]. The tubes introducing positive and negative hoppings
are colored in green and orange in Fig. 2(b), respectively. The
intralayer tubes are designed to respect a mirror symmetry
about the XY plane to equalize the hopping strengths within
the upper and lower layers; the chiral interlayer tubes respect
a fourfold rotational symmetry. Although unavoidable long-
range couplings slightly affect the symmetry of our acoustic
system [23,24], such designed PC can reproduce to a large
extent the band structures and the topological properties of
the ideal lattice model [39].

We now observe the dispersions for the acoustic KBIs in
experiment. A broadband point sound source is located at
the center of the upper layer to stimulate the pressure fields
in both layers ψlow and ψup. To observe the acoustic KBIs,
one needs to obtain the states in the monolayer subspaces as
in the lattice model, which hybrids ψlow and ψup as ψ± =
(ψlow ± iψup)/

√
2. These subspace-resolved fields ψ± can be

further Fourier transformed into momentum space. Following
this procedure, the isofrequency contours of ψ± are obtained,
as displayed in Figs. 2(c) and 2(e). Each set of contours re-
spect a glide symmetry along the ky direction, unambiguously
identifying the existence of the Klein bottle. One can also see
that the two sets of contours are TR counterparts as they are
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FIG. 3. Observation of the edge states with a nonlocal twist. (a)
Experiment for edge states observation. (b) Edge dispersions of ψ+.
The colormap in the left (right) panel represents the measured result
at the left (right) edge. The shaded regions and the colored circles
denote the simulated bulk and edge states, respectively. (c) The same
as (b) but for ψ−.

connected by inversion with respect to the TR-invariant BZ
center. To further verify the Klein bottle nature, we extract the
dispersions of ψ±, as shown in Figs. 2(d) and 2(f). Taking
the ψ+ as an example, the dispersions at ky = −0.75π/b0

and 0.25π/b0 [corresponding respectively to the left and
right panels of Fig. 2(d)] are oppositely oriented as expected.
The dispersions of ψ− shown in Fig. 2(f) can be similarly
analyzed.

Finally, we demonstrate the edge states of the acoustic
KBI, whose dispersions are related by 1/2 fractional trans-
lations of π/b0 in ky. As illustrated in Fig. 3(a), the left and
right edges of the PC sample are connected by Mx. To excite
the edge acoustic fields, a point source is inserted into the
center cavity of the left or right edge in the upper layer, as
labeled by the yellow stars. The signals in both layers are
recorded from the edge cavities [blue dashed lines in Fig. 3(a)

with the measurement positions denoted by the circles in
the enlarged insets]. Following the procedure used in the
bulk dispersion observation, we recombine the measured edge
fields in both layers to give the subspace-resolved fields and
obtain the corresponding edge dispersions after performing
Fourier transformations. As displayed by the colormaps in
Figs. 3(b) and 3(c), the edge dispersions of ψ± are clearly
observed, which are in good agreement with the simulated
results (colored circles). For each KBI, the edge dispersion
at one edge of the PC can translate to the other edge through
the 1/2 fractional translation of π/b0 along the ky direction
as predicted. That is, only the projected BZ in [−π/b0, 0)
is independent and the rest can be repeated by the fractional
translation. For the two TR-related KBIs, the dispersions of
ψ+ and ψ− on the same edge are oppositely oriented with
respect to the ky direction. Note that the dispersion of the
whole bilayer structure involves the dispersions of both ψ+
and ψ−, thereby doubling the propagating channels of the
edge states [45–47].

In conclusion, we have observed the acoustic KBIs, un-
veiling the Klein bottle topology and nonsymmorphic glide
symmetry in momentum space. Recently, several individual
works also reported the momentum-space glide symmetries in
monolayer and 3D PCs [48–50]. In our work, the bilayer PC is
carefully designed so that a pair of TR-broken KBIs is formed.
In each acoustic TR-broken KBI, edge states with a nonlocal
twist emerge in the band gaps, which, beyond the conventional
bulk-edge correspondence, are required by the geometrical
constraints of the Klein bottle. It is noted that the Z2 gauge
fields are important to the constructions of the TR-broken
KBI and the underlying nonsymmorphic glide symmetry in
momentum space. Our work expands the scope of realizing
novel topological phases from the temporal and spatial sym-
metries to the fields of gauge symmetries [17,20], which is
broadly applicable to a variety of systems such as mechanical
[29,33], electric circuit [51–53], photonic [30,31], and cold
atom systems [54]. In addition, our work shows the feasibility
of classical wave manipulation using mechanisms with gauge
fields, and the successful implementation of acoustic KBIs
paves the way towards elastic wave systems, which may have
broader application potential [55–57].
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