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Intrinsic nonlinear conductivities induced by the quantum metric
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Three mechanisms are known to contribute to second-order nonlinear current: Extrinsic nonlinear Drude,
Berry curvature dipole, and intrinsic Berry connection polarizability. Here, we predict an intrinsic contribution
to the current related to the quantum metric, a quantum geometric property of the electronic wave function.
This contribution manifests in systems that simultaneously break the time-reversal and the inversion symmetry.
Interestingly, this contribution is dissipative and contributes to both longitudinal and transverse response. The
quantum metric-induced NL current dominates transport in parity-time reversal symmetric systems near the band
edges, something we show explicitly for topological antiferromagnets.
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Introduction. The nonlinear (NL) conductivity provides
new physical insight into the quantum geometry of the elec-
tronic wave function [1–7]. It plays a fundamental role in
the identification of different topological and magnetic states
[8,9]. For instance, the NL anomalous Hall conductivity [3],
which determines the Hall response in time-reversal sym-
metric systems, provides information on the Berry curvature
dipole. It also acts as a sensor for topological phase transitions
of the valley-Chern type [8,10]. Conversely, the intrinsic NL
Hall conductivity [11,12] provides information on the Berry
connection polarizability (BCP). Interestingly, it can sense the
orientation of the Néel vector in parity-time reversal symmet-
ric systems [9].

Most of the transport coefficients are extrinsic. In these
extrinsic conductivities, the information about the electronic
state of the system is entangled with the effect of disorder.
This has motivated the search for intrinsic (scattering-
independent) transport coefficients. In the linear-response
regime, several intrinsic Hall conductivities are known, such
as the anomalous Hall [13–15], spin Hall [16–18], and
quantum anomalous Hall [19,20] conductivities. Conversely,
intrinsic responses in the NL regime are relatively less ex-
plored. Very recently, with the discovery of an intrinsic NL
BCP Hall (BCPH) conductivity [11], this field has started to
flourish.
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In this Letter, we predict an intrinsic second-order NL
conductivity, which gives rise to a dissipative current. This
second-order NL conductivity can be expressed as

σ BCPD
a;bc = e3

h̄

∑
m,p,k

∫
[dk] fm

[
∂aG̃bc

mp + ∂bG̃ac
mp + ∂cG̃ab

mp

]
. (1)

Here, fm is the Fermi function for the mth band, the elec-
tronic charge is −e (with e > 0), εmp = εm − εp is the
energy difference between bands, ∂a ≡ ∂/∂ka, and [dk] =
dd k/(2π )d is the integration measure for a d-dimensional
system. The quantity G̃bc

mp = Gbc
mp/εmp is the band normalized

band-resolved quantum metric (QM) often called the Berry
connection polarizability (BCP) [12]. The gauge invariant
quantum metric Gbc

mp is the real part of the quantum geometric
tensor, Qbc

mp = Rb
pmRc

mp; Gbc
mp = 1

2 (Rb
pmRc

mp + Rb
mpRc

pm) [see
Sec. I of the Supplemental material (SM) [21]. Here, Rmp =
i〈um |∇kup〉 is the interband Berry connection with |up〉 being
the cell periodic part of the electron wave function. We refer
to the conductivity in Eq. (1) as the BCP-induced dissipative
(BCPD) NL conductivity. The predicted BCPD conductivity
does not contribute to a purely Hall response. This can be con-
firmed by constructing a nonlinear purely Hall conductivity
following Ref. [22] as σHall = σa;bc − σb;ac (or σa;bc − σc;ba). It
can be easily checked that the Hall conductivity corresponding
to Eq. (1) vanishes identically. Its significance is manifold.
The interband coherence effects are very strong in Hall re-
sponses such as the anomalous Hall effect [23], but typically
not in longitudinal responses. For a clean system, the only
interband coherence effect known in longitudinal transport is
zitterbewegung [23], which only occurs when the chemical
potential lies at the Dirac point [24]. Since, in practice, the
Dirac point is always disordered, the intrinsic contribution to
zitterbewegung is, for all purposes, unobservable. Hence the
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FIG. 1. A schematic of all four different second-order NL trans-
port responses in the dc limit. The two contributions in the top row
depend on the scattering time. The Drude conductivity arises from
the second-order correction to the distribution function and the band
gradient velocity. In contrast, the anomalous Hall conductivity arises
from the first-order correction to the distribution function and the
anomalous Hall velocity. The two intrinsic contributions are shown
in the bottom row. The left panel represents the nonlinear BCP
Hall conductivity. The right panel shows the NL BCP dissipative
conductivity.

BCPD conductivity can be regarded as an intrinsic quantum
coherence effect in longitudinal transport in a doped system.
The effect is traced to the Fermi surface and represents a
quantum coherence effect in multiband systems induced by
the electric field.

We calculate the second-order NL current within the
framework of the quantum kinetic theory for the density ma-
trix [23,25–32]. Our quantum kinetic theory based treatment
of the electric field interaction in the length gauge provides
a complete picture of the NL responses, as summarized in
Fig. 1. This approach includes NL electric field corrections to
electron dynamics, which is missed in methods combining the
first-order equation of motion of the charge carriers with the
nonequilibrium distribution function [33]. The intrinsic con-
ductivity defined in Eq. (1) vanishes in the presence of either
spatial inversion symmetry (P) or time-reversal symmetry
(T ). This can be verified from the explicit form of Eq. (1). In
the presence of either T symmetry or P symmetry, the energy
dispersion is an even function of the momentum while the
band-resolved quantum metric satisfies Gbc

mp(−k) = Gbc
mp(k).

This combines to make Eq. (1) identically zero. Therefore, for
the finite BCPD conductivity, both T and P must be broken.

QM-induced velocity as the origin of BCPD current. In
the semiclassical picture, the current is given by the product
of the single-band velocity and the corresponding nonequi-
librium distribution function of that band. Accordingly, the
NL Drude conductivity appears from band gradient veloc-
ity (vBG

a = ∂aε/h̄) and the second-order distribution function
f2 = e2τ 2∂b∂c f EbEc, where Eb/c are the components of the
electric field. The NL anomalous Hall conductivity arises
from the electric-field-induced anomalous velocity [34,35]
vAHE = e(E × �)/h̄ and the first-order distribution function

f1 = eτ∂b f Eb. The intrinsic BCPH conductivity arises from
the correction of anomalous velocity due to electric field [11],
vBCPH = e(E × �E )/h̄, where �E is the correction in the
Berry curvature. Similarly, we attribute the BCPD conduc-
tivity to a new electric-field-induced gauge invariant velocity
called the QM-induced velocity. For the mth band, it is given
by

vBCPD
m,a = −e2

h̄

∑
p�=m

[
∂aG̃bc

mp + ∂bG̃ac
mp + ∂cG̃ab

mp

]
EbEc. (2)

In contrast to the anomalous velocity and the BCPH velocity,
the QM-induced BCPD velocity has both the longitudinal
and the transverse components. It arises from the interband
coherence effects.

Quantum kinetic theory of the second-order current. In
the quantum kinetic theory framework, the NL current is
calculated using j (2)

a = −e
∑

m,p va
pmρ (2)

mp. Here, va
pm and ρ (2)

mp
are the velocity and the second-order density operator in the
band basis of the unperturbed Hamiltonian, H0 |un〉 = εn |un〉.
The velocity operator v̂ = (i/h̄)[H0, r]. In the crystal mo-
mentum representation, it reduces to va

pm = h̄−1(∂aεpδpm +
iRa

pmεpm). Here, the first term arises due to the intraband mo-
tion of the electron and the second term arises from interband
coherence [36,37].

The single-particle density matrix is obtained by starting
from the Liouville–von Neumann equation with the Hamil-
tonian H = H0 + HE . Here, HE = eE · r is the correction
to the Hamiltonian induced by the electric field. The NL re-
sponses of various orders are explored by expanding the den-
sity matrix perturbatively in orders of the electric field, ρ =
ρ (1) + ρ (2) · · · + ρ (N ), where in general we have ρ (N ) ∼ |E|N .
The solution of the quantum kinetic equation is given by [26]

ih̄ρ̃ (N+1)(t ) = e
∫ t

−∞
dt ′e

i
h̄ H0t ′

E(t ′) · [r, ρ (N )(t ′)]e− i
h̄ H0t ′

.

(3)

In the following, we consider E(t ) = Ee−iωt e−η|t | (adiabatic
switching approach) and finally put ω = 0 for the dc
transport results. The tilde represents the density matrix
in the interaction picture. We assume the zeroth-order (or
equilibrium) density matrix to be ρ (0)

mp = fmδmp, where
fm = [1 + eβ(εm−μ)]−1 is the Fermi-Dirac distribution with
β = 1/(kBT ), kB is the Boltzmann constant, T is the absolute
temperature, and μ is the chemical potential. For convenience,
we express the second-order density matrix as a sum of four
parts [26,31]: two in the diagonal ρdd

mm, ρdo
mm and two in the

off-diagonal ρod
mp and ρoo

mp sector. Here, the first superscript
indicates the diagonal (d) or off-diagonal (o) nature of the
second-order density matrix. The second superscript indicates
the corresponding contribution from the first-order density
matrix, i.e., ρ (1) inside the commutator of the right-hand side
of Eq. (3) (see Sec. II of the SM [21]).

The second-order current can be separated into three
parts: j (2)

a = j (2)
a (τ 0) + j (2)

a (τ 1) + j (2)
a (τ 2). The element

ρdd
mm does not contribute to any intrinsic current, while all

the other elements contribute. We denote the intrinsic part
stemming from ρdo

mm, ρod
mp, and ρoo

mp as jint,do
a , jint,od

a , and jint,oo
a ,

respectively. These three provide the complete set of intrinsic
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contributions to the current jint
a = jint,do

a + jint,od
a + jint,oo

a .
The corresponding intrinsic conductivity is

σ int
a;bc = −e3

h̄

∑
m,p,k

fm
[
∂aG̃bc

mp − 2
(
∂bG̃ac

mp + ∂cG̃ab
mp

)]
. (4)

For calculation details, see Sec. III of the SM [21]. This
is the main result of our Letter and the physically relevant
nonlinear intrinsic conductivity. Comparing this intrinsic
contribution to the existing semiclassical results for the
intrinsic conductivity [11], we find that it naturally separates
into (dissipationless) Hall and dissipative components [38] as
σ int

a;bc = σ BCPH
a;bc + σ BCPD

a;bc . Here, the BCPH part represents the
purely Hall response and is given by [9,11,12]

σ BCPH
a;bc = −e3

h̄

∑
m,p,k

fm
[
2∂aG̃bc

mp − (
∂bG̃ac

mp + ∂cG̃ab
mp

)]
, (5)

and the other part, which represents the dissipative response,
is given in Eq. (1). We would like to mention that G̃ used in
this Letter is half of what has been denoted as G in Ref. [11].
Furthermore, to compare our results with Ref. [11], we sym-
metrize their results [39] in the field (last two) indices. We em-
phasize that although the purely Hall conductivity in Eq. (5)
and the BCPD contributions require the same fundamental
symmetry restriction, the constraints of the crystalline sym-
metries are different. Therefore even if the purely Hall current
vanishes, the contribution from Eq. (1) can still be finite.

Tilted massive Dirac system. We choose the tilted Dirac
system as it offers several insights into different NL BCPD
conductivity contributions while being analytically tractable.
The Hamiltonian we consider is given by [33]

H = vF (kxσy − kyσx ) + vt kyσ0 + �σz. (6)

Here, vF is the Fermi velocity, σi’s are the Pauli matrices rep-
resenting the sublattice degree of freedom, � is the gap in the
system, and the vt term introduces tilt along the ky axis. This
Hamiltonian breaks both T and P symmetry. The dispersion
for this two-band model is given by ε± = vt ky ± ε0, where
ε0 = (v2

F k2 + �2)1/2 with k = (k2
x + k2

y )1/2. The various ele-
ments of the quantum metric for this model Hamiltonian are
calculated to be(Gxx

cv Gxy
cv

Gyx
cv Gyy

cv

)
= v2

F

4ε4
0

(
k2

y v
2
F + �2 −v2

F kxky

−v2
F kxky k2

x v
2
F + �2

)
. (7)

The quantum metric for this model is independent of the tilt
velocity as expected. In contrast to the Berry curvature, the
gap parameter � is not essential to have a finite quantum met-
ric. In the context of two-dimensional (2D) hexagonal Dirac
systems such as graphene, the gap opening is associated with
inversion symmetry breaking. For graphene, the inversion
symmetry breaking is physically associated with the A and the
B sublattices having different on-site potentials induced by the
substrate. This highlights that the quantum metric can be finite
even in the presence of both the P and T symmetries.

We present the distribution of the band geometric quanti-
ties in the momentum space in Fig. 2. Figure 2(a) shows a
schematic of the dispersion of the tilted massive Dirac model.
In Fig. 2(b), we have shown the BCPH dipole component
BCPH

yxx for the valence band. The BCPH dipole (for band m)

FIG. 2. (a) Schematic of the dispersion of the tilted massive
Dirac model. (b), (c) The momentum space distribution of the BCPH
and BCPD components of the dipoles. They are in units of eV−1 Å−3.
(d) Variation of the nonzero BCPH contributions with chemical po-
tential, μ. (e) The BCP-induced NL dissipative conductivities. The
various parameters for the Hamiltonian are chosen to be � = 0.1 eV,
vt = 0.1 eV Å, and vF = 1 eV Å. We have considered temperature
T = 50 K.

is defined as [12]

BCPH
abc,m =

∑
p

[
2∂aG̃bc

mp − ∂bG̃ac
mp − ∂cG̃ab

mp

]
fm. (8)

We note that the component of the BCP dipole show a
dipolelike behavior in the momentum space distribution [see
Fig. 2(b)]. Similarly, for the BCPD conductivity, we have
defined the quantum metric-dependent BCPD dipole (for band
m) as

BCPD
abc,m =

∑
p

(
∂aG̃bc

mp + ∂bG̃ac
mp + ∂cG̃ab

mp

)
fm. (9)

We have plotted the BCPD
yyy component in Fig. 2(c), and it

shows dipolar behavior.
We have calculated the intrinsic NL transport coefficients

for this model Hamiltonian, in the small tilt limit vt/vF 

1. Assuming μ > � and defining r = �/μ for brevity, we
obtain for the conduction band (see Sec. V of SM [21] for
details)

σ BCPD
y;yy = 15e3vt

128π h̄μ2
[1 + 2r2 − 3r4], (10)

σ BCPH
y;xx = − e3vt

8π h̄μ2
[1 − r2]. (11)

Both the BCPH and the BCPD conductivities can be finite
even in the absence of a gap, i.e., in the limit � → 0 or r → 0
with finite μ. This can be understood from the fact that in
contrast to the Berry curvature, the quantum metric can be
finite even in the presence of both of the T and the P sym-
metries. However, both of these quantities depend on the tilt
velocity and vanish if vt → 0. In Fig. 2, we have shown both
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the intrinsic conductivities. Both these conductivities change
their sign when going from the valence band to the conduction
band. Since the BCPH and BCPD conductivities are Fermi
surface effects, it is expected that they will vanish in the band
gap.

PT -symmetric CuMnAs. CuMnAs has antiferromagnetic
ordering, with opposite spins lying on a bipartite lattice. Such
an arrangement breaks the P as well as the T symmetry
locally. However, the combined PT symmetry is preserved
by the exchange of the sublattices with the flip of oppositely
aligned spins [31]. The model Hamiltonian for CuMnAs is
given by

H(k) =
(

ε0(k) + hA(k) · σ VAB(k)
VAB(k) ε0(k) + hB(k) · σ

)
. (12)

Here, ε0(k) = −t (cos kx + cos ky) and VAB(k) = −2t̃ cos
(kx/2) cos(ky/2), where t and t̃ denote hopping between
orbitals of the same and different sublattices, respectively.
The sublattice-dependent spin-orbit coupling and the
magnetization field are included in hB(k) = −hA(k), where
hA(k) = {hx

AFM − αR sin ky + αD sin ky, hy
AFM + αR sin kx +

αD sin kx, hz
AFM}. Here, αR and αD represent the Rashba and

the Dresselhaus spin-orbit coupling, respectively.
Depending on the various parameters of the Hamiltonian,

one can have an insulating state, a gapless state, or a gapped
Dirac state as the ground state. Here, we work with the
gapped Dirac phase, where two gapped Dirac points appear
near the zone boundary at the extremes of the kx axis in
the positive half of the ky axis as shown in Fig. 3(a). We
have highlighted the corresponding BCPH dipole in Fig. 3(b)
and BCPD dipole in Fig. 3(c), respectively, in the vicinity of
(kx, ky) = (1, 0.5)π . To demonstrate the intrinsic Hall and
longitudinal conductivity, we show the μ dependence of the
BCPH conductivity along with the NL BCPD conductivity
in Fig. 3. We find that the BCPH conductivity σH = (σy;xx −
σx;yx ) is nonzero in this system. More importantly, the NL
BCPD conductivity, induced by the QM contribution, is also
nonzero.

Discussion. The recent interest in intrinsic contributions to
the second-order NL conductivities was triggered by the pre-
diction of an intrinsic NL anomalous Hall effect in Ref. [11]
using the semiclassical wave-packet formalism. Since then,
this problem has been approached using different methods.
Unfortunately, different approaches lead to slightly different
results. For instance, using the velocity gauge approach, a
Fermi sea contribution in the NL conductivity was reported
in Ref. [39]. A noncyclic longitudinal conductivity has been
obtained in Refs. [39,40], which is attributed to the mixed
axial-gravitational anomaly [41]. An in-gap NL Hall con-
ductivity has been proposed in Ref. [42]. Green function
approach also has been used to calculate the NL conductiv-
ities in Ref. [43]. In the length gauge approach, we find that
Refs. [4,44,45] also obtained an intrinsic NL conductivity. An
intrinsic scattering time-independent photogalvanic response
was reported in Refs. [31,32].

In our calculation, we find that the choice of relaxation time
is crucial in the nonlinear regime. If we consider τ instead
of τ/2 for the second-order density matrix, then ρ int,do →
2ρ int,do, ρ int,od → 1

2ρ int,od, and ρoo remains unchanged.

FIG. 3. (a) The energy gap between the conduction and the
valence band in units of eV. Note the gapped Dirac points near
(kx, ky ) = (±1, 0.5)π and (kx, ky ) = (0, 0.8)π . Near (±1, 0.5)π , the
BCP Hall dipole is shown in (b), and the BCP longitudinal dipole
is shown in (c). They are in units of eV−1 Å−3. d) The chemical
potential dependence of the NL Hall conductivity in which the con-
tributions are induced by the BCP Hall dipole. (e) The chemical
potential dependence of the longitudinal nonlinear conductivity in-
duced by the BCP longitudinal dipole. We have used the Hamiltonian
parameters t = 0.08 eV and t̃ = 1 eV. The other parameters are
αR = 0.8, αD = 0, and hAFM = (0.85, 0, 0) eV. For the conductivity
calculation we have considered temperature T = 50 K.

Although this reproduces the purely Hall contribution of
Ref. [11], it inevitably it leads to an in-gap dissipative current
of the form ja,gap = e3

h̄

∑
m,p,k fm(∂aGbc

mp)/ωmpEbEc which is
unphysical. This has also been highlighted in Refs. [32,39,46].
Using the adiabatic perturbation theory approach within the
density matrix framework, we find that the intrinsic Hall re-
sponse of the systems is only dictated by the BCP contribution
predicted by Gao et al. [11]. The additional NL conductivity
we obtained is cyclic in all the spatial indices. We did not
obtain any in-gap conductivity (neither Hall nor longitudinal).

Conclusion. To conclude, we unravel the physics of in-
terband coherence due to the electric field in intrinsic NL
transport using the quantum kinetic theory framework. In
addition to providing the quantum kinetic theory of recently
discovered BCP-induced NL Hall conductivity, here we pre-
dict a different intrinsic NL conductivity. Remarkably, this
conductivity is dissipative and gives rise to an intrinsic lon-
gitudinal current which we termed BCPD conductivity. This
current brings another term to the intrinsic NL effect, and,
more importantly, it is an example of longitudinal transport
arising from quantum coherence effects in doped systems.

This conductivity broadens our present understanding of
NL transport phenomena. Following our electronic trans-
port calculations, thermal and thermoelectric [47–49] intrinsic
transport may also display interesting NL effects. Nontrivial
physics may additionally emerge in the presence of magnetic
fields with previously unexplored intrinsic magnetotransport
phenomena [11,50].
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