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We study the energies and optical spectra of excitons in twisted bilayers of anisotropic van der Waals
semiconductors exhibiting moiré patterns, taking phosphorene as a case study. Leveraging the scale separation
between the moiré length scale and the exciton Bohr radii, we introduce a continuous model for Wannier
excitons that incorporates the spatial variation of their binding energies. Our calculations reveal a dimensionality
crossover for the exciton states, driven by the combined dispersion and moiré potential anisotropies, from
quantum dot lattices at twist angles θ < θ∗, to quantum wire arrays at θ > θ∗, with crossover angle θ∗ = 4◦.
We identify clear signatures of this dimensionality crossover in the twist angle dependence of the excitonic
absorption spectra, which allows experimental verification of our theoretical results through standard optical
measurements. Our results establish two-dimensional anisotropic moiré semiconductors as versatile solid-state
platforms for exploring bosonic correlations across different dimensionalities.
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Introduction. Moiré heterostructures of two-dimensional
(2D) semiconductors have recently emerged as solid-state
quantum simulators [1], exhibiting multiple strongly corre-
lated states of fermionic [2–5], bosonic [6,7], and mixed
Fermi-Bose [8] matter. Heterostructures based on hexagonal
crystals, such as transition-metal dichalcogenides (TMDs),
are known to realize generalized Hubbard models for charge
carriers and excitons [9–11], where strong correlations arise
due to large on-site interaction to tunneling ratios between
neighboring superlattice sites, controlled by the twist angle.
More recently, anisotropic moiré semiconductors with rect-
angular unit cells have been predicted [12–14] and experi-
mentally verified [5] to host electronic Tomonaga-Luttinger
liquids. In these materials, including phosphorene, group-IV
monochalcogenides (e.g., GeSe and SnSe), and 1T ′-phase
TMDs, the moiré superlattice strongly amplifies the struc-
tural and band anisotropies, resulting in one-dimensional
(1D) conduction and valence states with quantum-wire-like
spatial profiles, where correlations arise due to the strong
lateral confinement [15]. Crossovers from this Tomonaga-
Luttinger regime into both an anisotropic Hubbard and
a 2D dispersive regime are possible by decreasing and
increasing the interlayer twist angle, respectively [14,16],
making moiré anisotropic semiconductors promising plat-
forms for exploring strong correlations between zero-, one-,
and two-dimensional fermions. However, the effects of these
dimensionality crossovers remain unexplored in the case of
the ubiquitous bosonic quasiparticle arising in 2D semicon-
ductors: the exciton.
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In this Letter, twisted bilayers of anisotropic 2D semicon-
ductors are established as versatile platforms for exploring
excitonic physics across dimensionalities. Taking twisted
bilayer phosphorene as a case study, we introduce a fully
parametrized continuous Hamiltonian for Wannier excitons in
the resulting moiré superlattice (mSL), based on our model
for carriers of Ref. [14], and which relies only on a clear
scale separation between the excitonic Bohr radii and the
moiré wavelength. Numerical solution of our model reveals a
dimensionality crossover [17,18] for the low-energy excitons,
going from quantum-dot-like states for twist angles θ < θ∗
to quantum-wire-like states for θ > θ∗, with a theoretical
crossover angle θ∗ = 4◦. We expect that our results can be
extended to excitons in moiré heterostructures of group-IV
monochalcogenides, which are isoelectronic [19] with, and
structurally similar to phosphorene.

Model. Phosphorene, a single layer of black phosphorus,
is a direct-gap 2D semiconductor known for its strongly
anisotropic dispersion, high carrier mobility, and strong lin-
ear optical dichroism [20]. Structurally, phosphorene has a
puckered structure, with a four-atom rectangular unit cell
described by the C2h point symmetry group [21] [Fig. 1(a)],
with estimated lattice constants [14] ax = 3.296 Å and ay =
4.590 Å. Its conduction- and valence-band extrema occur at
the � point of the Brillouin zone, with Bloch states that trans-
form as the Bu and Ag irreducible representations of group
C2h, respectively. This is in stark contrast with TMDs, whose
band extrema occur at the ±K valleys, thus introducing a
momentum mismatch between valley carriers in twisted struc-
tures [22,23]. Thus far, the use of phosphorene in twistronics
has been hindered by its low stability in air and water [24],
which requires the use of inert atmospheres and special dry-
transfer techniques [25]. Nonetheless, recent successes in the
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FIG. 1. (a) Top and side views of the phosphorene crystal struc-
ture, with its zigzag (armchair) direction along the x̂ (ŷ) axis. The unit
cell is marked by the red, dashed rectangle. The four high-symmetry
registries of bilayer phosphorene are shown on the right. (b) Moiré
Bragg vectors and the corresponding moiré Brillouin zone (mBZ).
Symmetry points are labeled as γ , x, s, and y. (c) Schematic of
the two possible intra- and (d) interlayer excitons. Electrons (holes)
are indicated by a solid (empty) circle. Wavy lines indicate the
electrostatic interaction binding the electron-hole pair, with a binding
energy εX or εIX.

fabrication of twisted structures [25–27] suggest that
phosphorene- and group-IV monochalcogenide-based [28]
twistronics may now be possible.

We consider the moiré pattern formed in a phosphorene
bilayer with a small relative twist angle θ � 6◦ and large
moiré supercell (mSC) containing more than 100 atomic unit
cells. Every region in the mSC, centered at some position r
along the sample plane, is locally described by its approximate
commensurate stacking, fully defined by an in-plane offset
vector r0(r) and the local interlayer distance d[r0(r)]. The
primitive Bragg vectors of the mSL are

g1 ≈ 2πθ

ax
ŷ, g2 ≈ −2πθ

ay
x̂, (1)

and define the moiré Brillouin zone (mBZ) shown in Fig. 1(b).
The corresponding mSL basis vectors are

aM
1 ≈ ax

θ
ŷ, aM

2 ≈ −ay

θ
x̂. (2)

To study the exciton states of the twisted bilayer, we start
from the continuous moiré potential model for �-point con-
duction (c) and valence (v) electrons introduced in Ref. [14]:

Hm =
∑
α,λ

∫
d2r ελ

α (r)ϕ†
αλ(r)ϕαλ(r)

+
∑

α

∫
d2r[Tα (r)ϕ†

αt (r)ϕαb(r) + H.c.], (3)

with ϕαλ(r) the electron field operator for band α = c, v in
layer λ = t, b (for top and bottom, respectively) at position
r. The position-dependent state energies ελ

α (r) and tunneling

TABLE I. Binding energy interpolation parameters in Eq. (5) for
intra- (X) and interlayer (IX) excitons. All parameters are reported in
meV.

X IX

n εs
X,n εa

X,n εs
IX,n εa

IX,n

1 0.050 0.759 −0.089 0.112
2 0.991 1.120 −1.430 −1.607
3 −0.674 0.204 0.913 0.293
4 −0.638 0.681 0.972 −0.349

εX,0 = −209.392 εIX,0 = −107.833

energies Tα (r) have the mSL periodicity, and as such are
expressed as Fourier series over the mSL reciprocal vectors
gm,n = mg1 + ng2, with m, n integers [29].

We then evaluate the matrix elements of the moiré potential
(3) between the different exciton states of interest that can
be formed in the four-band system. We identify two types
of intralayer excitons (X)—one for each monolayer—and
two types of interlayer excitons (IX), shown schematically in
Figs. 1(c) and 1(d), with two-body wave functions

|Xλ,n(Q)〉 =
∫

d2r
eiQ·r
√
S

∫
d2ρ Xn(ρ)

×ϕ
†
cλ(re[ρ, r])ϕvλ(rh[ρ, r]) |�〉 , (4a)

|IXλ̄
λ,n(Q)〉 =

∫
d2r

eiQ·r
√
S

∫
d2ρ Yn(ρ)

×ϕ
†
cλ̄

(re[ρ, r])ϕvλ(rh[ρ, r]) |�〉 . (4b)

Here, |Xλ,n(Q)〉 represents an intralayer exciton with relative
motion (RM) quantum numbers n, and center of mass (c.m.)
wave vector Q in layer λ; and |IXλ̄

λ,n(Q)〉 an interlayer exciton
formed by a λ-layer hole, and an electron in the opposite
layer λ̄. r and ρ are the c.m. and RM position vectors, respec-
tively; Xn(ρ) and Yn(ρ) are the corresponding electron-hole
RM wave functions; |�〉 represents the phosphorene charge-
neutral ground state, with a full (empty) valence (conduction)
band; and S is the sample surface area.

The exciton binding energies and RM wave functions
are described by the anisotropic Wannier equation, with a
screened interaction corresponding to a bilayer immersed in
a medium with dielectric tensor [30] ε = diag(ε‖, ε‖, ε⊥).
Given its experimental relevance, we consider hexagonal
boron nitride (hBN) encapsulation, using its high-frequency
dielectric constants [31] ε‖ = 5, ε⊥ = 3 [32,33]). Interac-
tions in the bilayer depend on the interlayer distance [34,35]
d[r0(r)], which varies spatially according to the local stacking
r0(r) [Fig. 2(a)], making the binding energies and RM wave
functions position dependent within the continuous approxi-
mation. As the stacking vector r0(r) varies slowly across the
moiré supercell over length scales of the order of the moiré
periodicity, so does the interlayer distance. By comparison,
the excitonic RM wave-function extension is only ∼10 Å
[36]. This clear scale separation allows us to treat the exciton
binding energies as adiabatic functions of position, effectively
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FIG. 2. (a) Interlayer distance d (top) and absolute value of exciton binding energies |ε| (bottom) at 13 different stacking configurations
across the mSC, including the high-symmetry points AA, HH, BA, and HA. For both intralayer (εX, blue) and interlayer (εIX, red) binding
energies the fitting function (5) is shown as solid lines with parameters shown in Table I. (b) Interlayer exciton binding energy as a function
of position for the twisted phosphorene bilayer resulting from the interpolation (5). (c) Effective moiré potential for excitons, where potential
wells are formed at the HH mSL regions. For both (b) and (c), x and y axes are scaled with respect to the superlattice parameters aM

2 and aM
1 ,

respectively. The mSC and high-symmetry regions are labeled.

representing scalar potentials for intra- and interlayer excitons
[37], εX(r) and εIX(r), respectively.

The moiré pattern contains four high-symmetry stacking
configurations, labeled AA, HH, HA, and BA in Figs. 1(a) and
2. We have solved the anisotropic Wannier equation locally at
these four, and nine other intermediate regions of the mSC
[29], using a semianalytical direct diagonalization method
[38] that has proven successful for studying excitons in 2D
semiconductors [35,36,39,40]. The calculated local binding
energies across the mSC are reported in Fig. 2(a), along
with the corresponding interlayer distances, from Ref. [14].
Whereas a Rydberg-like sequence is obtained for each local
registry, here we focus only on the lowest X and IX states,
henceforth called 1s excitons [41]. Figure 2(a) shows opposite
trends for the X and IX binding energies as functions of
the interlayer distance, explained as follows: the screening
by layer λ̄ of the electron-hole interaction in layer λ is re-
duced as d increases, leading to a larger |εX|. By contrast,
a larger d increases the electron-hole separation in an IX
state, in detriment of the interlayer interaction, thus reducing
|εIX|. The scalar potentials εμ(r) (μ = X, IX) are obtained
by interpolating the stacking dependence of the binding
energies as

εμ(r) = εμ,0 +
4∑

n=1

[
εs
μ,n cos(gn · r) + εa

μ,n sin(gn · r)
]
, (5)

with the fitting parameters of Table I [solid lines in Fig. 2(a)].
The spatial variation of the extrapolated IX binding energy (5)
across the moiré superlattice is shown in Fig. 2(b).

Computing the matrix elements of (3), including (5), in
the two-particle basis (4), we arrive at the effective moiré
potential for excitons

Hm(r) =

⎛
⎜⎜⎝

EX(r) 0 T̃c(r) −T̃v (r)
0 EX(r) −T̃v (r) T̃c(r)

T̃c(r) −T̃v (r) EIX(r) 0
−T̃v (r) T̃c(r) 0 EIX(r)

⎞
⎟⎟⎠, (6)

with the basis ordering {|Xb〉 , |Xt 〉 , |IXt
b〉 , |IXb

t 〉}, and with
tunneling functions T̃α , renormalized by the overlap between
X and IX RM wave functions. We have defined

Eμ(r) = E (0) + δεc(r) − δεv (r) + εμ(r), (7)

containing the position-dependent conduction- and valence-
band edge energies δεα (r), and binding energy εμ(r).
Here, E (0) = 2 eV is the monolayer phosphorene band gap,
extracted from ab initio calculations [42]. All terms in (6) are
given explicitly in the Supplemental Material [29].

To visualize the effects of the moiré potential (6) on
the exciton states (4), we have computed the lowest-energy
eigenvalue of Hm(r) at each supercell position r. The spatial
variation of this eigenvalue represents an effective potential
landscape [43] for otherwise free excitons propagating in
the twisted phosphorene bilayer. Figure 2(c) shows that this
potential landscape exhibits minima with approximate C2v

point symmetry at HH regions. Below, we show that these po-
tential wells can localize excitons for small twist angles (θ <

4◦), whereas at intermediate angles (4◦ < θ � 10◦) the exci-
tons become delocalized exclusively along the ŷ, or armchair
direction.

Exciton minibands. The total exciton Hamiltonian consists
of (6), plus the exciton kinetic energy

HK (Q′, Q) = δQ′,Q14×4
h̄2

2
QT M−1

0 Q, (8)

with Q the exciton c.m. wave vector, and M−1
0 = diag([mc

x +
mv

x ]−1, [mc
y + mv

y ]−1) the exciton anisotropic inverse mass
tensor (mc

x = 1.12m0, mc
y = 0.46m0, mv

x = 1.61m0 and mv
y =

0.23m0, with m0 the free-electron mass). We have neglected
layer-rotation effects on the inverse mass tensors, thus in-
troducing two sources of error into our calculations: Firstly,
a total error below 3% for both the X and IX c.m. disper-
sions, and for the IX RM energies, at twist angles within the
range of validity of our model. Secondly, the appearance of a
perturbation that couples the IX c.m. and RM degrees of free-
dom, much weaker than either the electron-hole interaction

L201401-3



ISAAC SOLTERO AND DAVID A. RUIZ-TIJERINA PHYSICAL REVIEW B 108, L201401 (2023)

FIG. 3. (a) Exciton miniband structure for twisted phosphorene bilayers encapsulated in hBN with θ = 1◦ and (b) θ = 5◦. The band
colors indicate the intra- and interlayer exciton contents of each eigenstate, with blue (red) corresponding to a pure X (IX) state, and green
to a maximally mixed hX state. (c) Average spatial distributions of the first four excitonic minibands for θ = 1◦ and (d) of the first two
minibands for θ = 5◦. (e) Illustration of the moiré potential wells and their lowest-energy states (offset for clarity), for θ < θ∗ and θ > θ∗. The
approximating anisotropic harmonic oscillator potentials which confine the exciton are shown. (f) Lowest miniband width as a function of the
twist angle. The θ∗ = 4◦ threshold between the 0D and 1D c.m. motion dimensionality regimes is indicated with a vertical line.

or the moiré potential, and which can be neglected as a first
approximation [29]. In addition, we have neglected X disper-
sion nonanalyticities predicted [44] for momenta �0.03 Å−1,
well below the smallest mBZ sizes studied in this Letter.

We numerically diagonalized the total Hamiltonian using
a zone-folding approach [23]: The moiré potential (6) mixes
any X basis function (4a) at wave vector Q with any IX
basis function (4b) at wave vector Qm,n ≡ Q + gm,n. Taking
Q ∈ mBZ, all wave vectors Qm,n can be “folded” onto the
mBZ, and relabeled as states of momenta Q belonging to
a so-called miniband (m, n). In this scheme, the effective
model becomes an independent eigenvalue problem for every
Q ∈ mBZ, which we solved numerically for a large number
of minibands. Convergence to within a 1 meV tolerance was
obtained for the lowest few energy eigenvalues using a total
of 2500 basis states.

Figures 3(a) and 3(b) show the moiré exciton miniband
structures, computed for the representative twist angles θ =
1◦ and 5◦. For θ = 1◦, the lowest few minibands are flat,
corresponding to zero group velocity Bloch states. Intuition
drawn from Fig. 2(c) suggests that these states form arrays
of quantum-dot-like wave functions, localized at HH regions
across the superlattice, with suppressed hopping between
neighboring cells [11]. This is verified in Fig. 3(c), which
shows the mBZ-averaged exciton densities of the first four
minibands of Fig. 3(a). In each case, the localization region

coincides with the potential minima at HH regions of the mSC
[Fig. 2(c)]. The formation of multiple flat bands shows that, at
small twist angles such as θ = 1◦, the moiré potential wells
are deep and wide enough to host several localized states,
with spatial distributions reminiscent of the first few levels of
a harmonic oscillator elongated in the ŷ direction [29].

All moiré excitons computed with our model are linear
superpositions of X and IX states. In Figs. 3(a) and 3(b), we
have color-coded the X and IX contents of each state, with
blue (red) representing a pure X (IX) state, and green repre-
senting a maximally mixed state, known as a hybrid exciton
(hX) [23,45]. hXs are of wide interest for optoelectronics, as
they combine the strong oscillator strength of X’s with the
large electric dipole moment of IX’s, making them simultane-
ously optically active and susceptible to out-of-plane electric
fields. Our results of Fig. 3(a) indicate that all low-energy
moiré excitons in a θ = 1◦ phosphorene bilayer are hX’s, and
thus both bright and tunable.

One-dimensional moiré excitons. Figure 3(b) shows the
computed miniband structure for θ = 5◦, where the first few
bands become dispersive in the ŷ direction, while remaining
flat along the x̂ axis. This indicates moiré excitons delocalized
in the former direction, but confined in the latter, representing
a periodic array of quasi-1D states, reminiscent of quantum
wires. To illustrate this, Fig. 3(d) shows the mBZ-averaged
exciton densities of the first two minibands of Fig. 3(b). In
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FIG. 4. Absorption spectra for light polarized along the x̂
(zigzag) direction for varying θ in hBN-encapsulated twisted phos-
phorene bilayers. The linear fit for the first absorption line is shown
for the θ < 4◦ regime (red) and for the θ > 4◦ regime (blue).

addition, Fig. 3(b) also shows that all low-energy moiré ex-
citons remain maximally mixed hX’s at intermediate twist
angles.

Delocalization along the ŷ direction is mainly a conse-
quence of the lighter exciton mass in this direction (Mxx =
2.73m0, Myy = 0.69m0). The mSC shrinks as the twist angle
increases, resulting in progressively narrower potential wells
that eventually become unable to confine the moiré excitons.
This occurs first along the ŷ, or armchair axis, despite the
larger width of the potential wells in that direction [Fig. 2(c)],
due to the much lighter Myy, as illustrated in Fig. 3(e). This
is in stark contrast with the case of twisted TMD bilayers
in the absence of uniaxial strain [46], where delocaliza-
tion of moiré trapped excitons and carriers is fully isotropic
[11,47].

To quantitatively describe the crossover between the zero-
dimensional (0D) and 1D moiré exciton states, Fig. 3(f) shows
the evolution of the lowest moiré exciton miniband width with
twist angle. We propose a band width of 10 meV as an em-
pirical threshold, below which a band can be considered flat,
based on the typical energy broadenings observed in angle-
resolved photoemission spectroscopy (ARPES) experiments
[48,49]. The 0D-1D crossover angle θ∗ can then be defined
as the twist angle for which the lowest miniband width is
10 meV. We find that θ∗ = 4◦, well within the range of validity
of our model. A subsequent 1D-2D crossover is expected at
twist angles beyond the validity of our model [50].

Moiré optical signatures. We have found direct optical
signatures of the 0D-1D crossover, experimentally accessi-
ble through optical absorption measurements. The optical
selection rules for both intra- and interlayer excitons in the
phosphorene bilayer [29] are identical to those of monolayer
phosphorene [20,21,51,52]. Hence, all of our photoabsorption
calculations correspond to linearly polarized light along the x̂
or zigzag direction of the phosphorene structure [Fig. 1(a)].
Figure 4 shows the evolution of the absorption spectrum of 1s
excitons, as a function of twist angle. The presence of moiré
excitons can be inferred at first glance by the presence of
multiple absorption lines [45,53–55] at energies close to that
of the monolayer X state. These lines correspond to γ -point
hX’s, and their oscillator strengths are dictated by the mag-
nitude of their �-point X component in their wave functions.

Focusing on the two leftmost absorption lines in Fig. 4, we
see that both blueshift linearly with increasing twist angle,
before they exhibit a sudden decrease in slope, treating θ as
the abscissa. Figure 4 shows that the twist angle at which the
slope change occurs for the first absorption line coincides with
our estimated dimensional crossover angle θ∗ = 4◦. For the
second line, this occurs slightly below 2◦.

The absorption-line twist angle dependence can be
understood in terms of the dimensional crossover of the moiré
exciton states. In the 0D regime, the moiré exciton energies
are well approximated by the zero-point energy of the con-
fining potential wells, as illustrated on the top of Fig. 3(f).
Since the confining potential has approximately rectangular
(C2v) symmetry, the zero-point energy is separable into two
components,

h̄ωx(θ )

2
+ h̄ωy(θ )

2
=

(
h̄ω0

x

2
+ h̄ω0

y

2

)
+ (σx + σy)θ, (9)

both of which increase linearly with slopes σx, σy > 0 as the
twist angle grows and the potential wells narrow. Passing the
threshold angle θ∗ into the 1D regime, the zero-point energy
component h̄ωx(θ )/2 is replaced by the kinetic energy along
the armchair direction, which vanishes for the lowest γ -point
state. The energy of the optically active 1D moiré exciton then
varies with θ as σyθ , with a reduced slope σy < σx + σy.

Conclusions. We have predicted a dimensional crossover
for moiré exciton states in twisted phosphorene bilay-
ers, from quantum-dot-like (0D) to quantum-wire-like (1D)
arrays, at an experimentally accessible twist angle of θ∗ = 4◦.
Our calculations show that the effective excitonic dimension
can be identified experimentally by looking at the twist-
angle dependence of the bilayer’s optical absorption spectrum,
which bears signatures of the dimensionality crossover. Fur-
ther experimental evidence may be found through exciton
diffusion measurements [56–60], where the extreme group
velocity anisotropy may lead to unidirectional diffusion
along the phosphorene armchair axis for twist angles above
θ∗. We have established that the predicted dimensionality
crossover is driven by the large anisotropies of the car-
rier dispersions in the monolayer material, magnified by the
moiré potential. Therefore, we expect analogous effects in
other anisotropic 2D semiconductors, such as the group-IV
monochalcogenides. Whereas lateral confinement of 2D ex-
citons has been reported in strained TMD-based systems
[46,61], phosphorene offers a twist-angle controlled crossover
into this 1D regime while retaining its equilibrium crystal
structure. Our results highlight twisted bilayers of anisotropic
2D semiconductors as prime candidates for engineering versa-
tile quantum many-body simulators, offering control over the
system dimensionality.
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