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Giant anisotropic band flattening in twisted �-valley semiconductor bilayers
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We propose a general theory of anisotropic band flattening in moiré systems at the � valley. For a two-
dimensional semiconductor with a rectangular unit cell of C2z or mirror symmetries, we find that a larger
effective mass anisotropy η = my/mx of the valence or conduction bands in the monolayer will have a stronger
tendency to be further enhanced in its twisted bilayer. This gives rise to strong anisotropic band flattening and
correlated physics in one dimension (1D) effectively. We predict twisted bilayer black phosphorus (tBBP) has
giant anisotropic flattened moiré bands (η ∼ 104) from ab initio calculations and the continuum model, where the
low-energy physics is described by the weakly coupled array of 1D wires. We further calculate the phase diagram
based on the sliding Luttinger liquid by including the screened Coulomb interactions in tBBP and find a large
parameter space may host the non-Fermi liquid phase. We thus establish tBBP as a promising and experimentally
accessible platform for exploring correlated physics in low dimensions.

DOI: 10.1103/PhysRevB.108.L201120

Introduction. Moiré materials with flat electronic bands
provide an ideal platform for exploring strongly correlated
physics in two dimensions (2D) [1–5]. A paradigm ex-
ample is twisted bilayer graphene at the magic angle [6],
which hosts flat bands and exhibits a variety of interact-
ing phases including superconductors, correlated insulators,
and Chern insulators [7–14]. Similar correlated phases have
been observed in moiré systems of transition metal dichalco-
genides [15–18] and multilayer graphene [19–21]. The
correlated behaviors in moiré systems are associated with
the quenched kinetic energy caused by the moiré pattern, so
strong electron interaction could dominate.

An important correlated phase is the anisotropic non-Fermi
liquid (non-FL), which is the Luttinger liquid (LL) model
generalized to higher dimensions and could arise in 2D sys-
tems consisting of arrays of one-dimensional (1D) quantum
wires [22–28]. Experimentally realizing these coupled wire
arrays perfectly is challenging. Most of the previous efforts
have been made in the context of quasi-1D organic conduc-
tors [29,30]. Recently, such anisotropic correlated phases may
have been observed in twisted bilayer WTe2 [31], which may
host 1D flat bands [32] and exhibit LL behavior in a 2D crys-
tal. The anisotropic band flattening occurs when low-energy
physics is located on the Brillouin zone edge but not at the
zone corner [33–35] and is guaranteed by symmetry. How-
ever, realistic 2D materials fulfilling such requirements are
extremely rare, while large classes of 2D semiconductors have
the valence band top or conduction band bottom occurring at
the � valley, namely, the Brillouin zone center. This motivates
us to study whether the 1D flat band could arise in a twisted
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bilayer of the � valley systems and further identify realistic
platforms in which the LL phase and other exotic phases of
matter may appear.

We develop the theory of anisotropic band flattening in
a twisted bilayer of the � valley system. For a 2D crystal
with a rectangular unit cell of C2z or mirror symmetries, we
find that a larger effective mass anisotropy of the valence
or conduction bands in the monolayer will have a stronger
tendency to be further enhanced in its twisted bilayer. Namely,
the anisotropic band flattening occurs over most of the phase
space if the monolayer has large effective mass anisotropy. We
propose twisted bilayer black phosphorus (tBBP) as a con-
crete example with giant anisotropic flattened moiré bands,
where the low-energy physics is described by the weakly
coupled array of 1D wires from the real-space charge den-
sity calculations. We further calculate the finite temperature
phase diagram based on the screened Coulomb interactions
and propose tBBP as a promising and experimentally ac-
cessible platform for observing exotic non-FL behavior in
2D.

Model. We present band engineering by starting from the
twisted bilayer with generic anisotropic band dispersions in
each layer, where the low-energy physics is at �. The general
theory for the anisotropic band flattening presented here is
generic for any semiconductors with anisotropic electronic
dispersions in the valence or conduction bands. For simplicity,
we first assume that each layer is a nonmagnetic rectangular
lattice with a minimal C2z symmetry. We consider stacking of
two identical layers taking the z axis as a normal direction.
The top and bottom layers are rotated by small angles +ϕ/2
and −ϕ/2 around the z axis, respectively. Here, a1 and a2 are
the Bravais unit vectors of a monolayer rectangular lattice.
Then the twisted moiré pattern has the periodicity of L1 and
L2 as Li = −ẑ × ai/[2 sin(ϕ/2)]. The generic effective model
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FIG. 1. The evolution of effective mass anisotropy η′ of � valley
under moiré pattern. (a) and (b) The ratio η′/η vs �i for twist
angle ϕ = 5◦ and monolayer effective mass anisotropy η = 2 and
6, respectively. (c) Typical moiré band structures indicated by the
symbols in (b). The anisotropic band flattening occurs in the yellow
triangle, and the topmost bands are twofold degenerate from �0 = 0.
a1 = 4.0 Å, a2 = 3.9 Å.

for electrons in such a moiré pattern is written as

Heff =
[

Ht (−i∇) �(r)
�†(r) Hb(−i∇)

]
. (1)

Here, Ht/b are the kinetic energy in the top/bottom layer,
which takes the general form as H�

t/b(k) = k2
x /2mx + k2

y /2my,
with the momentum kx/y ∈ (−π/a1/2, π/a1/2]. The effective
mass anisotropy is defined as η ≡ my/mx. The moiré potential
�(r) is spatially periodic with the periodicity L1 and L2,
which can be Fourier expanded by considering C2z and time
reversal T symmetries of the � valley as

�(r) = �0 +
∑
n,i

�(gn,i ) cos(gn,i · r), (2)

where gn,i denote the moiré reciprocal lattice vectors to the
nth moiré Brillouin zone (mBZ) and �(gn,i ) is real.

Mass anisotropy under moiré pattern. By diagonalizing
Eq. (1), we obtain the moiré band structure. The low-
energy physics still occurs at �, and the effective Hamilto-
nian now becomes Hmoiré

� = k′2
x /2m′

x + k′2
y /2m′

y, where k′
x/y ∈

(−π/L2/1, π/L2/1]. Then we can see how effective mass
anisotropy η′ ≡ m′

y/m′
x evolves under moiré potential. For

simplicity, we only consider gn,i up to the first mBZ, namely,
n = 1, and �(g1,i ) ≡ �i; we set �0 = 0.

Figure 1 shows the effective mass anisotropy ratio η′/η as
a function of �i at twist angle ϕ = 5◦. In Fig. 1(a), we set
monolayer η = 2, with mx = −0.1m0, my = −0.2m0, and m0

is the mass of free electron. In Fig. 1(b), η = 6, with mx =
−0.1m0, my = −0.6m0. In Figs. 1(a) and 1(b), the η′/η = 1
line is colored white, while red and blue regions denote the
effective mass anisotropy is enhanced and suppressed under
the moiré potential, respectively. If the monolayer system
is isotropic η = 1, then η′/η = 1 is along the diagonal line
�1 = �2 in phase space. Two conclusions can be drawn here.
First, as the monolayer anisotropy η gets larger, the area of
anisotropy enhanced part (η/η > 1) of the phase space in the
twisted bilayer becomes bigger. This simply means the more
anisotropic the monolayer system, the stronger the tendency
to get larger anisotropy in its twisted system. Second, as η

becomes larger, the effect of anisotropy enhancement gets
better even when �i is the same. We can see the maximum
of (η′/η)max = 3.3 in Fig. 1(a), while in Fig. 1(b), it becomes
(η′/η)max = 27, even though η of the monolayer is of the same
order of magnitude.

The above mass anisotropy behaviors can be understood
from the band-folding picture perturbatively. When �(r) =
0, the folded band structure is shown in Fig. 1(c), where
the topmost valence bands are degenerate at Brillouin zone
boundaries X′, Y′, and M′. When �(r) �= 0, in the small angle
limit, Ht/b scales as 1/|Li|2 and becomes less important, and
�(r) dominates. Then by treating Ht/b as perturbations, we
can diagonalize Heff in which �(r) is diagonalized:

H̃eff =
[

Ht (−i∇) + |�(r)| 0
0 Hb(−i∇) − |�(r)|

]
. (3)

We can see that |�(r)| plays a role in the potential en-
ergy. Here, |�1| and |�2| are the potential heights along
the a2 and a1 axes, respectively, which open the gap at Y′
and X′. Intuitively, the potential tends to confine the elec-
trons with large effective mass and small kinetic energy
more effectively, while the electrons with small effective
mass and large kinetic energy tend to move freely in such a
potential. The moiré bandwidths along �′-Y′ and �′-X′ are ap-
proximately π2/2|my|L2

1 − |�1|/2 and π2/2|mx|L2
2 − |�2|/2,

respectively. Thus, the mass anisotropy ratio becomes

η′

η
≈ π2 − |mx�2|L2

2

π2 − |my�1|L2
1

≡ 1 − �2/2W1

1 − �1/2W2
, (4)

where W1,2 ≡ π2/2|mx,y|L2
2,1 is the bandwidth along �′-X′,

�′-Y′ of the mBZ. It is not easy to see the relation between
η′/η and η directly. To further simplify Eq. (4), we set L1 ∼
L2 ∼ L and �1 ∼ �2 ∼ λ, then

η′

η
≈ W − λ

W − λη
, (5)

with W ≡ π2/mxL2. Both the numerator and denominator in
Eq. (5) are positive under the perturbative treatment; thus,
when η > 1, η′/η > 1; and when η 	 1, we have (W −
λη) → 0+, then η′/η 	 1. So the guiding principle to have
a stronger anisotropic band flattening is to start with a larger
anisotropy monolayer system.

Black phosphorus. To demonstrate the feasibility of our
theory, we search for realistic materials. A paradigm example
of 2D materials with strong anisotropic electronic dispersion
is black phosphorus [36,37]. The monolayer black phosphorus
has a rectangular lattice with the space group Pmna1′ (No.
53). The symmetry operations include {C2z| 1

2 , 1
2 }, {C2x| 1

2 , 1
2 },

My, and T . As shown in Fig. 2(a), each primitive cell includes
four phosphorus atoms. The low-energy physics is around �

and is contributed from pz orbitals, where we find strong mass
anisotropy mx = −0.2m0 and my = −1.8m0 by fitting with ab
initio calculations in Fig. 1(a), namely, η = 9.

Then we study the moiré band structure of tBBP. The moiré
superlattice is shown in Fig. 2(b). Quite different from the
moiré superlattice of tungsten in twisted WTe2 [31], there
are no clear 1D stripes here. Since the translational symmetry
is broken by the moiré pattern, the interlayer coupling �(r)
only respects My and T symmetries. By expanding to the first
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FIG. 2. Small-angle twisted bilayer black phosphorus (tBBP)
moiré lattice and electronic properties. (a) Crystal structure and band
structure of monolayer black phosphorus; the dashed rectangle in-
dicates the unit cell. (b) Moiré superlattice formed on tBBP, where
colored circles label several high-symmetry local stacking structures,
with in-plane relative shift τAA = 0, τAB’ = a1/2, τAB = a2/2, and
τX = a1/4 + a2/4. (c) The moiré band structure from continuum
model, and (d) the Wannier functions of the two topmost bands,
where the white rectangle labels the size of a moiré unit cell.

mBZ, �(r) can be expressed as

�BP(r) = �0 +
4∑

i=1

�(g1,i ) exp(ig1,i · r),

�(g1,1) = �∗(g1,3) = λ1 + iλ3,

�(g1,2) = �(g1,4) = λ2. (6)

Here, g1,1/2 is the moiré reciprocal lattice vector to the
first mBZ, g1,3/4 = −g1,1/2. Also, �0 and λ j ( j = 1, 2, 3)
are real parameters, which can be obtained by fitting the
band structures from ab initio calculations with untwisted but
shifted configurations such as AA, AB′, AB, and X shown
in Fig. 2(b) [38,39]. We find �0 = 12 meV, λ1 = 137 meV,
λ2 = 13 meV, and λ3 = −10 meV.

The band structure of tBBP with ϕ = 5.4◦ is shown
in Fig. 2(c), where the two topmost valence bands have a
giant anisotropic band flattening of η′ ≈ 2 × 104, as shown
in Fig. 4(c). These two bands are only dispersive along
the �′-Y′ (or X′-M′) direction and dispersionless along
the perpendicular �′-X′ (or Y′-M′) direction. A similar
band structure from ab initio calculations is obtained in the
Supplemental Material [39–41]. In Fig. 2(c), the two topmost
valence bands are from the trapping at two local maximum

FIG. 3. Schematics of array of parallel weakly coupled one-
dimensional (1D) wires. White dashed rectangle denotes the moiré
unit cell, red ellipse is the layer bonding state W+ at the center
of unit cell, blue ellipse is the layer antibonding state W− at the
corner of unit cell. t⊥ and t‖ are the interwire and intrawire hopping,
respectively. V is the long-range Coulomb interaction.

points of moiré potential |�BP(r)|, which are located at
the corner and middle of the unit cell, respectively. The
potentials at these two points are different due to finite �0,
thus leading to splitting of the two topmost bands compared
with degenerate bands with �0 = 0 in Fig. 1(c). We further
construct the maximally localized Wannier functions of these
two bands [42]. As shown in Fig. 2(d), we find the Wannier
state of top band W+ is localized at the center of the moiré
unit cell and represents a layer bonding state for �BP(r) is
positive, while the Wannier state of the second topmost band
W− is localized at the corner of moiré unit cell and is a layer
antibonding state for negative �BP(r). Both of the Wannier
states are highly anisotropic in real space.

Weakly coupled 1D wires array. With giant anisotropic
flatten moiré bands, tBBP now is described by the array of
weakly coupled 1D wires illustrated in Fig. 3, which can
expand the LL physics to 2D. Here, we study the effect of
the Coulomb interaction in this system. The lattice Hamil-
tonian is constructed by projecting the single-particle model
and Coulomb interaction onto the above two maximally lo-
calized Wannier states. Since these Wannier states are well
localized and separated from each other, we only keep the
on-site Hubbard term and long-ranged density-density in-
teraction, and other interactions such as exchange, paired
hopping, and correlated hopping have been neglected. The
bosonized form of the 1D fermion operator is ψs,r, j (x) =
(ζr,s, j/

√
2πε) exp(irkF x) exp[−i(rφs, j − θs, j )], where ε is re-

lated to the intrachain cutoff with the dimension of length,
r = ± stands for the right- and left-moving electrons, s =↑,↓
is the spin index, j denotes the wire number, ζr,s, j is the Kelvin
factor, φs, j is the density variable, and θs, j is the conjugate
phase variable [43,44]. The boson operators for charge and
spin excitations are given by φρ, j = (φ↑, j + φ↓, j )/

√
2 and

φσ, j = (φ↑, j − φ↓, j )/
√

2, respectively, and a similar relation
for the dual θ field. For the array of 1D wires, we can write an
effective Hamiltonian as

H1d = 1

2π�ay

∑
q

∑
β=ρ,σ

uβq2
x

[
Kβ (q)θβ,qθβ,−q

+ 1

Kβ (q)
φβ,qφβ,−q

]
+

∑
j

∫
dx

2Uax

(2πε)2
cos

√
8φ j,σ ,

(7)
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where ax and ay are intrachain and interchain lattice constants,
respectively. Here, � is the system area, U is the Hubbard
interaction strength. We assume the noncommensurate filling;
thus, the Umklapp process in the charge sector of Hubbard
term cannot exist. Also, we only keep the forward scatter-
ing in the long-range density-density interaction [44]. The
Luttinger parameter and velocity are uρKρ = vF , uρ/Kρ =
vF + Uax/π + 2V (q)/πay and uσ Kσ = vF , uσ /Kσ = vF −
Uax/π . Here, V (q) is the Fourier-transformed Coulomb inter-
action. Here, we consider the single-gate-screened Coulomb
interaction with V (q) = [1 − exp(−2dsq)]e2/2εε0q, where
ds is the distance between the sample and gate, we set

ds = 50 nm, and ε is dielectric constant of the substrate. The
spin sector with the bare Luttinger parameter in the attractive
interaction regime (i.e., Kσ > 1) flows to the gapless phase
with Kσ = 1 under the renormalization group (RG), which is
imposed by spin SU(2) symmetry. Thus, the last term in H1d

vanishes [44].
Now we can see H1d with the remaining first term is just

the generic form of sliding LL. The instabilities of this model
under various interaction couplings have been studied pervi-
ously [23–27]. The most relevant interactions are interchain
electron tunneling (ET), charge-density wave (CDW), and
superconducting couplings (SCs), which are expressed as

HET,n ∝
∑
s,r, j

∫
dxψ†

s,r, jψs,r, j+n + H.c. ∝
∑

j

∫
dx

∑
s=↑,↓

cos (φs, j − φs, j+n) cos (θs, j − θs, j+n), (8)

HSC,n ∝
∑

j

∫
dx(ψ†

R,↑, jψ
†
L,↓, j + ψ

†
R,↓, jψ

†
L,↑, j )(ψR,↑, j+nψL,↓, j+n + ψR,↓, j+nψL,↑, j+n) + H.c.

∝
∑

j

∫
dx cos

√
2(θρ, j − θρ, j+n) cos

√
2φσ

j cos
√

2φσ
j+n, (9)

HCDW,n ∝
∑

j

∫
dx(ψ†

R,↑, jψL,↑, j + ψ
†
R,↓, jψL,↓, j )

(
ψ

†
L,↑, j+nψR,↑, j+n + ψ

†
L,↓, j+nψR,↓, j+n

) + H.c.

∝
∑

j

∫
dx cos

√
2(φρ, j − φρ, j+n) cos

√
2φσ

j cos
√

2φσ
j+n. (10)

Here, Hα,n (α = ET, SC, CDW) describe the coupling be-
tween chains separated by a distance of nay. After projecting
the Coulomb interaction V (q) along the chain by V (qx =
0, qy ), we can obtain the scaling dimension �α,n for the cou-
pling strength Jα,n of Hα,n as

�CDW,n =
∫ π

−π

dqy

2π
[1 − cos(nqy)]Kρ (qy) + 1,

�SC,n =
∫ π

−π

dqy

2π
[1 − cos(nqy)]K−1

ρ (qy) + 1,

�ET,n = 1

4
(�SC,n + �CDW,n). (11)

Phase diagram and sliding LL. The screened Coulomb
interaction decays rapidly in real space when the distance
exceeds the screening length. Thus, it is legitimate to consider
only the nearest neighbor (n = 1) coupling for CDW and SC
couplings, while the leading order for ET is n = 2 because the
tunneling between W+ and W− is exactly zero. The subscript
n is now omitted. By varying the dielectric constant ε and
twisting angle ϕ, we find the ET is the most relevant (�ET ≈
1.1), and the CDW coupling is subdominant (�CDW ≈ 1.7),
while the superconductivity is always irrelevant (�SC > 2)
[see Fig. 4(b)]. Therefore, we expect in the array of 1D wires
a crossover from non-FL (namely, sliding LL) behavior to FL
or CDW as the temperature is lowered, as shown in Fig. 4(d).

The finite-temperature phase diagram in tBBP where the
crossover takes place is calculated in Fig. 4(a). The interac-
tions renormalize the coupling strength, and upon rescaling
the RG equation for Jα at tree level, we obtain dJα/dl =
Jα (2 − �α ). Here, JET = t⊥ and JCDW ≈ e2/4πεε0ay. We

determine the crossover scale by the energy at which the
renormalized coupling strength is of order one Jα/W ∼ 1,
where W = 4t‖ is the order of the intrachain bandwidth. Thus,

FIG. 4. (a) Finite-temperature phase diagram vs dielectric con-
stant ε and twist angle ϕ in twisted bilayer black phosphorus (tBBP).
Color shows the transition temperature of the corresponding phase.
For the shaded region, the Hubbard interaction is larger than the
bandwidth, which is inaccessible by the bosonization approach.
(b) The scaling dimension (solid lines) and transition temperature
(dashed lines) of charge-density wave (CDW) and Fermi liquid (FL)
states along the blue dashed line in (a). The single-particle tunneling
is most relevant. (c) t‖, t⊥, and η′/η vs ϕ in tBBP. (d) Schematic of di-
mensional crossover from sliding Luttinger liquid (LL) to CDW/FL.

L201120-4



GIANT ANISOTROPIC BAND FLATTENING IN TWISTED … PHYSICAL REVIEW B 108, L201120 (2023)

Tα ∼ W (Jα/W )1/(2−�α ) [30,44]. Since �α is always >1 for
an interacting system, we see that the temperature scale at
which the crossover takes place is always smaller than the
noninteracting case Tα ∼ Jα . As shown in Fig. 4(a), although
interchain single particle tunneling is the most relevant, there
is still quite a region in the phase diagram where the tran-
sition temperature of the CDW phase is larger than that of
a FL, caused by interchain ET. Meanwhile, the system very
unlikely enters a FL state in the experimentally accessible
low temperature, as shown in Fig. 4(b). Moreover, the energy
scale of the intrachain bandwidth TW in Fig. 4(c) ranges from
90 K (ϕ = 2◦) to 1700 K (ϕ = 6◦). Therefore, we expect
the LL behavior can be observed over a wide temperature
range (TCDW/FL < T < TW) in tBBP. In the shaded region in
Fig. 4(a), the on-site Hubbard U is much larger than the
bandwidth (thus, K2

σ < 0), which invalidates the bosonization
approach, and the system is considered as the Hubbard model,
and this is beyond the current scope of this letter.

Summary. In summary, we propose the guiding prin-
ciple for a stronger anisotropic band flattening in the �

valley moiré system is to start with a larger anisotropy
monolayer system, such as but not limited to the rectan-
gular lattice with C2z or mirror symmetries. We predict

tBBP as a paradigm example with giant anisotropic flat-
tened moiré bands, which provides a highly tunable platform
for studying the weakly coupled 2D array of 1D elec-
tronic structures. The interchain hopping with several orders
of magnitude smaller compared with intrachain hopping in
tBBP gives rise to a wide temperature range to observe
the LL behavior in 2D. The twisted multilayer black phos-
phorus is also expected to host anisotropic flattened 1D
bands. The rich choice of � valley 2D semiconductors
(for example, black arsenic [45]) provides great opportuni-
ties for studying many correlated and topological quantum
phases [23–26,46–50].
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