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Piercing the Dirac spin liquid: From a single monopole to chiral states
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The parton approach for quantum spin liquids gives a transparent description of low-energy elementary
excitations, e.g., spinons and emergent gauge-field fluctuations. The latter ones are directly coupled to the
hopping/pairing of spinons. By using the fermionic representation of the U (1) Dirac state on the kagome lattice
and variational Monte Carlo techniques to include the Gutzwiller projection, we analyze the effect of modifying
the gauge fields in the spinon kinematics. In particular, we construct low-energy monopole excitations, which
are shown to be gapless in the thermodynamic limit. States with a finite number of monopoles or with a finite
density of them are also considered, with different patterns of the gauge fluxes. We show that these chiral states
are not stabilized in the Heisenberg model with nearest-neighbor superexchange couplings, and the Dirac state
corresponds to the lowest-energy ansatz within this family of variational wave functions. Our results support
the idea that spinons with a gapless conical spectrum coexist with gapless monopole excitations, even for the

spin-1/2 case.
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Introduction. Quantum spin models on frustrated low-
dimensional lattices represent a playground to investigate a
variety of different phases of matter and the transitions among
them [1]. Even though a full characterization of their phase
diagrams would require a finite-temperature analysis, in most
cases the knowledge of the ground state and a few low-energy
excitations is enough to obtain important information on the
relevant (low-temperature) behavior. Still, achieving an accu-
rate description of the exact ground state of frustrated spin
models poses itself as a difficult task. Indeed, a faithful charac-
terization can be obtained whenever (a sizable) magnetic order
is present, since here the ground state is well approximated
by a product state, with spins having well-defined expectation
values on each site. By contrast, whenever magnetic order
is significantly suppressed, or even absent, the ground-state
wave function is much more elusive. The most complicated
case is given by the so-called quantum spin liquids, where the
elementary degrees of freedom are no longer the original spin
variables, but emergent particles (spinons) and gauge fields
(visons or magnetic monopoles) [2]. The standard approach
to describe spin liquids is through the parton construction,
where spin operators are represented by using fermionic or
bosonic particles; here, the original Hilbert space is enlarged
and additional gauge fields are introduced [3-5]. Thus, the
resulting model describes fermions or bosons that interact
through gauge fields on a lattice. A spin liquid corresponds to
the deconfined phase of the resulting model, in which particles
(spinons) are free at low energies. In this case, the elementary
excitations of the spin model are fractionalized, i.e., they are
not integer multiples of those of the original constituents. By
contrast, whenever the gauge fields lead to confinement, the
spin liquid is unstable towards some symmetry-breaking phe-
nomenon, most notably the establishment of valence-bond or
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magnetic order [6]. The analysis of these lattice gauge theories
is not easy and requires nonperturbative methods [7-9], which
also include a detailed examination of the symmetries of low-
energy excitations. Still, some insight can be obtained from
mean-field approaches [10], where gauge fields are frozen and
fermions/bosons are free. From there, it is also possible to
extract some information on the nature of the most relevant
gauge fluctuations: Whenever they are gapped (corresponding
to a Z, symmetry) the low-energy spectrum of the spinons is
not qualitatively modified, leading to stable Z, spin liquids
[10] (the most remarkable example being the Kitaev model
on the honeycomb lattice [11]). The situation is more delicate
when the low-energy gauge fields are gapless [with U(1)
symmetry], since in this case they can spoil the mean-field
properties of the spinon spectrum. In particular, monopoles
proliferate and may give rise to a confined phase [12]. Still, the
presence of a sufficiently large number of massless fermions
may screen the monopoles and prevent confinement [7,13,14].

Among various possibilities, the nearest-neighbor § = 1/2
Heisenberg antiferromagnetic model on the kagome lattice
represents one of the most intriguing and important examples
in which magnetic frustration may give rise to a nonmagnetic
ground state. The interest in this spin model was raised after
the discovery of a number of compounds, where localized S =
1/2 moments interact through a superexchange mechanism
in almost decoupled kagome layers. The most notable exam-
ple is given by the so-called herbertsmithite CuzZn(OH)gCl,
[15-17]. Here, there is no evidence of magnetic order down
to extremely small temperatures, thus suggesting the possi-
bility that the ground state is indeed a quantum spin liquid
[18]. From the theoretical side, exact diagonalizations of the
Heisenberg model on small clusters highlighted the exis-
tence of a very unconventional low-energy spectrum, with an
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FIG. 1. (a) The plane (¢, 0) that defines the flux distribution in the unit cell considered in this Letter, shown in the inset. The hexagonal
plaquette has a Fy = w — 26 + 3¢ /4 and two triangular ones have flux Fr = ¢/8 + 6. The [z, 0] Dirac state lies at the origin, the uniform
state [0,0] is obtained with & = —¢/8 for ¢ = £, and the [z, 7] state with 0 = 3¢ /8 and ¢ = 27. The quantized values of ¢, obtained for
a few monopoles, are marked on the x axis. (b) The complex argument «; ;, in units of 27 /L* = 27 /16, of the hopping parameters €%/ (for
i — j)and e~ (for j — i) of the fermionic Hamiltonian (3) that defines a single-monopole configuration (with # = 0) on the L = 4 cluster.
Notice that the translational symmetry is broken by the hoppings on the rightmost column along a,.

exceedingly large number of singlet states below the lowest
triplet excitation [19,20]. Triggered by these outcomes, a huge
effort has been spent in the last years to clarify the actual
nature of the ground state of the Heisenberg model on the
kagome lattice. Early large-scale density-matrix renormal-
ization group (DMRG) calculations suggested the existence
of a gapped spin liquid [21,22], while variational Monte
Carlo techniques, more recent DMRG and tensor network
approaches, and pseudofermion functional renormalization
group calculations supported a gapless spin liquid [23-27].
The variational approach has a very simple and elegant de-
scription within the fermionic parton representation; here, the
free fermions have only kinetic terms (no pairing), defining
peculiar magnetic fluxes piercing the unit cell (i.e., 7 flux
through hexagonal plaquettes and O flux through triangular
ones), thus leading to two Dirac points in the spinon spec-
trum [23,28]. As a consequence, this ansatz is dubbed as a
[7r, O] Dirac spin liquid. Finally, an accurate variational wave
function is obtained by including the Gutzwiller projection,
which imposes a single-fermion occupation on each lattice
site [23,24].

Still, alternative scenarios have been proposed, the most
intriguing ones suggesting the possibility that the ground state
is a (non-chiral) topological spin liquid [29] or a chiral spin
liquid [30,31] which breaks time-reversal and point-group
symmetries [32]. Originally, chiral spin liquids have been
constructed in analogy to the fractional quantum Hall effect
[33]. However, the main difference with respect to the latter
case is that time reversal is spontaneously broken, leading to
even more exotic phenomena [34]. Recently, different calcu-
lations suggested that chiral spin liquids may exist in extended
Heisenberg models on the kagome lattice, e.g., adding su-
perexchange couplings at second or third neighbors, multispin
interactions, or Dzyaloshinskii-Moriya terms [35-44]. In ad-
dition, chiral spin liquids have been also analyzed within
mean-field approaches, in terms of both bosonic [45,46] and
fermionic partons [34,47].

In this Letter, we study the stability of the Dirac spin-liquid
wave function, which has been proposed to capture the correct
ground-state properties of the nearest-neighbor Heisenberg
model on the kagome lattice [23,24], against chiral pertur-
bations. We analyze the energetics of Gutzwiller-projected
fermionic states that are obtained by adding nontrivial
magnetic fluxes to the ones that define the Dirac wave func-
tion. In particular, we can independently (i) consider an
additional flux (parametrized by ¢ and spread uniformly on
the lattice) and/or (ii) redistribute the flux inside the unit cell
(parametrized by 0); hence, we assume that every unit cell has
the same distribution of fluxes in the hexagonal and triangular
plaquettes (see Fig. 1). The flux through the triangular pla-
quettes is given by Fr = ¢ /8 + 6, while the flux through the
hexagonal ones is Fy = 7 — 260 + 3¢ /4, such that the total
flux piercing the unit cell is Fc = m + ¢, the Dirac state being
recovered with ¢ = 6 = 0. All calculations are performed on
tori with 3 x L x L sites by using variational Monte Carlo
techniques to assess the properties of the Gutzwiller-projected
states [48]. On finite clusters, ¢ is quantized, while 6 may
assume any value. A “commensurate” flux ¢ = 27 /g requires
a large supercell that includes ¢ unit cells (assuming ¢ divides
L) and implies a total flux multiple of 27 L on the whole torus.
In addition to these standard cases, we also consider monopole
configurations. A single monopole brings a 27 flux on the
torus, thus leading to ¢ = 2x /L2 on each unit cell; states
with Ny, monopoles are then constructed by considering a
flux density ¢ = 2 Nyp/L*. On the one hand, this allows
us to study the energetics of a single monopole on finite
clusters and its scaling in the thermodynamic limit; on the
other hand, with monopole configurations, the stability of the
Dirac state may be assessed for very small additional fluxes
(i.e., much smaller than the minimal one accessible within
the commensurate fluxes). The main outcome of this study
is that the Dirac state is stable against chiral perturbations.
Still, monopole excitations are gapless in the thermodynamic
limit. We would like to emphasize that, since we work on
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tori, the analysis of the monopole energy cannot be directly
connected to the scaling dimensions, as usually done within
conformal-field theories, which consider a spherical geometry
[13,14,49,50].

Model and methods. We study the Heisenberg model on
the kagome lattice with the nearest-neighbor superexchange
interaction J > O,

H=J)> S-S, (1)
(i,))

where S; = (7, 5}, S7) is the spin-1/2 operator on a site i
periodic boundary conditions are assumed on a cluster with
3 x L x L sites. In the following, we fix J = 1.

The variational wave functions are defined by
W) = Pg|Po), @

where |®) is the ground state of the auxiliary (noninteract-
ing) Hamiltonian,

Ho= Y X;;ClsC;0 +He., 3)

(i,)).0

where cZU (c; ,) creates (destroys) a fermion on site i with
spin o =1, |; x;; = X,-(?_jei“"’ defines the hopping amplitude
for nearest-neighbor sites (i, j). The “bare” term X,-(,) ; =%l
defines the [, 0] flux pattern of the Dirac spin liquid, while
the presence of «; ; # 0 allows us to consider 6 # 0 and/or
¢ # 0 (including single- or multimonopole states) (see Fig. 1).
In addition, periodic or antiperiodic boundary conditions can
be taken in Hj. In practice, the auxiliary Hamiltonian is diag-
onalized and |®,) is constructed as the Slater determinant of
the lowest N single-particle orbitals (where N = 3L?), which
is well defined whenever there is a closed-shell configuration,
i.e., a finite-size gap between the Nth and the (N + 1)th levels.
For commensurate fluxes, we adopt the Landau gauge, which
implies a g x 1 supercell. By contrast, the single-monopole
configuration requires a supercell as large as the entire cluster
(which remains the case also for multimonopole configura-
tions). A similar monopole construction has been discussed in
Ref. [51] for the square lattice. We remark that, whenever a
single monopole is considered on top of the Dirac state, there
is an exact degeneracy at the Fermi level (which is robust to
changing the boundary conditions [52]), with two levels per
spin, i.e., four levels occupied by two fermions giving rise
to six monopoles (three singlets and one triplet) [8,53]. We
verified that any occupation of these levels gives the same
variational energy. In this case, the unprojected state |®() does
not correspond to a closed-shell configuration and we use the
single-particle orbitals obtained by the real-space diagonaliza-
tion, without imposing any lattice symmetry. Then, monopole
configurations do not correspond to specific k points of the
Brillouin zone.

Finally, Pg is the Gutzwiller projection onto the configura-
tion space with one particle per site,

Po = [ [y —niy), )

where n; , = czacm. As a result, |¥) of Eq. (2) defines a

faithful variational wave function for the spin Hamiltonian (1).
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FIG. 2. Energy (per site) difference between chiral and Dirac
states as a function of ¢ for three cuts in the plane of Fig. 1.
Variational Monte Carlo calculations are performed on a cluster with
L = 8. The values of ¢ correspond to Ny, = 1, ..., 4 monopoles in
the torus.

Standard Monte Carlo sampling based upon Markov chains is
used to evaluate the variational energy [48]. For the Hamilto-
nian (1), the Dirac state has an energy per site e &~ —0.429,
which is higher than the best DMRG and tensor network
estimates for the ground state, e.g., e & —0.438 [22,26]. Still,
this simple variational state may well capture the correct
properties of the actual ground-state wave function, as sug-
gested by recent DMRG calculations [25].

Results. The main outcome of this Letter is that the Dirac
state is stable when considering fluxes ¢ # 0 and/or 6 # 0.
Indeed, the best variational energy (per site) when varying 6
and ¢ is obtained for 8 = ¢ = 0, corresponding to the [, 0]
case. As an example, in Fig. 2, the variational energies for
different cuts in the (¢, 6) plane are reported for L = 8: along
0 =3¢/8 (i.e., Fy = 7, which connects the Dirac state to the
[, ] one), along 6 = —¢/8 (i.e., Fr = 0, which connects
the Dirac state to the [0,0] one), and 6 = 0. In all cases,
the energy increases with ¢, even for the smallest possible
values obtained with a few monopoles. Similar results have
been obtained for larger cluster sizes and different cuts. In
particular, the case with 8 = 0 is reported in Fig. 3, where
several sizes of the cluster are reported from L = 4 to L = 16,
including both commensurate fluxes (the smallest one being
¢ = 2m /L) and monopole configurations (which allow us to
reach much smaller values of the fluxes). Our results clearly
show that the minimal variational energy is always obtained
with ¢ = 0, i.e., for the Dirac state.

Next, we perform the explicit size-scaling analysis of the
single-monopole gap (see Fig. 4). At the unprojected level,
i.e., when the Gutzwiller projection of Eq. (4) is not imposed,
the monopole configuration corresponds to an excited state
that becomes gapless in the thermodynamic limit. Obviously,
this result does not depend on the filling of the degenerate
levels at the Fermi level, including the case where a triplet
state is taken. We emphasize that the vanishing extrapolation
becomes evident only when large clusters are considered (e.g.,
L 2 30), since a fitting procedure that only includes L < 12
would predict a finite gap for L — co. Most importantly, the
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FIG. 3. Energy (per site) difference between chiral and Dirac
states as a function of ¢ for 8 = 0, i.e., the x axis of the plane shown
in Fig. 1. The variational Monte Carlo calculations are done for both
commensurate and monopole fluxes. Inset: Zoom of the results for
small values of ¢, where only monopole configurations are present.

presence of the Gutzwiller projection has no effect on the
overall behavior. In fact, while the slope of the fit is increased,
the extrapolated value in the thermodynamic limit is always
consistent (within a few error bars) with a vanishing gap. In
addition, there is no appreciable difference (for large clusters)
between states with § = 0 (two fermions occupying orbitals
at the Fermi level with up and down spins) or § =1 (two
fermions occupying the orbitals with the same spin). Note
that, more generally, monopole excitations in the SU(Ny)

P-H excitation on same Dirac cone

P-H excitation across Dirac cones

Unprojected P—H excitation on same Dirac cone
Projected monopole energy (S = 0)

Projected monopole energy (S = 1)

Unprojected monopole energy (S = 0)

1 1

FIG. 4. Size scaling of the single-monopole gap (with respect
to the Dirac state), both singlet and triplet cases are shown. The
unprojected case (no Gutzwiller projection) is reported for com-
parison. Particle-hole (P-H) spinon excitations of the Dirac wave
function are also shown, either within the same Dirac cone or across
the Dirac cones.

Heisenberg model [54] with Ny even and Ny/2 > 1 fermions
per site were also found to be gapless [52].

In order to prove (and improve) the statement that spinons
are gapless, we construct particle-hole excitations of the
Hamiltonian (3), by changing the fermion occupation in the
unprojected state (i.e., by emptying one of the highest-energy
single-particle orbitals and filling one of the lowest-energy
ones). Given the shape of the cluster, there are several ways
to do this, since both these shells are fourfold degenerate (for
each spin value). In particular, we can perform excitations
within the same Dirac cone or across the two cones. Trivially,
these states are gapless in the unprojected wave function,
when L — oo. Most interestingly, they remain gapless even
when the Gutzwiller projection is included. As a consequence,
the [, 0] ansatz, obtained from the auxiliary Hamiltonian (3)
with real hoppings x; ; = %1, has the remarkable property
to describe the (approximated) ground-state wave function
that sustains gapless excitation for both spinons [55] and
monopoles.

Discussion. In this Letter, we constructed monopole
excitations on top of the Dirac spin-liquid ansatz and showed
them to be gapless in the thermodynamic limit. By studying
the energetics of states with a finite monopole density, we
found no sign of an instability towards a chiral state. Our
results provide further evidence that the ground state of the
kagome Heisenberg antiferromagnet is well described by the
Dirac spin liquid, despite having gapless monopole excitations
[8]. Such a remarkable robustness was recently linked to free-
fermion band topology dictating the symmetry properties of
monopoles [9]. Recently, a similar analysis of monopole and
bilinear excitations was performed on the Dirac spin liquid on
a triangular lattice [53]. The existence of gapless monopoles
may provide new experimental ways to identify U (1) Dirac
spin liquids and, in particular, to resolve between gapless Z,
and U (1) states. Recently, a few possibilities have been sug-
gested, e.g., via the recently proposed “monopole Josephson
effect” [56], which would lead to a measurable spin current,
or via the coupling between monopoles and phonons [57],
which would lead to a broadening/softening of certain phonon
modes.
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