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Disorder in the nonlinear anomalous Hall effect of PT -symmetric Dirac fermions
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The study of the nonlinear anomalous Hall effect (NLAHE) in PT -symmetric systems has focused on intrinsic
mechanisms. Here, we show that disorder contributes substantially to NLAHE and often overwhelms intrinsic
terms. We identify terms to zeroth order in the disorder strength involving the Berry curvature dipole, skew
scattering, and side jump, all exhibiting a strong peak as a function of the Fermi energy, a signature of interband
coherence. Our results suggest NLAHE at experimentally relevant transport densities in PT -symmetric systems
is likely to be extrinsic.
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Introduction. The past decade has witnessed the predic-
tion and observation of the nonlinear anomalous Hall effect
(NLAHE), an anomalous Hall response that is second order
in the applied electric field. Initially motivated by the iden-
tification of a Hall response in the absence of time-reversal
symmetry breaking [1], the bulk of research to date has fo-
cused on nonmagnetic materials [2–28]. However, in recent
years there has been growing interest in the NLAHE in time-
reversal breaking systems such as antiferromagnetic metals
[29–34]. In particular, in systems with broken time-reversal
(T ) and inversion (P) symmetry, but with combined PT
symmetry, the linear anomalous Hall effect vanishes and the
NLAHE provides the leading contribution to the Hall re-
sponse. Thus, while eliciting strong interest for applications
in antiferromagnetic spintronics, the NLAHE also provides
a tool for the investigation and classification of states with
broken symmetries [29,33,35–39].

In a PT -symmetric system, the leading-order contribu-
tion to the NLAHE is of order τ 0, where τ is an indicative
momentum relaxation time used as a measure of the disor-
der strength. The PT -symmetric case is in sharp contrast to
the T -symmetric systems, where the leading-order contribu-
tion begins at order τ . So far the intrinsic contribution has
been considered as the only mechanism active at order τ 0

[32,33,38]. On the other hand, it is well known from the study
of the linear anomalous Hall effect that extrinsic contributions
such as skew scattering and side jump also manifest at order
τ 0, which can compensate or even cancel the intrinsic con-
tribution. Some of these have been addressed in PT -broken
systems [40–49]. Yet, to our knowledge, the role of disorder
in the NLAHE in PT -symmetric systems has thus far been
neglected. This omission is difficult to justify: When seeking
to extract intrinsic topological quantities from experimental
data the effect of disorder must be incorporated.

In this Letter we determine the full expression for the
NLAHE in the presence of disorder in systems with combined
PT symmetry, taking two-dimensional (2D) tilted Dirac

fermions as a prototype system. Defining the nonlinear current
density ji = χi jkE jEk , with χi jk the nonlinear susceptibility,
joint PT symmetry restricts the powers of τ that may ap-
pear in χ . In a PT -symmetric system the allowed response
scales with even powers of τ , and the susceptibility may be
written as [χi jk] = [χ (−2)

i jk ] + [χ (0)
i jk ], where the superscripts

indicate the second order and zeroth order in τ , respectively.
Because current NLAHE experiments use moderately con-
ducting channels, the τ 0 contribution is the most important,
and our effort focuses primarily on χ

(0)
i jk , where disorder com-

petes directly with the intrinsic band structure contributions
[33,38,50]. To second order in the electric field, disorder
contributions involve a complex interplay between the band
structure and disorder mechanisms. Our central result may be
summarized in Fig. 1 as the quantitative comparison between
intrinsic and disorder contributions. Our main findings are

FIG. 1. Susceptibility χ (0)
yxy ∝ τ 0 with gap � = 40 meV, tilt t =

0.4, and vF = 1.6 × 106 m/s. We approximate the Fermi velocity to
be the same for all components, v0x = v0y.
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as follows: (i) For realistic parameters [32,38] the disorder
contributions generally overwhelm the intrinsic terms. This is
evident from Fig. 1, where the total susceptibility essentially
tracks the extrinsic contribution. (ii) The NLAHE exhibits
a strong peak as a function of the Fermi energy εF , whose
location is determined by the size of the gap. This peak is
present in both [χ (0)

i jk ] and [χ (−2)
i jk ], and appears in all con-

tributions to the NLAHE, whether intrinsic or induced by
disorder. It is a signature of interband coherence [51], a factor
that unifies all NLAHE mechanisms. (iii) We identify three
main disorder contributions: skew scattering, side jump, and
a contribution we term the extrinsic Berry curvature dipole. It
consists of the Berry curvature dipole multiplied by a disorder
term that is formally of zeroth order in τ . All the disorder
terms are a consequence of an electric field correction to the
collision integral. For our prototype model of 2D tilted Dirac
fermions all nonlinear mechanisms are traced to the Fermi
surface. Our quantum mechanical formalism also reveals the
existence of additional intrinsic terms that a naive applica-
tion of the semiclassical method misses, in analogy with
Ref. [52].

Our findings suggest that the NLAHE signal at experi-
mentally relevant transport densities is dominated by disorder,
making an understanding of disorder indispensable in inter-
preting experimental data. They also provide a strong contrast
with PT -breaking systems studied so far. In that case, with T
preserved, PT is necessarily broken in the second-order elec-
trical response, and χ ∝ τ . The NLAHE driven by the Berry
curvature dipole (BCD) belongs to this category [1,37,53],
and it was shown that disorder makes a contribution similar in
magnitude to the intrinsic terms, without overwhelming them
[53].

Quantum kinetic equation. The system is described by
the density matrix ρ(t ), which obeys the quantum Liouville
equation ∂ρ/∂t + (i/h̄) [H, ρ] = 0. The Hamiltonian has the
form H = H0 + eE · r + U (r), with H0 the band Hamilto-
nian, E a constant, uniform electric field, and U (r) the
disorder scattering potential. We work in the crystal momen-
tum representation spanned by Bloch states |m, k〉 = eik·r|um

k 〉.
The disorder model is defined through its correlation func-
tions 〈U (r)〉 = 0 and 〈U (r)U (r′)〉 = u2

0δ(r − r′), where u2
0

quantifies the strength of disorder. Alternatively, the disor-
der strength can be measured by the momentum relaxation
time 1/τm = πρ(εm

k )u2
0/h̄, with ρ(εm

k ) the density of states.
In our calculation, we will assume that the Fermi energy
is located in the conduction band, indexed here by a pos-
itive sign, but we will drop such a notation in our final
results.

Following the methodology of Refs. [51,54,55], the density
matrix is decomposed into a disorder-averaged part fk and
will be the focus of our attention, and a fluctuating part,
which is integrated out to yield the scattering term in the Born
approximation, assuming its time evolution to be Markovian.
We do not consider here the nonlinear counterpart of the im-
portant issue about a possible reduction of the anomalous Hall
response due to crossing diagrams in linear response [56–58].
Although it is expected to have a similar effect in a nonlinear
regime and it is possible to include such diagrams within the
density matrix formalism [51,59], this is beyond the scope of
the present Letter. In this way we obtain the quantum kinetic

equation

∂ f

∂t
+ i

h̄
[H0, f ] + J0( f ) = eE

h̄
· D f

Dk
− JE ( f ) − JE2( f ).

(1)

The covariant derivative appearing above reads D fk

Dk = ∂ fk

∂k −
i[Rk, fk], with the Berry connection Rmm′

k = i〈um
k |∇kum′

k 〉.
The covariant derivative accounts for the momentum depen-
dence of the basis functions. The density matrix fk has both
diagonal and off-diagonal elements in band index m. We
represent the band-diagonal part by nk and the off-diagonal
part by Sk, such that fk = nk + Sk. The equilibrium density
matrix is band-diagonal with matrix elements given by the
Fermi-Dirac distribution nFD(εm

k ) for each band.
The bare collision integral is defined as J0( f ) =

(i/h̄)〈[U, g0]〉 with the function

g0 = 1

2π i

∫ ∞

−∞
dεGR

0 (ε)[U, f ]GA
0 (ε) (2)

and the electric field correction JE ( f ) defined as

JE ( f ) = 1

2π h̄

∫ ∞

−∞
dε

〈[
U, GR

0 (ε)[eE · r, g0]GA
0 (ε)

]〉
. (3)

The retarded Green’s function is defined as GR
0 (ε) =

− i
h̄

∫ ∞
0 dte−iH0t/h̄eiεt/h̄e−ηt , where the factor e−ηt ensures con-

vergence and the advanced Green’s function GA
0 (ε) follows

by Hermitian conjugation. The collision integral JE2( f ) →
JE2(nFD) is by itself second order in an electric field and must
be evaluated as a functional of the equilibrium Fermi-Dirac
distribution. Its main role is to eliminate Fermi sea effects in
the same way as in a linear response—this is explained in the
Supplemental Material [60].

We solve Eq. (1) perturbatively in the electric field and
disorder strength quantified by τ . The leading-order cor-
rection in the linear response comes from the first driving
term on the right-hand side by taking f → nFD. It will give
the Boltzmann-like contribution n(−1)

Ek , which in our notation
refers to a band-diagonal term ∝τ . The kinetic equation is
solved iteratively in E up to second order, which is denoted
by the subscript E2. As an example, the leading second-order
response follows from the same driving term by using the lin-
ear Boltzmann equation. It will produce a contribution n(−2)

E2k ,
i.e., band-diagonal, second order in E, and quadratic in τ . We
will use a similar notation to represent the off-diagonal chan-
nel. Once the distribution is determined, the current follows
from the trace j = −e

∑
k,mm′ [vmm′

k f m′m
E2k ], namely, the velocity

operator weighted by the density matrix.
Model Hamiltonian. We investigate a system that breaks

both time-reversal T and parity P symmetry but preserves
the joint PT symmetry. A generic paradigm is provided by
a tilted Dirac cone. The band Hamiltonian for a single valley
has the form

H0 = h̄vt kxσ0 + h̄v0xkxσx ± h̄v0ykyσy + �σz, (4)

where the first term is the tilt, σi are Pauli matrices, v0i are
Fermi velocities, and the term � is the energy gap. We replace
ki → v0iki with the following rule for integrals

∑
k(· · · ) →

1
(2π )2

1
v0xv0y

∫
dkxdky(· · · ) and derivatives ∂

∂ki
→ v0i

∂
∂ki

. Since
we assume the two PT -symmetric states can be decoupled,
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we focus on the Hamiltonian with the positive sign. The eigen-

values read ε±
k = h̄tkx ± ε0k with ε0k =

√
h̄2k2

x + h̄2k2
y + �2

and the dimensionless parameter t = vt/v0x. This dimension-
less parameter controls the breaking of inversion symmetry
necessary for the nonlinear response, hence the nonlinear sus-
ceptibility will be at least of first order in t .

Results. The components of the nonlinear susceptibility are
related by [χ (0)

xxx] = [χ (0)
xyy] + [χ (0)

yxy], apart from a proper veloc-
ity prefactor, meaning [χ (0)

xxx] ∝ v3
0x, while the right-hand side

is ∝v0xv
2
0y. The first index in χ is the direction of the current

while the last two indices represent the two factors of the elec-
tric field. Below we show results for [χ (0)

yxy] = [χ (0)
xxx] − [χ (0)

xyy].
Solving the kinetic equation to zeroth order in τ we

identify a purely intrinsic contribution as well as three dis-
order corrections to the nonlinear anomalous Hall response of
PT -symmetric systems: a side-jump effect, a skew-scattering
effect, and a Berry curvature dipole effect. The Berry cur-
vature dipole and side-jump contributions emerge in the
off-diagonal channel of the density matrix and follow from
the equation

∂S(0)mm′
E2k

∂t
+ i

h̄

[
H0k, S(0)

E2k

]mm′

= eE
h̄

· DS(0)mm′
Ek,int

Dk
−i

eE
h̄

· [
Rk, n(0)

Ek,sj

]mm′−[
J0

(
n(−1)

E2,sj

)]mm′

k .

(5)

The general solution reads S(0)mm′
E2k = −ih̄(εm

k − εm′
k )−1d (0)mm′

E2k ,

where d (0)mm′
E2k refers generically to the driving term on the

right-hand side of the equation.
The first term in Eq. (5) produces the second-order in-

trinsic distribution. It is related to the covariant derivative
of the intrinsic linear response that follows from the equa-
tion S(0)mm′

Ek,int = −(εm
k − εm′

k )−1eE · [Rk, nFD]mm′
. This is the

only intrinsic contribution to the nonlinear response in the
sense that it depends solely on the band structure. After tracing
the off-diagonal velocity vmm′

k,i = ih̄−1(εm
k − εm′

k′ )Rmm′
k,i with the

intrinsic distribution we obtain the susceptibility

[
χ (0)

yxy

]
int = − t

8
h̄2e3v2

0yv0x
ρ(εF )

ε3
F

ξ 2
F

(
1 − ξ 2

F

)
, (6)

where ρ(εF ) is the density of states and we defined the param-
eter ξF = �/εF . This contribution is an interband coherence
effect where virtual transitions between the valence and con-
duction band are mediated by the product of off-diagonal
terms in the Berry connection. It is also a Fermi surface re-
sponse, vanishing at ξF = 1. This is in contrast to the intrinsic
linear anomalous Hall effect, which is a Fermi sea response.1

1In some cases, when reducing a multiband Hamiltonian to an
effective one, a correction to the position operator may be present,
resulting in a correction to the velocity operator. This has been
considered in the linear response in the spin Hall effect and in the
anomalous Hall effect [61–63] and is likely to be present in the
nonlinear regime. However, this correction is beyond the scope of
our work.

FIG. 2. Susceptibility [χ (0)
yxy] with gap parameter � = 40 meV

and tilt t = 0.4. vF = 1.6 × 106 m/s. We show [χ (0)
yxy]BCD, [χ (0)

yxy]sj,
and [χ (0)

yxy]sk

We turn our attention to the disorder corrections to the
susceptibility. The band-diagonal term to zeroth order in τ

reads n(0)++
Eyk,sj = −eEyv0yA0(k) + · · · , where the coefficient is

A0(k) = t τsph̄
2τε0k

ξk[(1 + ξ 2
k ) + (1 − ξ 2

k )ε0k
∂

∂ε+
0k

]δ(ε+
0k − εF ). We

have ignored higher harmonics irrelevant for transport. We
have defined the transport time and the single-particle relax-
ation time as 1/τtr = (1 + 3ξ 2

k )/2τ and 1/τsp = (1 + ξ 2
k )/τ ,

respectively. Tracing the off-diagonal velocity with this chan-
nel of the off-diagonal density matrix will produce a Berry
curvature dipole (BCD)-like contribution given by the current
ji = −(e2/h̄)

∑
k,m(E × �mm

k )in
(0)mm
Ek where �mm

k is the Berry
curvature. Explicit evaluation yields

[
χ (0)

yxy

]
BCD = te3h̄2v0xv

2
0y

2

ρ(εF )ξ 2
F

ε3
F

(
1 − ξ 2

F

)(
2 + ξ 2

F

)
(
1 + ξ 2

F

)2 . (7)

This contribution is shown in Fig. 2 and given in full
in the Supplemental Material [60]. The BCD susceptibil-
ity [χ (0)

yxy]BCD is the analog of the BCD widely studied in
PT -broken systems. However, the BCD appears here as an
interband coherence effect involving disorder, and we refer to
this contribution as the extrinsic Berry curvature dipole. It is a
consequence of the driving term arising from the electric field
corrected collision integral. This response is also a Fermi sur-
face effect. Previous studies on 2D [1,44] and 3D systems [37]
focused on a Berry curvature dipole term, whose contribution
to the NLAHE scales linearly with the momentum relaxation
time. Such a contribution is, in principle, also extrinsic since
it depends on disorder but is prohibited in PT -symmetric ma-
terials. The important point for comparison is that the Berry
curvature dipole in both cases is related to the anomalous
velocity [64], which is due to an electric field correction to
the ground states (it is intrinsic in this sense). It manifests
as a nonlinear response when weighted by a linear response
distribution, which will be manifestly due to a shift in the
Fermi surface and then related to relaxation process (in this
sense extrinsic).
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Let us consider the last driving term in the kinetic equation.
The first order in τ distribution in the collision integral in
Eq. (6) reads

n(−1)++
xyk,sj = −e2

h̄
v0yEyv0xExτtr cos(θk)

∂A0(k)

∂k
+ · · · . (8)

Tracing the off-diagonal velocity with S(0)mm′
E2k = ih̄(εm

k −
εm′

k )−1[J0(n(−1)
E2,sj )]

mm′
k yields

[
χ (0)

yxy

](od)

sj = 1
2 te3v2

0yv0x h̄2 ρ(εF )

ε3
F

ξ 2
F

(
1 − ξ 2

F

)
�s�t

{(
1−ξ 2

F

)2
�s

− 8ξ 2
F

(
1 − ξ 2

F

)
�s�t + 3

(
1 − ξ 2

F

) − 24ξ 2
F �t

− 24ξ 2
F

(
1 − ξ 2

F

)
�2

t

}
. (9)

The dimensionless parameters �s = (τsp/τ ) and �t =
(τtr/2τ ). This coefficient represent the side jump in analogy
to a linear response [55]. It is a Fermi surface response, as
well as an interband coherence effect due to virtual transitions
mediated by the Berry connection. Previous works on the non-
linear Hall effect [42,44–46] reported the counterpart of this
side-jump-like contribution for PT -broken systems. Here, it
is reported for PT -symmetric systems.

In the band-diagonal part of the density matrix to zeroth
order τ we identify a skew-scattering contribution and a sec-
ond side-jump contribution. They follow from [J (n(0)

E2 )]mm
k =

−[J0(S(0)
E2 )]mm

k − [JE (n(0)
E ,sj )]

mm
k , where the driving terms are to

the right. Skew scattering follows from the first driving term
while the second gives the side-jump contribution. This is
identical to Eq. (9), hence the electric field corrected collision
integral doubles the side jump, in analogy with the linear
response [55,61]. We plot this side-jump term in Fig. 2.

Finally, the skew-scattering contribution is found as

[
χ (0)

yxy

]
sk = e3v2

0yv0x
3
2 t h̄2 ρ(εF )

ε3
F

ξ 2
F

(
1 − ξ 2

F

)
�2

t

{
3
(
1 − ξ 2

F

)

− 16ξ 2
F �t + 15

(
1 − ξ 2

F

)2
�t − 112ξ 2

F

(
1 − ξ 2

F

)
�2

t

− 12ξ 2
F

(
1 − ξ 2

F

)
�s�t + 64ξ 4

F

(
1 + ξ 2

F

)
�s�

2
t

− 48ξ 4
F

(
1 − ξ 2

F

)2
�3

t + 128ξ 6
F �3

t

}
. (10)

Although this quantity exhibits a similarly complex depen-
dence on the Fermi energy, one can straightforwardly identify
it as a Fermi surface effect. It represents interband coherence
mediated by disorder through an extrinsic off-diagonal term
in the density matrix. It is shown in Fig. 2. Again, we note
that the counterpart of skew scattering for PT -broken sys-
tems was reported in previous works [42,44–46] and reported
here to zeroth order in relaxation processes in the first Born
approximation. In a recent paper [65] a skew-scattering-like
contribution was calculated in PT -symmetric systems, with a
different scaling with respect to disorder, but it requires going
beyond the first Born approximation.

All contributions exhibit similar behavior, namely, ∝1/ε4
F

that dominates for increasing Fermi energy and ∝(1 −
�2/ε2

F ) that makes all the expressions zero when the Fermi
energy approaches the gap (a signature of the Fermi surface

FIG. 3. Leading-order susceptibility χ (−2)
yxy ∝ τ 2 with t = 0.4,

vF = 1.6 × 106 m/s, and τ = 1 ps. We have approximated the Fermi
velocity to be the same for all components.

effect in the prefactor of all the contributions we have cal-
culated). This nonmonotonic behavior of the susceptibility
makes the function bend in between these two limiting cases
and to develop a peak. The sign of the peak is dictated by
the dominant term in the terms inside the curly braces in each
expression. For instances, for the side-jump susceptibility, the
second and last terms scale similarly to the prefactor and
make the function develop a negative peak. It is similar for
the skew-scattering contribution. The peak develops in the
vicinity of the gap, as the bands approach each other, revealing
the effect of interband coherence. In fact, since this behavior
is shared by all intrinsic and extrinsic contributions, we re-
gard interband coherence as the unifying physical mechanism
behind the NLAHE.

To fully account for the transversal susceptibility of PT -
symmetric Dirac fermions, we also solved the Boltzmann-like
equation [J0(n(−2)

E2 )]mm
k = eE

h̄ · ∇kn(−1)mm
Ek for the leading-order

susceptibility. Its behavior is shown in Fig. 3. It is also a Fermi
surface effect that vanishes when we approach the gap and
also vanishes in time-reversal symmetric systems. The peak
shifts as a function of the gap, with a similar behavior noted
in [χ (0)

i jk ].
Conclusions. We have calculated the electrical susceptibil-

ity to second order in the electric field in PT -symmetric 2D
tilted Dirac fermions. We have demonstrated the existence of
intra- and interband disorder effects that are counterparts of
the side-jump and skew-scattering terms in linear response,
as well as another Berry curvature dipole correction, which
is disorder dependent yet appears at zeroth order in the
disorder strength. We showed that disorder corrections gen-
erally overwhelm the intrinsic contribution and are expected
to play a vital role in realistic samples, where disorder is
unavoidable.
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