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Recent experimental progress has established the twisted bilayer transition metal dichalcogenide (TMD) as a
highly tunable platform for studying many-body physics. Particularly, the homobilayer TMDs under displace-
ment field are believed to be described by a generalized triangular-lattice Hubbard model with a spin-dependent
hopping phase θ . To explore the effects of θ on the system, we perform density matrix renormalization group
calculations for the relevant triangular lattice t-J model. By changing θ at small hole doping, we obtain a region
of quasi-long-range superconducting order coexisting with charge and spin density wave within 0 < θ < π/3.
The superconductivity is composed of a dominant spin singlet d-wave and a subdominant triplet p-wave pairing.
Intriguingly, the Sz = ±1 triplet pairing components feature pair-density waves. In addition, we find a region
of triplet superconductivity coexisting with charge-density wave and ferromagnetism within π/3 < θ < 2π/3,
which is related to the former phase at smaller θ by a combined operation of spin-flip and gauge transformation.
Our findings provide insights and directions for experimental search for exotic superconductivity in twisted TMD
systems.

DOI: 10.1103/PhysRevB.108.L201110

Introduction. Moiré bilayer systems have attracted great
attention over the last few years due to their high tunability
and capacity to host a wealth of exotic states of matter [1–3].
Since the discovery of superconductivity (SC) and Mott insu-
lating phase in magic-angle twisted bilayer graphene (TBG)
[4,5], other moiré systems have been realized and are under
active studies [6,7], including twisted bilayer transition metal
dichalcogenides (TMDs) [8–17]. Compared to TBG, twisted
bilayer TMDs have the advantages of accommodating flat
moiré bands over a much wider range of twist angles and
fewer low-energy degrees of freedom, allowing for a simpler
lattice model description [18–20]. Strong correlation effects
such as correlated insulating phase [21], metal-insulator tran-
sition [22,23], stripe phase [24], and quantum anomalous Hall
effect [25] have recently been observed in these systems.

Twisted TMD bilayers can be classified into hetero- and
homobilayers according to whether the two layers are made
of the same or different materials. The low-energy electronic
degrees of freedom in the former are believed to be described
by a generalized triangular-lattice Hubbard model with pseu-
dospin SU(2) rotation symmetry [18,26], whereas in the latter
the spin SU(2) symmetry is broken into U(1) by a vertical
displacement field due to spin-valley locking and inversion
symmetry breaking, and consequently the electron hopping
acquires a spin-dependent phase θ [16,19,20,27]. Note that
the standard Hubbard and t-J models on triangular lattices,
i.e., θ = 0, have exhibited a rich phenomenology enhanced
by further-neighbor couplings due to the complex interplay
between geometric frustration, quantum fluctuations, and hole
dynamics [28–39]. The hopping phase θ is shown to be widely
tunable by the displacement field and thus may serve as a
novel control knob of the many-body ground states of twisted
TMD homobilayers. The magnetic and superconducting

phases under the variation of both carrier density and θ of
the U(1) Hubbard model and/or its closely related t-J model
(for strong Hubbard U limit) at/near half-filling have been
explored through mean-field calculations, renormalization
group analysis, quantum cluster methods, and Gutzwiller
approximation [20,40–45]. However, these methods generally
are not accurate in treating the strong electronic correlations
present in the model [46]. Here we implement density-matrix
renormalization group (DMRG) [47] to accurately capture the
ground states on quasi-one-dimensional few-leg cylinders,
and thus reveal the different ordering tendencies at play and
gain some insights into the physics at the two-dimensional
(2D) limit [48,49]. Particularly, DMRG has been applied onto
a three-leg cylindrical moiré Hubbard model but only weak
SC correlations were observed [50]. The effective spin-model
derived at strong U and half-filling limit was also considered
for exploring quantum spin liquid [51].

In this work we study SC of the lightly doped triangular
lattice U(1) moiré t-J model on a four-leg cylinder through
DMRG calculations. By varying θ in the region of (0, 2π

3 ), we
identify two conjugated superconducting phases as shown in
Fig. 1(b): (i) Mixed spin singlet d-wave and triplet p-wave
SC coexisting with spin-, charge-, and pair-density waves
(PDW); (ii) Ferromagnetic triplet p-wave SC coexisting with
charge-density wave (CDW). These two phases are related by
a combined operation of spin-flip and local gauge transforma-
tion, up to a change of the boundary condition. Their pairing
correlations decay algebraically with the Luttinger exponents
smaller or around two, demonstrating a robust quasi-long-
range SC order [52,53]. Particularly, distinct from other SC
phases on the triangular-lattice t-J model [29–31], PDW is
a novel SC state where Cooper pairs carry finite center-of-
mass momentum [54], which are not commonly realized in
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FIG. 1. (a) Schematic illustration of the Moiré t-J model on a
triangular lattice with nearest-neighbor electron hopping (t) and spin
exchange (J). The arrow on each bond is pointed from site i to j in
the Hamiltonian Eq. (1). It denotes the directional dependence of the
hopping phase. The first and last rows are identified together due to
the periodic boundary condition. (b) Quantum phase diagram under
the variation θ for a width-four cylinder. Gray dots denote θ ’s where
no clear signature of SC is observed [65].

microscopic models [55–64]. The plethora of interesting
phases found in our calculations could motivate future ex-
perimental endeavour in search of novel SC in twisted TMD
homobilayers.

Model and method. The moiré t-J model is defined as

Ĥ = − t
∑

〈i j〉,σ=±
(e−iσθ ĉ†

iσ ĉ jσ + h.c.)

+ J
∑
〈i j〉

(
Ŝz

i Ŝz
j + 1

2
e−2iθ Ŝ+

i Ŝ−
j + 1

2
e2iθ Ŝ−

i Ŝ+
j − 1

4
n̂in̂ j

)
,

(1)

where σ = ± represents spin up/down, c†
iσ and ciσ are the

creation and annihilation operators for the electron with spin
σ at the site i, 〈i j〉 denote nearest neighbors whose locations
satisfy r j − ri ∈ {ea,−eb, ec} [see Fig. 1(a)], Ŝz

i , Ŝ+
i , Ŝ−

i are
the spin- 1

2 ẑ component, raising and lowering operators at
site i respectively, and n̂i = ∑

σ ĉ†
iσ ĉiσ is the electron num-

ber operator. Double occupancy is prohibited. The hopping
phase θ produces a flux of ±3θ at each triangular plaquette,
and a gauge transformation connects two models differing
in the fluxes by 2π . We therefore focus on the region of
0 < θ < 2π/3. In the present study, we set the hole doping
level δ = 1/12, and choose J = 1 and t = 3, corresponding
to a realistic situation of U/t = 12 [20].

To obtain the ground state, we employ DMRG simulation
with U(1)×U(1) symmetry corresponding to charge and spin
conservation on a cylindrical system with periodic boundary
condition (PBC) along the circumferential (eb or y) direction
and open boundary condition along the axial (ea or x) direc-
tion. The number of lattice sites is given by N = Lx × Ly,
where Lx and Ly are the number of sites along x and y di-
rection, respectively, and are set as Ly = 4 and Lx = 36 in

the main text. The corresponding geometry is called YCLy

[66]. The doping level is defined by δ = 1 − Ne/N and we
consider the zero total spin-z sector

∑
i Ŝz

i = 0, which hosts
the ground state as verified in Sec. A of the Supplemental
Materials (SM) [65]. In DMRG, the number of Schmidt states
kept for representing the reduced density matrix on either side
of the system under bipartition is called “bond dimension” M
[47]. The calculations improve with the increase of M and
become exact for a sufficiently large M.

Coexisting singlet, triplet and PDW SC (STPSC). The SC
order is examined by the spin-singlet and triplet pairing cor-
relation functions Ps

αβ (r) and Ptn
αβ (r) defined by

Ps
αβ (r) ≡ 〈

�̂s,†
α (r0)�̂s

β (r0 + rex )
〉
,

Ptn
αβ (r) ≡ 〈

�̂tn,†
α (r0)�̂tn

β (r0 + rex )
〉
,

(2)

where the reference point r0 ≡ (x0, y0) = (Lx/4, Ly ) and the
pairing operators �̂s

α (r1) and �̂tn
α (r1) are defined on the bond

along eα (α = a, b, c) at site r1:

�̂s
α (r1) = (

ĉr1↑ĉr1+eα↓ − ĉr1↓ĉr1+eα↑
)
/
√

2,

�̂t0
α (r1) = (

ĉr1↑ĉr1+eα↓ + ĉr1↓ĉr1+eα↑
)
/
√

2,

�̂t−1
α (r1) = ĉr1↓ĉr1+eα↓, �̂t1

α (r1) = ĉr1↑ĉr1+eα↑. (3)

Here �̂tn
α corresponds to the triplet pairing with total spin-z

Sz = n.
Figures 2(a) and 2(c) show two dominant pairing com-

ponents: b-bond singlet pairing Ps
bb(r) and opposite-spin-z

(Sz = 0) triplet pairing Pt0
bb(r) for θ = π/12 in the STPSC

phase. Both exhibit power-law decay Ps(t0 )
bb (r) ∼ r−K

s(t0 )
SC with

the Luttinger exponents Ks(t0 )
SC ≈ 0.3, suggesting strongly di-

verging SC susceptibilities χ ∼ T −(2−KSC ) as the temperature
T → 0 [67]. Note also that slow power-law decays are already
exhibited by the largest-M results with exponents around
0.97. The singlet pairing component is larger in amplitude
than the triplet one, and they exhibit d-wave and p-wave
symmetry, respectively [28,37,68]. The mixing of singlet and
triplet pairings are permitted by the absence of the inversion
and spin SU(2) symmetry [69]. In particular, the absence of
inversion center allows the mixing of parity-odd p-wave and
parity-even d-wave basis functions in the irreducible repre-
sentation E of the symmetry group C3v of the system [68].
The charge-density correlation function D(r) ≡ 〈n̂(r0)n̂(r0 +
rex )〉 − 〈n̂(r0)〉〈n̂(r0 + rex )〉 in Fig. 2(b) decays algebraically
with a relatively larger exponent (around 0.86), suggesting
weaker charge-density modulations coexisting with stronger
SC. Correspondingly we observe a charge stripe order with
two holes per stripe in the inset. For comparison, Fig. 2(d)
presents also the in-plane spin-spin correlations Sxy(r) defined
by

Sxy(r) ≡ 〈Ŝx(r0)Ŝx(r0 + rex ) + Ŝy(r0)Ŝy(r0 + rex )〉
and the Green’s function G(r) ≡ ∑

σ 〈ĉ†
r0,σ

ĉr0+rex,σ 〉. The in-
plane spin correlation is the strongest among all correlations,
characterizing a robust spin-density wave order inherited from
the 2D in-plane 120◦ Néel order at half-filling based on
the spin structure factor calculations [19,40,65]. The Green’s
function squared |G(r)|2 is much weaker than the main pairing
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FIG. 2. Correlation functions at θ = π/12 in the STPSC phase.
(a) Scaling of the singlet pairing correlation Ps

bb(r) through
second-order polynomial extrapolation in terms of inverse bond
dimension 1/M. The extrapolated data at infinite M and M =
17 000 are fitted by power-law decays. The inset shows the rela-
tive signs of the pairing order parameters along different bonds,
which has a pattern consistent with an ordinary d-wave symmetry
sign(�s

a) = sign(�s
b) = −sign(�s

c) [65]. (b) The density-density cor-
relation. The inset shows the rung-averaged electron density profile
n(x) = ∑Ly

y=1〈n̂(x, y)〉/Ly along ex , where charge stripes are ob-
served. (c) An analogous plot for the triplet paring correlation in the
opposite-spin channel Pt0

bb(r). The shown sign pattern of the pairing
order parameter is consistent with an ordinary p-wave symmetry
sign(�t0

a ) = sign(�t0
b ) = sign(�t0

c ) [65]. Each bond 〈i j〉 is divided into
two halves and the half that includes i( j) is denoted by the sign
of �

t0
i j (�

t0
ji). The sign changes between the two halves because the

order parameter is antisymmetric: �
t0
i j = −�

t0
ji. The inset shows an

example of data extrapolation to M = ∞. (d) Comparison between
different correlations at M = 17 000 with the truncation error around
3 × 10−6. G(r) can also be fitted by an exponential decay with a
correlation length around 8.7 [65].

correlations, confirming the dominance of two-electron pair-
ing over single-electron tunnelings.

Moreover, in the Sz = ±1 triplet pairing components, we
observe quasi-long-range PDW orders with a Luttinger expo-
nent around 0.58 in Fig. 3(a). The PDW wavevector kpdw can
be determined by the variation of the phase of the pairing cor-
relation under displacement along both ea and eb. Specifically,


n
bb(x, y) ≡ arg

(
Ptn

bb(xea + yeb)
)

= arg
(〈
�̂

tn,†
b (r0)�̂tn

b (r0 + xea + yeb)
〉)

= kn
pdw · (xea + yeb) (4)

characterizes spatial variation of the phase of the b-bond
triplet pairing order parameters. In Fig. 3(b), k±1

pdw is de-
termined to be ±K ′, which are the nearest accessible
wavevectors to the Brillouin zone corners ±K in the YC4
geometry. The same PDW wavevectors are identified for a
and c bond. Note that a PDW ground state with k±1

pdw = ∓K
was also predicted for the moiré Hubbard model at θ = π/3

FIG. 3. PDW order for θ = π/12 in the STPSC phase. (a) Scal-
ing and fitting of the Sz = 1 component of the triplet pairing
correlations. The Sz = −1 component is identical due to the time-
reversal symmetry; (b) Characterization of spatial phase structure
of PDW by 
n

bb(x, y). The wavevectors of PDWs are identified
as k+1

pdw = −k−1
pdw = K ′ ≡ 1

4 b2 + 5
8 b1, where b1,2 is the reciprocal

wavevector conjugated to ea,b. The dashed lines in the inset de-
note the wavevectors in the Brillouin zone supported by the YC4
geometry.

by perturbative renormalization group analysis in the weak
coupling regime [43,56].

Ferromagnetic triplet SC (FMTSC). In the FMTSC phase,
we find the dominant pairing channel to be a p-wave spin
triplet. In Figs. 4(a) and 4(c), both Pt0

aa and Pt1
aa are nonoscil-

latory, in accordance with uniform SC order in the bulk of a
2D system, and decay algebraically with exponents slightly
larger than 2. An accompanying CDW order is confirmed
in Fig. 4(c) by both the quasi-long-range density correlation
(∼r−1.75) and charge stripes in the electron density profile
(one hole per stripe). In Fig. 4(d), a robust in-plane ferromag-
netic spin correlation is observed in reminiscence of the parent
ferromagnetic order [19,40], with the total spin S ≈

√
〈Ŝ2〉 ≈

0.326Ne. The singlet paring is shown much weaker than the
triplet ones as the triplet pairing is favored by ferromagnetism.
The opposite-spin-z triplet pairing correlation Pt0

aa has stronger
amplitude and slower decay rate than those of the same-spin-z
component Pt1

aa because the ferromagnetic order is in-plane.
Discussion and summary. The FMTSC and STPSC phases

are related by a spin-flip operation followed by a local gauge
transformation [42] as demonstrated in the Sec. E of SM.
Particularly, the uniform z-spin-polarized triplet pairing order
at θ in the FMTSC region is conjugated to the PDW order with
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FIG. 4. Correlation functions for θ = 7π/12 in the FMTSC
phase, which is conjugated to θ = π/12. (a) The spatial decay of Pt0

aa,
which is the strongest opposite-spin triplet pairing correlation among
different bonds. The sign structure of the pairing order parameter is
consistent with p-wave symmetry: sign(�t0

a ) = −sign(�t0
c ), �

t0
b = 0

[65]. The black color denotes a vanishing amplitude. (b) Power-law
decay of the charge-density correlation. The inset shows electron
density along the axial direction, displaying a charge stripe order.
(c) An analogous plot for the Sz = 1 component of the triplet pair-
ing correlation Pt1

aa. (d) Comparison between different correlation
functions from data at M = 15 000 with the truncation error around
2 × 10−7. G(r) also fits an exponential decay with a correlation
length around 5.4 [65].

k±1
pdw = ±K at (2π/3 − θ ) in the STPSC region

�−σ,−σ
α

(
2π

3
− θ, r

)
= e−iσK·r−iσβα�σσ

α (θ ), (5)

with βα = eα · (b1 − b2)/3, where b1,2 are the reciprocal
wavevectors conjugated to ea and eb respectively. This is con-
sistent with our observations at θ = 7π/12 [Fig. 4(c)] and its
conjugated partner θ = π/12 (Fig. 3), albeit with a different
flux (y-boundary phase) into the four-leg cylinder. Moreover,

�s
α (2π/3 − θ ) = − cos (βα )�s

α (θ ) − i sin(βα )�t0
α (θ ),

�t0
α (2π/3 − θ ) = cos (βα )�t0

α (θ ) + i sin(βα )�s
α (θ ), (6)

which means that the singlet and opposite-spin triplet pairing
components are superposed to produce their counterparts in
the conjugated phase. Since the singlet pairing component at
θ = 7π/12 is found negligible compared to the triplet com-
ponents, and βα = 2π/3 (α = a, b) or 4π/3 (α = c), one has
|�s

α (θ = π/12)| ≈ √
3|�t0

α (θ = π/12)| according to Eq. (6),
which explains the larger magnitude of the spin singlet pairing
than that of the triplet and the same power-law exponents in
Figs. 2(a) and 2(c).

However, the pairing correlations at θ = π/12 has much
stronger magnitude (over one order of magnitude larger) and
slower decay rate compared to those at θ = 7π/12 (KSC ≈
0.29 vs KSC ≈ 2.27). This in addition to the difference in

charge distributions (two vs one holes per stripe) is caused by
the change of the boundary condition: the periodic boundary
condition at θ = π/12

ĉr+Lyey,σ = ĉrσ (7)

turns into a twisted boundary condition [70] at θ = 7π/12

ĉr+Lyey,σ = ĉrσ ei2πσLy/3 (8)

after the gauge transformation, corresponding to inserting a
magnetic flux of ±2πLy/3 through the interior of the cylin-
der for electrons. The spin structure factor of the 120◦ Néel
order for 0 < θ < π/3 is peaked at ±K, which are not re-
solved in the four-leg cylinder under PBC, whereas for π/3 <

θ < 2π/3 the system is ferromagnetic with the peak at the
system-supported momentum �. Therefore, the former regime
is more frustrated than the latter in the YC4 geometry and
this might result in stronger SC. The sensitivity of SC to
boundary conditions reveal finite-size effects in our four-leg
system, so we also study a different cylinder geometry XC4
[71] (Sec. H in SM) as well as a YC3 system with N = 40 × 3
(Sec. F in SM). Both systems preserve the PBC under local
gauge transformation and support � and ±K in the Brillouin
zone, therefore introducing no frustration. In the XC4 geom-
etry, we again obtain the STPSC and FMTSC phases and
their SC correlations now have similar amplitudes and decay
with close exponents (≈2), consistent with Eq. (6). In the
YC3 cylinder at θ = 7π/12, the Luttinger exponents for SC
(Kt0

sc ≈ 2.28) is nearly identical to that of the YC4 cylinder
(Kt0

sc ≈ 2.27). The observation of quasi-long-range SC order
at different boundary conditions, cylinder geometries, and
sizes is positive evidence for the existence of SC in the 2D
limit [71].

In contrast with the topological SC phases reported in
the mean field and perturbative renormalization group stud-
ies of the doped TMD homobilayer [42,43] or monolayer
[68,72], both the d- and p-wave SC phases found here are
topologically trivial as the nearest-neighbor pairings acquire
a phase of either 0 or π after a π/3 rotation, instead of
the nontrivial phases of ±π/3 and ±2π/3 for p ± ip- and
d ± id-wave topological SC phases [31,73,74]. Furthermore,
the SC phase here is distinct from the Ising SC found in
electron-doped TMD monolayers [75–78] in that the former
arises from hole doping the parent in-plane magnetic Mott
insulator at strong electronic couplings whereas the latter has
the pinning of the electron spins in the Cooper pairs to the
out-of-plane directions by the Ising spin-orbit interaction at
weak electronic couplings. Finally, the θ = π/6 case was
also studied in Ref. [50], but a rather large power-law decay
exponent (≈3.34) was found, so only weak SC was claimed
there. Consistently we find that θ = π/6 is located at the
boundary of the SC region in Fig. 1, and its conjugated pair
θ = π/2 exhibits no clear signature of SC, possibly because
of less frustration.

In summary, we perform large-scale DMRG simulations of
the moiré t-J model on four-leg cylinders at small hole doping.
By varying the spin-dependent hopping phase induced by the
out-of-plane electric field, we identify two conjugated SC
phases, one of which is characterized by the coexistence of
singlet d wave, triplet p wave SC and PDW, and the other

L201110-4



SINGLET, TRIPLET, AND PAIR DENSITY WAVE … PHYSICAL REVIEW B 108, L201110 (2023)

ferromagnetic triplet SC. Our study supports twisted TMDs
as a highly tunable platform for realizing exotic SC phases.

The ITensor DMRG code and the data for all the figures in
the main text and SM can be accessed online [79].
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